帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:甘文萱
作者(英文):Kan, Wen-Hsuan
論文名稱(中文):鄰苯二甲酸二(2-乙基己基)酯量子點感測系統建立
論文名稱(英文):Development of a quantum-dot sensing system for di(2-ethylhexyl)phthalate detection
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:林宏洲
黃鈺芳
張淑閔
口試委員(英文):Lin, Hong-Cheu
Huang, Yu-Fang
Chang, Sue-Min
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:環境工程系所
學號:310615021
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:72
中文關鍵詞:分散型固相萃取量子點鄰苯二甲酸二(2-乙基己基)酯環境賀爾蒙螢光淬滅
外文關鍵詞:dispersive solid phase extractionquantum dotdi(2-ethylhexyl)phthalateendocrine disrupting chemicalsfluorescence quenching
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究針對鄰苯二甲酸二(2-乙基己基)酯(di(2-ethylhexyl)phthalate, DEHP)結合分散型固相萃取與量子點探針發展快速簡便且具高靈敏度的DEHP感測系統。固相萃取中的高分子吸附材以甲基丙烯酸(Methacrylic acid, MAA)與苯乙烯(Styrene)為單體,乙二醇二甲基丙烯酸酯(Ethylene Glycol Dimethacrylate, EGDMA)為交聯劑製備之,高分子中自組裝形成的微網篩(micro-meshes)對DEHP有高吸附力,對DEHP之最大吸附量(qm)可高達36.8 mg/g,Langmuir吸附常數(KL)為0.171 L/mg。最佳化的固相萃取條件為10 mg吸附劑分散於10 ml水樣,吸附30分鐘後以6.0 ml甲苯為萃取溶劑脫附10分鐘,萃取回收率可達101.8%、RSD為4.9%,濃縮倍率為10倍。感測方面以硒化鎘量子點(CdSe quantum dots, CdSe QDs)為螢光探針,以苯甲酸作為DEHP的接受器(receptor),製備時在覆蓋劑苯甲酸:油酸為1.7:0.3 mmol比例下之CdSe QDs有最好的感測能力,其對DEHP的響應時間為10分鐘,且感測機制為光誘導電子轉移(photoinduced electron transfer, PET)造成螢光淬滅。分散型固相萃取結合CdSe QDs對DEHP的檢測範圍可廣及1.010-3 -3.0 mg/L,低濃度(1.010-3-1.010-2 mg/L)檢量線為y=1.2x0.63, R2=0.998,而高濃度(1.010-2-3.0 mg/L)檢量線為y=0.35x+0.077, R2=0.994,x與y分別為DEHP濃度(mg/L)與螢光淬滅程度(F0/F-1),偵測極限(limit of detection, LOD)為0.83 μg/L,於飲用水及瓶裝水分析的LOD與去離子水相當,於牛奶分析之LOD為1.19 μg/L,均低於美國國家環境保護局及歐盟限制之飲用水標準6 μg/L與1.3 μg/L。
In this study, a sensing system combining optimized dispersive solid-phase extraction (dSPE) and CdSe-quantum-dot (CdSe QDs) probes was developed for fast, highly sensitive, and selective detection of di(2-ethylhexyl)phthalate (DEHP). The polymeric adsorption material in dSPE was prepared with methacrylic acid (MAA) and styrene as monomers and ethylene glycol dimethacrylate (EGDMA) as a crosslinker. Micro-meshes formed in the crosslinked polymer contributed to a high and selective adsorption for DEHP with the maximum adsorption capacity (qm) of 36.8 mg/g and the Langmuir adsorption constant (KL) of 0.171 L/mg. The optimal dSPE conditions involved dispersing 10 mg adsorbent in 10 ml water sample. After 30 min adsorption, the adsorbed DEHP was eluted by 6.0 ml toluene for 10 min. The extraction recovery of 101.8% was achieved with an RSD of 4.9% and an enrichment factor of 10. The CdSe QDs prepared with benzoic acid and oleic acid as the receptor and the capping agent, respectively, at a molar ratio of 1.7-to-0.3, quickly responded to DEHP in 10 min via fluorescence quenching caused by photoinduced electron transfer (PET). The sensing system performed a wide dynamic range over 1.0×10-3 to 3.0 mg/L with two calibration dependencies. The calibration curve was expressed as y=1.2x0.63 with an R2 value of 0.998 over 1.0×10-3 to 1.0×10-2 mg/L, and it was y=0.35x+0.077 with an R2 value of 0.994 over 1.0×10-2 to 3.0 mg/L, where the x and y represent the DEHP concentration (mg/L) and the fluorescence quenching (F0/F-1), respectively. The limit of detection (LOD) in DI, drinking, and bottled waters was 0.83 μg/L, and it was 1.19 μg/L in milk samples. These values were below the water quality standards for DEHP set by USEPA (6 μg/L) and EU (1.3 μg/L).
摘要 i
Abstract ii
主目錄 iii
圖目錄 v
表目錄 vii
第一章、前言 1
1.1研究背景與動機 1
1.2研究目的 3
第二章、文獻回顧 4
2.1 塑化劑 4
2.1.1 塑化劑介紹及其危害 4
2.1.2 塑化劑的檢測 6
2.2 固相萃取 10
2.2.1 固相萃取技術 10
2.2.2 高分子吸附材 11
2.3 量子點 13
2.3.1 量子點基本概念 13
2.3.2 量子點合成方法 14
2.4螢光感測器 19
2.4.1 螢光淬滅(Fluorescence quenching) 20
2.4.2 螢光恢復(Fluorescence recovery) 23
2.4.3 Stern-volmer equation 25
2.4.4 辨別動態及靜態淬滅 25
2.4.5 螢光感測器於DEHP之感測應用 26
第三章、研究方法 28
3.1 實驗架構 28
3.2 實驗材料 29
3.3 分散型固相萃取 32
3.3.1 高分子吸附材製備方法 32
3.3.2 等溫吸附 32
3.3.3 分散型固相萃取流程及優化因子 33
3.4 量子點感測器 36
3.4.1 量子點製備方法 36
3.4.2 最佳化覆蓋劑比例 36
3.4.3 感測能力 37
3.4.4 響應時間 38
3.4.5 溶劑影響 38
3.4.6 選擇性 38
3.4.7 偵測極限 39
3.5分散型固相萃取與量子點於實際樣品之應用 40
3.6儀器分析 40
3.6.1 紫外光-可見光光譜儀 40
3.6.2 螢光光譜儀 41
3.6.3 傅立葉轉換紅外線光譜儀 41
3.6.4 穿透式電子顯微鏡 41
3.6.5 動態光散射儀 42
3.6.6 高效液相層析儀 42
第四章、結果與討論 44
4.1 分散型固相萃取 44
4.1.1 等溫吸附 44
4.1.2 分散型固相萃取優化 45
4.2 量子點感測器 47
4.2.1 覆蓋劑合成比例 47
4.2.2 傅立葉轉換紅外光譜儀(FTIR) 50
4.2.3 感測響應時間 51
4.2.4 感測表現 52
4.2.5 感測機制 54
4.2.6 選擇性 55
4.2.7 溶劑影響性 57
4.3 結合分散型固相萃取與量子點感測器之應用 58
4.3.1 感測範圍與偵測極限 58
4.3.2 選擇性 58
4.3.2 於真實樣品之檢測 59
第五章、結論 64
參考文獻 65

1. Zhang, H.-X. and E. Liu, Binding behavior of DEHP to albumin: spectroscopic investigation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012. 74(1-4): p. 231-238.
2. Kavlock, R., et al., NTP-CERHR Expert Panel update on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reproductive Toxicology, 2006. 22(3): p. 291-399.
3. Sedha, S., et al., Reproductive toxic potential of phthalate compounds – State of art review. Pharmacological Research, 2021. 167: p. 105536.
4. Swan, S.H., Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environmental Research, 2008. 108(2): p. 177-184.
5. Lim, H.J., et al., Development of quantum dot aptasensor and its portable analyzer for the detection of di-2-ethylhexyl phthalate. Biosens Bioelectron, 2018. 121: p. 1-9.
6. Cao, X.-L., Determination of phthalates and adipate in bottled water by headspace solid-phase microextraction and gas chromatography/mass spectrometry. Journal of Chromatography A, 2008. 1178(1-2): p. 231-238.
7. Fauziah, S., et al., Synthesis and Characterization of Molecularly Imprinted Polymers of Di-(2-Ethylhexyl) Phthalate Using The Precipitation Polymerization Method. Egyptian Journal of Chemistry, 2021. 64: p. 2385-2392.
8. Fischer, E., Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft, 1894. 27(3): p. 2985-2993.
9. Lin, C.-H., A Selective Adsorptive Polymer for Di(2-ethylhexyl) Phthalate and Its Application in Photonic-Crystal-Based Sensor. 2022, National Yang Ming Chiao Tung Universitiy: Institute of Environmental Engineering.
10. Sesay, A.M. and D.C. Cullen, Environmental Monitoring and Assessment, 2001. 70(1/2): p. 83-92.
11. Bolat, G., Y.T. Yaman, and S. Abaci, Molecularly imprinted electrochemical impedance sensor for sensitive dibutyl phthalate (DBP) determination. Sensors and Actuators B: Chemical, 2019. 299: p. 127000.
12. Banerjee, M.B., et al., Development of a Low-Cost Portable Gas Sensing System Based on Molecularly Imprinted Quartz Crystal Microbalance Sensor for Detection of Eugenol in Clove Oil. Ieee Transactions on Instrumentation and Measurement, 2021. 70.
13. Li, T., et al., Synthesis and evaluation of a molecularly imprinted polymer with high-efficiency recognition for dibutyl phthalate based on Mn-doped ZnS quantum dots. RSC Advances, 2016. 6(59): p. 54615-54622.
14. Molaei, M.J., Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Analytical Methods, 2020. 12(10): p. 1266-1287.
15. Wang, Y., et al., Surface molecularly imprinted polymers based ZnO quantum dots as fluorescence sensors for detection of diethylhexyl phthalate with high sensitivity and selectivity. Polymer International, 2018. 67(8): p. 1003-1010.
16. Zhou, Z., et al., Synthesis and characterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples. Sensors and Actuators B: Chemical, 2017. 240: p. 1114-1122.
17. Chen, S., et al., Rapid recognition of di-n-butyl phthalate in food samples with a near infrared fluorescence imprinted sensor based on zeolite imidazolate framework-67. Food Chem, 2022. 367: p. 130505.
18. Xu, W., et al., A magnetic fluorescence molecularly imprinted polymer sensor with selectivity for dibutyl phthalate via Mn doped ZnS quantum dots. RSC Advances, 2017. 7(81): p. 51632-51639.
19. Wang, X., et al., Detection of dibutyl phthalate in food samples by fluorescence ratio immunosensor based on dual-emission carbon quantum dot labelled aptamers. Food and Agricultural Immunology, 2020. 31(1): p. 813-826.
20. Sampson, J. and D. De Korte, DEHP-plasticised PVC: relevance to blood services*. Transfusion Medicine, 2011. 21(2): p. 73-83.
21. Erythropel, H.C., et al., Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Applied Microbiology and Biotechnology, 2014. 98(24): p. 9967-9981.
22. Gavrila, D.E., Gavrilă Doina Elena, “Studies of Degradation of Plasticized Polyvinyl Chloride (PPVC) , International Journal of Engineering , Research and Applications, ISSN.2248-9622, Vol.6, Issue 1, Part-3, January 2016, p.56-63 http://www.ijera.com. International Journal of Engineering, Research and Applications, 2017. Vol.6: p. 56-63.
23. Hebert, C., L.R. de Andrade Lima, and C. Gonçalves, Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel. 2017.
24. Sørensen, L.K., Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2006. 20(7): p. 1135-1143.
25. Fay, M., J.M. Donohue, and C. De Rosa, ATSDR evaluation of health effects of chemicals. VI. Di(2-ethylhexyl)phthalate. Toxicology and Industrial Health, 1999. 15(8): p. 651-746.
26. Caldwell, J.C., DEHP: Genotoxicity and potential carcinogenic mechanisms-A review. Mutation Research-Reviews in Mutation Research, 2012. 751(2): p. 82-157.
27. Fan, J.J., et al., Molecular Mechanisms Mediating the Effect of Mono-(2-Ethylhexyl) Phthalate on Hormone-Stimulated Steroidogenesis in MA-10 Mouse Tumor Leydig Cells. Endocrinology, 2010. 151(7): p. 3348-3362.
28. Balafas, D., K.J. Shaw, and F.B. Whitfield, Phthalate and adipate esters in Australian packaging materials. Food Chemistry, 1999. 65(3): p. 279-287.
29. Chafer-Pericas, C., P. Campins-Falco, and M.C. Prieto-Blanco, Automatic in-tube SPME and fast liquid chromatography: A cost-effective method for the estimation of dibuthyl and di-2-ethylhexyl phthalates in environmental water samples. Analytica Chimica Acta, 2008. 610(2): p. 268-273.
30. Dong, W., et al., Matrix Effects in Detection of Phthalate Esters from Wheat by a Modified QuEChERS Method with GC/MS. Food Analytical Methods, 2017. 10(9): p. 3166-3180.
31. He, J., et al., Selective solid-phase extraction of dibutyl phthalate from soybean milk using molecular imprinted polymers. Analytica Chimica Acta, 2010. 661(2): p. 215-221.
32. Takatori, S., et al., Determination of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate in human serum using liquid chromatography-tandem mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2004. 804(2): p. 397-401.
33. Cai, Y.Q., G.B. Jiang, and J.F. Liu, Solid-phase microextraction coupled with high performance liquid chromatography-UV detection for the determination of di-n-propyl-phthalate, di-iso-butyl-phthalate, and di-cyclohexyl-phthalate in environmental water samples. Analytical Letters, 2003. 36(2): p. 389-404.
34. Fan, J.C., et al., Detection of 20 phthalate esters in breast milk by GC-MS/MS using QuEChERS extraction method. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2019. 36(10): p. 1551-1558.
35. Chen, F.Y., et al., Selective Extraction and Determination of Di(2-ethylhexyl) Phthalate in Aqueous Solution by HPLC Coupled with Molecularly Imprinted Solid-phase Extraction. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2017. 36(3): p. 127-136.
36. Sun, D., et al., Recent Advances in Molecular-Imprinting-Based Solid-Phase Extraction of Antibiotics Residues Coupled With Chromatographic Analysis. Frontiers in Environmental Chemistry, 2021. 2.
37. Garrido Frenich, A., et al., Determination of di-(2-ethylhexyl)phthalate in environmental samples by liquid chromatography coupled with mass spectrometry. Journal of Separation Science, 2009. 32(9): p. 1383-1389.
38. Deng, L., et al., Determination of trace DEHP in aqueous solution by solid phase microextraction coupled with high performance liquid chromatography. Fresenius Environmental Bulletin, 2005. 14(6): p. 494-497.
39. Wu, X., et al., Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water. Science of The Total Environment, 2013. 444: p. 224-230.
40. Wang, C., et al. Optimizing Determination of Trace Phthalate Esters in Groundwater by Solid Phase Extraction-Gas Chromatography. IEEE.
41. Polo, M., et al., Multivariate optimization of a solid-phase microextraction method for the analysis of phthalate esters in environmental waters. Journal of Chromatography A, 2005. 1072(1): p. 63-72.
42. Shaikh, H., et al., Preparation and characterization of molecularly imprinted polymer for di(2-ethylhexyl) phthalate: Application to sample clean-up prior to gas chromatographic determination. Journal of Chromatography A, 2012. 1247: p. 125-133.
43. Zhang, Y., et al., Extraction of DBP and DEHP in reclaimed water by dispersive-solid phase extraction. 2016. 10: p. 3522-3528.
44. H. R, C., J.D. Schiffman, and R.G. Balakrishna, Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 2018. 258: p. 1191-1214.
45. Gupta, A., et al., Quantum dots as promising nanomaterials in agriculture. 2022. p. 243-296.
46. Andersen, K.E., C.Y. Fong, and W.E. Pickett, Quantum confinement in CdSe nanocrystallites. Journal of Non-Crystalline Solids, 2002. 299-302: p. 1105-1110.
47. Arnav, G., Tuning the Optical Properties of Quantum Dots to Increase the Efficiency of Solar Cells. International Journal of Engineering Research and, 2020. V9(09).
48. Ilaiyaraja, N., S.J. Fathima, and F. Khanum, Chapter 12 - Quantum dots: A novel fluorescent probe for bioimaging and drug delivery applications, in Inorganic Frameworks as Smart Nanomedicines, A.M. Grumezescu, Editor. 2018, William Andrew Publishing. p. 529-563.
49. Chand, S., et al., Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots. Solar Energy Materials and Solar Cells, 2017. 168: p. 183-200.
50. Medintz, I.L., et al., Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 2005. 4(6): p. 435-446.
51. Boatman, E.M., G.C. Lisensky, and K.J. Nordell, A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. Journal of Chemical Education, 2005. 82(11): p. 1697-1699.
52. Mijatovic, D., J.C.T. Eijkel, and A. van den Berg, Technologies for nanofluidic systems: top-down vs. bottom-up - a review. Lab on a Chip, 2005. 5(5): p. 492-500.
53. Bruno, F., et al., A Comparative Study of Top-Down and Bottom-Up Carbon Nanodots and Their Interaction with Mercury Ions. Nanomaterials, 2021. 11(5): p. 1265.
54. Pierre, A.C., Applications of Sol-Gel Processing. 2020, Springer International Publishing. p. 597-685.
55. Arachchige, I.U. and S.L. Brock, Sol-gel methods for the assembly of metal chalcogenide quantum dots. Accounts of Chemical Research, 2007. 40(9): p. 801-809.
56. Gaeeni, M.R., M. Tohidian, and M. Mapes-Ara, Green Synthesis of CdSe Colloidal Nanocrystals with Strong Green Emission by the Sol-Gel Method. Industrial & Engineering Chemistry Research, 2014. 53(18): p. 7598-7603.
57. Mishra, S.K., et al., Structural, Photoconductivity and Photoluminescence Characterization of Cadmium Sulfide Quantum Dots Prepared by a Co-precipitation Method. Electronic Materials Letters, 2011. 7(1): p. 31-38.
58. Tresilwised, N., P. Pithayanukul, and C. Plank, Factors Affecting Sizes of Magnetic Particles Formed by Chemical Co-precipitation. Mahidol J. Pharm. Sci., 2005. 32.
59. Singh, R., A.K. Bajpai, and A.K. Shrivastava. Structural, Morphological and Optical Properties of CdSe(S) Quantum Dots. in Dinesh Varshney Memorial National Conference on Physics and Chemistry of Materials (NCPCM). 2018. Indore, INDIA: Amer Inst Physics.
60. Feng, S.H. and G.H. Li, Chapter 4 - Hydrothermal and Solvothermal Syntheses, in Modern Inorganic Synthetic Chemistry (Second Edition), R. Xu and Y. Xu, Editors. 2017, Elsevier: Amsterdam. p. 73-104.
61. Liu, X.L., et al., Hydrothermal Synthesis of CdSe Quantum Dots and Their Photocatalytic Activity on Degradation of Cefalexin. Industrial & Engineering Chemistry Research, 2013. 52(43): p. 15015-15023.
62. Donega, C.D., P. Liljeroth, and D. Vanmaekelbergh, Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small, 2005. 1(12): p. 1152-1162.
63. Peng, Z.A. and X.G. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society, 2001. 123(1): p. 183-184.
64. Shin, Y.-H., M. Teresa Gutierrez-Wing, and J.-W. Choi, Review—Recent Progress in Portable Fluorescence Sensors. Journal of The Electrochemical Society, 2021. 168(1): p. 017502.
65. Toseland, C.P., Fluorescent labeling and modification of proteins. Journal of Chemical Biology, 2013. 6(3): p. 85-95.
66. Schweizer, T., H. Kubach, and T. Koch, Investigations to characterize the interactions of light radiation, engine operating media and fluorescence tracers for the use of qualitative light-induced fluorescence in engine systems. Automotive and Engine Technology, 2021. 6(3-4): p. 275-287.
67. Skorjanc, T., D. Shetty, and M. Valant, Covalent Organic Polymers and Frameworks for Fluorescence-Based Sensors. ACS Sensors, 2021. 6(4): p. 1461-1481.
68. Basabe-Desmonts, L., D.N. Reinhoudt, and M. Crego-Calama, Design of fluorescent materials for chemical sensing. Chemical Society Reviews, 2007. 36(6): p. 993-1017.
69. Mátyus, L., J. Szöllősi, and A. Jenei, Steady-state fluorescence quenching applications for studying protein structure and dynamics. Journal of Photochemistry and Photobiology B: Biology, 2006. 83(3): p. 223-236.
70. Lakowicz, J.R., Quenching of Fluorescence. 1983, Springer US. p. 257-301.
71. Zu, F., et al., The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchimica Acta, 2017. 184(7): p. 1899-1914.
72. Clapp, A.R., I.L. Medintz, and H. Mattoussi, Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores. ChemPhysChem, 2006. 7(1): p. 47-57.
73. Liang, Z., et al., Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2016. 8(27): p. 17478-17488.
74. Chen, S., Y.-L. Yu, and J.-H. Wang, Inner filter effect-based fluorescent sensing systems: A review. Analytica Chimica Acta, 2018. 999: p. 13-26.
75. Fang, A., et al., Upconversion nanosensor for sensitive fluorescence detection of Sudan I–IV based on inner filter effect. Talanta, 2016. 148: p. 129-134.
76. Foerster, A. and N.A. Besley, Quantum Chemical Characterization and Design of Quantum Dots for Sensing Applications. The Journal of Physical Chemistry A, 2022. 126(19): p. 2899-2908.
77. Deng, X., et al., N-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of Fe3+ ions. Particuology, 2018. 41: p. 94-100.
78. Rodrigues, S.S.M., et al., Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coordination Chemistry Reviews, 2017. 330: p. 127-143.
79. Zhang, H., et al., Au nanoparticles based ultra-fast “Turn-On” fluorescent sensor for detection of biothiols and its application in living cell imaging. Chinese Chemical Letters, 2020. 31(5): p. 1083-1086.
80. Shang, L., et al., Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. The Analyst, 2009. 134(7): p. 1477.
81. Nguyen, T.H., T. Sun, and K.T.V. Grattan, A Turn-On Fluorescence-Based Fibre Optic Sensor for the Detection of Mercury. Sensors, 2019. 19(9): p. 2142.
82. Xia, Y.-S., C. Cao, and C.-Q. Zhu, Two distinct photoluminescence responses of CdTe quantum dots to Ag (I). Journal of Luminescence, 2008. 128(1): p. 166-172.
83. Gehlen, M.H., The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020. 42: p. 100338.
84. Grigoryan, K.R. and A.G. Ghazaryan, QUENCHING MECHANISM OF HUMAN SERUM ALBUMIN FLUORESCENCE BY GANGLERON. Proceedings of the YSU B: Chemical and Biological Sciences, 2013. 47(2 (231)): p. 6-10.
85. Noun, F., E.A. Jury, and R. Naccache, Elucidating the Quenching Mechanism in Carbon Dot-Metal Interactions–Designing Sensitive and Selective Optical Probes. Sensors, 2021. 21(4): p. 1391.
86. Qiu, C., et al., Sensitive Fluorescence Detection of Phthalates by Suppressing the Intramolecular Motion of Nitrophenyl Groups in Porous Crystalline Ribbons. Analytical Chemistry, 2019. 91(21): p. 13355-13359.
87. SONG Wei, Q.Q., LU Yangyang,Song Weigu, The Fluorescent Nanosensor-Based Rapid Detection Assay for DEHP. Journal of Jiangxi Normal University:Natural Science Edition, 2021. 04: p. 432-437.
88. Yuan, L., et al., Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment. Nanomaterials, 2022. 12(13): p. 2196.
89. Wang, Y., et al., Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis(2-ethylhexyl) phthalate in pork. Food Chem, 2021. 352: p. 129352.
90. Langmuir, I., THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. Journal of the American Chemical Society, 1916. 38(11): p. 2221-2295.
91. Freundlich, Kapillarchemie, Eine Darstellung der Chemie der Kolloide und verwandter Gebiete. Nature, 1911. 85(2156): p. 534-535.
92. Lin, X., et al., Rapid and simple detection of sodium thiocyanate in milk using surface-enhanced Raman spectroscopy based on silver aggregates. Journal of Raman Spectroscopy, 2014. 45(2): p. 162-167.
93. Speight, J.G., Chapter 5 - Sorption, Dilution, and Dissolution, in Reaction Mechanisms in Environmental Engineering, J.G. Speight, Editor. 2018, Butterworth-Heinemann. p. 165-201.
94. Wulandari, A.D., S. Sutriyo, and R. Rahmasari, Synthesis conditions and characterization of superparamagnetic iron oxide nanoparticles with oleic acid stabilizer. J Adv Pharm Technol Res, 2022. 13(2): p. 89-94.
95. Morris, T. and T. Zubkov, Steric effects of carboxylic capping ligands on the growth of the CdSe quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 443: p. 439-449.
96. Zhao, Z., M.A. Carpenter, and M.A. Petrukhina, Semiconductor quantum dots for photoluminescence-based gas sensing. 2013, Elsevier. p. 316-355.
97. Ayele, D.W., A facile one-pot synthesis and characterization of Ag2Se nanoparticles at low temperature. Egyptian Journal of Basic and Applied Sciences, 2016. 3(2): p. 149-154.
98. Erazo, E.A., et al., Photo-Induced Black Phase Stabilization of CsPbI3 QDs Films. Nanomaterials, 2020. 10(8): p. 1586.
99. Windy Mustikarini, A., B. Rumhayati, and C. Cahyani, The Ability of Benzoic Acid to Reduce Cr(VI) Heavy Metal Content in Aqueous Solution. The Journal of Pure and Applied Chemistry Research, 2015. 4(3): p. 82-87.
100. Ghosh, S., et al., Effect of oleic acidligand on photophysical, photoconductive and magnetic properties of monodisperse SnO2quantum dots. Dalton Trans., 2013. 42(10): p. 3434-3446.
101. Bronstein, L.M., et al., Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chemistry of Materials, 2007. 19(15): p. 3624-3632.
102. Chen, Q., et al., Effect of carbon chain structure on the phthalic acid esters (PAEs) adsorption mechanism by mesoporous cellulose biochar. Chemical Engineering Journal, 2019. 362: p. 383-391.
103. Bodzek, M., M. Dudziak, and K. Luks-Betlej, Application of membrane techniques to water purification. Removal of phthalates. Desalination, 2004. 162: p. 121-128.
104. Blánquez, P. and B. Guieysse, Continuous biodegradation of 17β-estradiol and 17α-ethynylestradiol by Trametes versicolor. Journal of Hazardous Materials, 2008. 150(2): p. 459-462.
105. Guo, J.J., et al., 17β-estradiol (E2) in membranes: Orientation and dynamic properties. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016. 1858(2): p. 344-353.
106. Fu, D., et al., Efficient removal of bisphenol pollutants on imine-based covalent organic frameworks: adsorption behavior and mechanism. RSC Advances, 2021. 11(30): p. 18308-18320.
107. Schöpel, M., et al., The Bisphenol A analogue Bisphenol S binds to K-Ras4B - implications for ‘BPA-free’ plastics. FEBS Letters, 2016. 590(3): p. 369-375.
108. Rawajfih, Z., N. Nsour, and N. Alnsour, Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. Journal of colloid and interface science, 2006. 298: p. 39-49.
109. Hassinen, A., et al., Short-Chain Alcohols Strip X-Type Ligands and Quench the Luminescence of PbSe and CdSe Quantum Dots, Acetonitrile Does Not. Journal of the American Chemical Society, 2012. 134(51): p. 20705-20712.
(此全文限內部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *