帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:李宗諭
作者(英文):Lee, Chung-Yu
論文名稱(中文):以離子液體模版溶膠-凝膠法製備孔徑可調之多孔 二氧化鈦光觸媒-無機鹽類的作用
論文名稱(英文):Preparation of pore-size-tailored TiO2 photocatalysts using an ionic-liquid-templated sol-gel method- Effects of inorganic salts
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9819511
出版年(民國):100
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:二氧化鈦磷酸雙酚A離子液體
外文關鍵詞:BisphenolIonic liquidPhosphatedTiO2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
本研究中我們成功地開發離子液體(ionic liquid, IL)模版溶膠-凝膠法製備熱穩定性高且孔徑可調的中孔磷摻雜TiO2光觸媒,我們利用水在油相乳化的方式(water-in-oil)使極性離子液體BMIMCl在疏水性苯甲醇溶劑中自組裝導引TiO2孔洞結構,並加入磷酸與四種鹽類包括NH4NO3、NH4Cl、CaCl2 與 NaCl 作為結構穩定物質與擴孔劑,結果顯示當IL以鍛燒550 °C移除時,磷酸能有效維持TiO2的孔徑在4.2 nm,且比表面積可高達164 m2/g,當鹽類參與合成反應時,它們著實擴大TiO2孔徑尺寸,各鹽類對孔徑擴張的影響依序為NH4NO3 (16.8 nm) > NH4Cl (13.7 nm) > CaCl2 (12.4 nm) > NaCl (8.7nm),孔徑大小與鹽類陰陽離子的離子半徑及價態有關,大離子半徑如NH4+:140 pm 與NO3-: 189 pm 與高電荷密度如Ca2+能產生較大孔徑,多孔TiO2在鹽類作用下比表面積仍可維持在154-199 m2/g。擴大孔徑幫助反應物質克服表面張力並因毛細凝結作用快速進入孔洞內進行光催化反應,明顯地,在相近比表面積下,經NH4Cl與NH4NO3擴孔的二氧化鈦光觸媒其光催化活性為未經擴孔樣品6.7-9.3倍。
We have successfully prepared mesoporous TiO2 photocatalysts with highly thermal stability and tunable pore sizes through an ionic-liquid templated sol-gel method. The mesoporous structure was directed by self assembly of a hydrophilic ionic liquid, butbleyl-3-methylimidazolium chloride (BMIMCl), in a benzyl alcohol (log Kow= 1.2) oil phase. Phosphate ions were incorporated into the TiO2 framework to stabilize the pore structure against thermal induced collapse. Four salts, including NH4NO3, NH4Cl, CaCl2 and NaCl, were used as auxiliary reagents to expand pore sizes of the porous TiO2 samples. After removal of BMIMCl at 550 °C, the porous TiO2 samples exhibited a large specific surface area of 164 m2/g and an arrearage pore size of 4.2 nm. Addition of the salts effectively expand the pore size in the order of NH4NO3 (16.8 nm) > NH4Cl (13.7 nm) > CaCl2 (12.4 nm) > NaCl (8.7 nm), while the surface areas were maintained in the range of 154-199 m2/g. The ionic radii and valence states of the cations/anions (Na+: 116 pm, Ca2+: 114 pm, NH4+: 140 pm, NO3-: 189 pm, Cl-: 181 pm) determined the pore sizes. Expanded pores assist the adsorption of bisphenol A into the pore channels of the porous TiO2 samples because of capillary condensation. Improved adsorption capability promotes photocatalytic performance. Compared to the porous sample having the pore size of 4.2 nm, the samples having the pore size of 13.7-16.8 nm enhanced the photocatalytic activity by 6.7-9.3 times although they have similar surface areas.
中文摘要 I
Abstract II
致 謝 III
索引 IV
圖目錄 VI
表目錄 VIII
一、前言 1
二、文獻回顧與探討 3
2-1 中孔材料之發展 3
2-2 光催化以及二氧化鈦光觸媒 8
2-2-1 光觸媒催化原理 8
2-2-2 中孔洞二氧化鈦 9
2-3 離子液體合成金屬氧化物之研究 13
2-3-1. 離子液體之介紹 13
2-3-2. 離子液體應用於孔洞材料之研究 15
2-3-3. 離子液體對孔洞結構以及光催化活性之影響 16
2-4孔徑大小的控制 23
2-4-1 孔徑擴張之方法 23
2-4-2 中孔二氧化鈦之光催活性探討 27
三、實驗方法及步驟 30
3-1 實驗 30
3-2 實驗材料 31
3-3 製備以離子液體作為模版之中孔二氧化鈦 31
3-4 二氧化鈦特性分析 33
3-4-1 熱重分析法 ( Thermal Gravimetric Analysis;TGA ) 33
3-4-2 比表面積儀分析 33
3-4-3 X光粉末繞射 (Powder X-ray Diffraction;XRD) 34
3-4-4 X射線光電子能譜(X-ray photoelectron spectroscopy, XPS) 34
3-4-5 高解析度穿透式電子顯微鏡 (High Resolution Transmission ElectronMicroscopy, HRTEM) 35
3-5. 光催化實驗方法 35
3-6. BPA吸附實驗 36
四、結果與討論 37
4-1 孔洞結構 37
4-1-1 利用離子液體作為模版之研究 37
4-1-2 添加磷酸之研究 41
4-2 添加擴孔劑之影響 44
4-2-1 擴孔劑種類之影響 44
4-2-2 擴孔劑劑量之影響 47
4-3 改變磷酸量之影響 50
4-4 結晶結構之分析 52
4-5 樣品表面元素分析 55
4-6 BPA光催化降解實驗 60
4-7 BPA吸附實驗 65
五、總結 68
六、參考文獻 69
附錄 75
1. Inoue, T.; Watanabe, T.; Fujishima, A.; Honda, K., Competitive Photosensitized Oxidation at Tio2 Photoanode. Chemistry Letters 1977, (9), 1073-1076.
2. Fujishima, A.; Inoue, T.; Watanabe, T.; Honda, K., Stabilization of Photoanodes in Electrochemical Photocells for Solar-Energy Conversion. Chemistry Letters 1978, (4), 357-360.
3. Honda, H.; Ishizaki, A.; Soma, R.; Hashimoto, K.; Fujishima, A., Application of photocatalytic reactions caused by TiO2 film to improve the maintenance factor of lighting systems. Journal of the Illuminating Engineering Society 1998, 27, (1), 42-+.
4. Tada, H.; Kawahara, T.; Konishi, Y.; Tohge, N.; Ito, S., Patterned TiO2/SnO2 bilayer type photocatalyst. 2. Efficient dehydrogenation of methanol. Langmuir 2001, 17, (23), 7442-7445.
5. Yu, J. C.; Zhang, L. Z.; Zheng, Z.; Zhao, J. C., Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 2003, 15, (11), 2280-2286.
6. Zou, Z. G.; Fan, X. X.; Yu, T.; Wang, Y.; Zheng, J.; Gao, L.; Li, Z. S.; Ye, J. H., Role of phosphorus in synthesis of phosphated mesoporous TiO(2) photocatalytic materials by EISA method. Applied Surface Science 2008, 254, (16), 5191-5198.
7. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, (6397), 710-712.
8. Sun, I. W.; Huang, J. F., Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Advanced Functional Materials 2005, 15, (6), 989-994.
9. Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.; Morris, R. E., Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, (7003), 1012-1016.
10. Xie, Z. X.; Zhou, X.; Jiang, Z. Y.; Kuang, Q.; Zhang, S. H.; Xu, T.; Huang, R. B.; Zheng, L. S., Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chemical Communications 2005, (44), 5572-5574.
11. Zhou, Y.; Antonietti, M., Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. Journal of the American Chemical Society 2003, 125, (49), 14960-14961.
12. Dionysiou, D. D.; Yoo, K.; Choi, H., Ionic liquid assisted preparation of nanostructured TiO2 particles. Chemical Communications 2004, (17), 2000-2001.
13. Davis, R. J.; Stone, V. F., Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chemistry of Materials 1998, 10, (5), 1468-1474.
14. Yu, J. C.; Zhang, L. Z.; Yu, J. G., Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chemistry of Materials 2002, 14, (11), 4647-4653.
15. Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews 1997, 97, (6), 2373-2419.
16. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie-International Edition 2006, 45, (20), 3216-3251.
17. Inagaki, S.; Fukushima, Y.; Kuroda, K., Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. Journal of the Chemical Society-Chemical Communications 1993, (8), 680-682.
18. Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J., Titanium-Containing Mesoporous Molecular-Sieves for Catalytic-Oxidation of Aromatic-Compounds. Nature 1994, 368, (6469), 321-323.
19. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, (5350), 548-552.
20. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society 1998, 120, (24), 6024-6036.
21. Fowler, C. E.; Burkett, S. L.; Mann, S., Synthesis and characterization of ordered organo-silica-surfactant mesophases with functionalized MCM-41-type architecture. Chemical Communications 1997, (18), 1769-1770.
22. Macquarrie, D. J.; Jackson, D. B.; Mdoe, J. E. G.; Clark, J. H., Organomodified hexagonal mesoporous silicates. New Journal of Chemistry 1999, 23, (5), 539-544.
23. Bhaumik, A.; Tatsumi, T., Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions. Journal of Catalysis 2000, 189, (1), 31-39.
24. Lim, M. H.; Blanford, C. F.; Stein, A., Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts. Chemistry of Materials 1998, 10, (2), 467-+.
25. Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.; Jacobs, P. A., Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communications 1998, (3), 317-318.
26. Corma, A.; Jorda, J. L.; Navarro, M. T.; Rey, F., One step synthesis of highly active and selective epoxidation catalysts formed by organic-inorganic Ti containing mesoporous composites. Chemical Communications 1998, (17), 1899-1900.
27. Corriu, R. J. P.; Mehdi, A.; Reye, C., Synthesis by neutral surfactant assembly of ordered mesoporous organic-inorganic hybrid materials incorporating phosphorus centres. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 1999, 2, (1), 35-39.
28. Babonneau, F.; Leite, L.; Fontlupt, S., Structural characterization of organically-modified porous silicates synthesized using CTA(+) surfactant and acidic conditions. Journal of Materials Chemistry 1999, 9, (1), 175-178.
29. Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. F., Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. Journal of Physical Chemistry B 2005, 109, (5), 1763-1769.
30. Chong, A. S. M.; Zhao, X. S., Functionalization of SBA-15 with APTES and characterization of functionalized materials. Journal of Physical Chemistry B 2003, 107, (46), 12650-12657.
31. Peng, C. Y.; Zhang, H. J.; Yu, J. B.; Meng, Q. G.; Fu, L. S.; Li, H. R.; Sun, L. N.; Guo, X. M., Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. Journal of Physical Chemistry B 2005, 109, (32), 15278-15287.
32. Calleja, G.; Serrano, D. P.; Sanz, R.; Pizarro, P.; Garcia, A., Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Industrial & Engineering Chemistry Research 2004, 43, (10), 2485-2492.
33. Fung, K. Z.; Sung, C. C.; Hung, I. M.; Hon, M. H., Synthesis of highly ordered and worm-like mesoporous TiO2 assisted by tri-block copolymer. Solid State Ionics 2008, 179, (27-32), 1300-1304.
34. Choi, H.; Kim, Y. J.; Varma, R. S.; Dionysiou, D. D., Thermally stable nanocrystalline TiO2 photocatalysts synthesized via sol-gel methods modified with ionic liquid and surfactant molecules. Chemistry of Materials 2006, 18, (22), 5377-5384.
35. Yoo, K. S.; Lee, T. G.; Kim, J., Preparation and characterization of mesoporous TiO2 particles by modified sol-gel method using ionic liquids. Microporous and Mesoporous Materials 2005, 84, (1-3), 211-217.
36. Choi, H.; Stathatos, E.; Dionysiou, D. D., Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B-Environmental 2006, 63, (1-2), 60-67.
37. Ding, K. L.; Miao, Z. J.; Liu, Z. M.; Zhang, Z. F.; Han, B. X.; An, G. M.; Miao, S. D.; Xie, Y., Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. Journal of the American Chemical Society 2007, 129, (20), 6362-+.
38. Sreethawong, T.; Suzuki, Y.; Yoshikawa, S., Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template. International Journal of Hydrogen Energy 2005, 30, (10), 1053-1062.
39. Kluson, P.; Kacer, P.; Cajthaml, T.; Kalaji, M., Preparation of titania mesoporous materials using a surfactant-mediated sol-gel method. Journal of Materials Chemistry 2001, 11, (2), 644-651.
40. Yu, N. Y.; Gong, L. M.; Song, H. J.; Liu, Y.; Yin, D. H., Ionic liquid of [Bmim](+) Cl- for the preparation of hierarchical nanostructured rutile titania. Journal of Solid State Chemistry 2007, 180, (2), 799-803.
41. Kim, D. S.; Kwak, S. Y., The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Applied Catalysis a-General 2007, 323, 110-118.
42. Tan, R. Q.; He, Y.; Zhu, Y. F.; Xu, B. Q.; Cao, L. L., Hydrothermal preparation of mesoporous TiO2 powder from Ti(SO4)(2) with poly(ethylene glycol) as template. Journal of Materials Science 2003, 38, (19), 3973-3978.
43. Tian, G. H.; Fu, H. G.; Jing, L. Q.; Xin, B. F.; Pan, K., Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. Journal of Physical Chemistry C 2008, 112, (8), 3083-3089.
44. Huang, C. H.; Yang, Y. T.; Doong, R. A., Microwave-assisted hydrothermal synthesis of mesoporous anatase TiO2 via sol-gel process for dye-sensitized solar cells. Microporous and Mesoporous Materials 2011, 142, (2-3), 473-480.
45. Fan, X. X.; Yu, T.; Wang, Y.; Zheng, J.; Gao, L.; Li, Z. S.; Ye, J. H.; Zou, Z. G., Role of phosphorus in synthesis of phosphated mesoporous TiO2 photocatalytic materials by EISA method. Applied Surface Science 2008, 254, (16), 5191-5198.
46. Liu, Z. M.; Miao, S. D.; Miao, Z. J.; Han, B. X.; Zhang, H.; Zhang, J., Synthesis of mesoporous TiO2 films in ionic liquid dissolving cellulose. Microporous and Mesoporous Materials 2006, 95, (1-3), 26-30.
47. Han, C. C.; Ho, S. Y.; Lin, Y. P.; Lai, Y. C.; Liang, W. C.; Chen-Yang, Y. W., Effect of pi-pi stacking of water miscible ionic liquid template with different cation chain length and content on morphology of mesoporous TiO2 prepared via sol-gel method and the applications. Microporous and Mesoporous Materials 2010, 131, (1-3), 217-223.
48. Liu, H.; Liang, Y. G.; Hu, H. J.; Wang, M. Y., Hydrothermal synthesis of mesostructured nanocrystalline TiO2 in an ionic liquid-water mixture and its photocatalytic performance. Solid State Sciences 2009, 11, (9), 1655-1660.
49. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B., Thermal properties of imidazolium ionic liquids. Thermochimica Acta 2000, 357, 97-102.
50. Earle, M. J.; Seddon, K. R., Ionic liquids. Green solvents for the future. Pure and Applied Chemistry 2000, 72, (7), 1391-1398.
51. Jaeger, D. A.; Tucker, C. E., Diels-Alder Reactions in Ethylammonium Nitrate, a Low-Melting Fused Salt. Tetrahedron Letters 1989, 30, (14), 1785-1788.
52. Visser, A. E.; Swatloski, R. P.; Rogers, R. D., pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior. Green Chemistry 2000, 2, (1), 1-4.
53. Zhu, H. P.; Yang, F.; Tang, J.; He, M. Y., Bronsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chemistry 2003, 5, (1), 38-39.
54. Stepnowski, P., Solid-phase extraction of room-temperature imidazolium ionic liquids from aqueous environmental samples. Analytical and Bioanalytical Chemistry 2005, 381, (1), 189-193.
55. Kuntz, E. G., Homogeneous Catalysis ... In Water. Chemtech 1987, 17, (9), 570-575.
56. Kaufmann, D. E.; Nouroozian, M.; Henze, H., Molten salts as an efficient medium for palladium catalyzed C-C coupling reactions. Synlett 1996, (11), 1091-&.
57. MacFarlane, D. R.; Huang, J. H.; Forsyth, M., Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 1999, 402, (6763), 792-794.
58. Doyle, M.; Choi, S. K.; Proulx, G., High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. Journal of the Electrochemical Society 2000, 147, (1), 34-37.
59. Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S., Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chemical Communications 2002, (4), 374-375.
60. Carda-Broch, S.; Berthod, A.; Armstrong, D. W., Ionic matrices for matrix-assisted laser desorption/ionization time-of-flight detection of DNA oligomers. Rapid Communications in Mass Spectrometry 2003, 17, (6), 553-560.
61. Yoo, K.; Choi, H.; Dionysiou, D. D., Ionic liquid assisted preparation of nanostructured TiO2 particles. Chemical Communications 2004, (17), 2000-2001.
62. Ding, K.; Zhao, M.; Wang, Q., Catalysis of the electrochemical oxygen reduction in room-temperature ionic liquids on a pyrolytic graphite electrode by iron-containing superoxide dismutase. Russian Journal of Electrochemistry 2007, 43, (9), 1082-1090.
63. Choi, E. H.; Hong, S. I.; Moon, D. J., Preparation of thermally stable mesostructured nano-sized TiO2 particles by modified sol-gel method using ionic liquid. Catalysis Letters 2008, 123, (1-2), 84-89.
64. Zhai, Y. G.; Zhang, Q.; Liu, F. Q.; Gao, G., Synthesis of nanostructure rutile TiO2 in a carboxyl-containing ionic liquid. Materials Letters 2008, 62, (30), 4563-4565.
65. Yoo, K. S.; Choi, H.; Dionysiou, D. D., Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis. Catalysis Communications 2005, 6, (4), 259-262.
66. Sonwane, C. G.; Bhatia, S. K., Adsorption in mesopores: A molecular-continuum model with application to MCM-41. Chemical Engineering Science 1998, 53, (17), 3143-3156.
67. Prouzet, E.; Pinnavaia, T. J., Assembly of mesoporous molecular sieves containing wormhole motifs by a nonionic surfactant pathway: Control of pore size by synthesis temperature. Angewandte Chemie-International Edition 1997, 36, (5), 516-518.
68. Sierra, L.; Guth, J. L., Synthesis of mesoporous silica with tunable pore size from sodium silicate solutions and a polyethylene oxide surfactant. Microporous and Mesoporous Materials 1999, 27, (2-3), 243-253.
69. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8, (8), 1682-1701.
70. Wu, L.; Yu, J. C.; Wang, X. C.; Zhang, L. Z.; Yu, J. G., Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature. Journal of Solid State Chemistry 2005, 178, (1), 321-328.
71. Alvaro, M.; Aprile, C.; Benitez, M.; Carbonell, E.; Garcia, H., Photocatalytic activity of structured mesoporous TiO2 materials. Journal of Physical Chemistry B 2006, 110, (13), 6661-6665.
72. Yu, J. G.; Wang, G. H.; Cheng, B.; Zhou, M. H., Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B-Environmental 2007, 69, (3-4), 171-180.
73. Zhou, X.; Xie, Z. X.; Jiang, Z. Y.; Kuang, Q.; Zhang, S. H.; Xu, T.; Huang, R. B.; Zheng, L. S., Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chemical Communications 2005, (44), 5572-5574.
74. Guth, J. L.; Sierra, L., Synthesis of mesoporous silica with tunable pore size from sodium silicate solutions and a polyethylene oxide surfactant. Microporous and Mesoporous Materials 1999, 27, (2-3), 243-253.
75. Handbook of X-ray Photoelectron Spectrosopy: Perkin-Elmer Corporation, Physical
Elelctronics Division, 1992. In.
76. Pan, T. M.; Liao, K. M., Comparison of structural and sensing characteristics of Pr2O3 and PrTiO3 sensing membrane for pH-ISFET application. Sensors and Actuators B-Chemical 2008, 133, (1), 97-104.
77. Agenson, K. O.; Oh, J. I.; Urase, T., Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: controlling parameters of process. Journal of Membrane Science 2003, 225, (1-2), 91-103.
78. E. R. Nightingale, Jr., Phenomenological theory of ion solvation : effective radii of hydrated ions. Received January 10, 1959, (63), 1381-1387
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *