|
1. Inoue, T.; Watanabe, T.; Fujishima, A.; Honda, K., Competitive Photosensitized Oxidation at Tio2 Photoanode. Chemistry Letters 1977, (9), 1073-1076. 2. Fujishima, A.; Inoue, T.; Watanabe, T.; Honda, K., Stabilization of Photoanodes in Electrochemical Photocells for Solar-Energy Conversion. Chemistry Letters 1978, (4), 357-360. 3. Honda, H.; Ishizaki, A.; Soma, R.; Hashimoto, K.; Fujishima, A., Application of photocatalytic reactions caused by TiO2 film to improve the maintenance factor of lighting systems. Journal of the Illuminating Engineering Society 1998, 27, (1), 42-+. 4. Tada, H.; Kawahara, T.; Konishi, Y.; Tohge, N.; Ito, S., Patterned TiO2/SnO2 bilayer type photocatalyst. 2. Efficient dehydrogenation of methanol. Langmuir 2001, 17, (23), 7442-7445. 5. Yu, J. C.; Zhang, L. Z.; Zheng, Z.; Zhao, J. C., Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 2003, 15, (11), 2280-2286. 6. Zou, Z. G.; Fan, X. X.; Yu, T.; Wang, Y.; Zheng, J.; Gao, L.; Li, Z. S.; Ye, J. H., Role of phosphorus in synthesis of phosphated mesoporous TiO(2) photocatalytic materials by EISA method. Applied Surface Science 2008, 254, (16), 5191-5198. 7. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, (6397), 710-712. 8. Sun, I. W.; Huang, J. F., Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Advanced Functional Materials 2005, 15, (6), 989-994. 9. Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.; Morris, R. E., Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, (7003), 1012-1016. 10. Xie, Z. X.; Zhou, X.; Jiang, Z. Y.; Kuang, Q.; Zhang, S. H.; Xu, T.; Huang, R. B.; Zheng, L. S., Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chemical Communications 2005, (44), 5572-5574. 11. Zhou, Y.; Antonietti, M., Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. Journal of the American Chemical Society 2003, 125, (49), 14960-14961. 12. Dionysiou, D. D.; Yoo, K.; Choi, H., Ionic liquid assisted preparation of nanostructured TiO2 particles. Chemical Communications 2004, (17), 2000-2001. 13. Davis, R. J.; Stone, V. F., Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chemistry of Materials 1998, 10, (5), 1468-1474. 14. Yu, J. C.; Zhang, L. Z.; Yu, J. G., Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chemistry of Materials 2002, 14, (11), 4647-4653. 15. Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews 1997, 97, (6), 2373-2419. 16. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie-International Edition 2006, 45, (20), 3216-3251. 17. Inagaki, S.; Fukushima, Y.; Kuroda, K., Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. Journal of the Chemical Society-Chemical Communications 1993, (8), 680-682. 18. Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J., Titanium-Containing Mesoporous Molecular-Sieves for Catalytic-Oxidation of Aromatic-Compounds. Nature 1994, 368, (6469), 321-323. 19. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, (5350), 548-552. 20. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society 1998, 120, (24), 6024-6036. 21. Fowler, C. E.; Burkett, S. L.; Mann, S., Synthesis and characterization of ordered organo-silica-surfactant mesophases with functionalized MCM-41-type architecture. Chemical Communications 1997, (18), 1769-1770. 22. Macquarrie, D. J.; Jackson, D. B.; Mdoe, J. E. G.; Clark, J. H., Organomodified hexagonal mesoporous silicates. New Journal of Chemistry 1999, 23, (5), 539-544. 23. Bhaumik, A.; Tatsumi, T., Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions. Journal of Catalysis 2000, 189, (1), 31-39. 24. Lim, M. H.; Blanford, C. F.; Stein, A., Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts. Chemistry of Materials 1998, 10, (2), 467-+. 25. Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.; Jacobs, P. A., Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communications 1998, (3), 317-318. 26. Corma, A.; Jorda, J. L.; Navarro, M. T.; Rey, F., One step synthesis of highly active and selective epoxidation catalysts formed by organic-inorganic Ti containing mesoporous composites. Chemical Communications 1998, (17), 1899-1900. 27. Corriu, R. J. P.; Mehdi, A.; Reye, C., Synthesis by neutral surfactant assembly of ordered mesoporous organic-inorganic hybrid materials incorporating phosphorus centres. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 1999, 2, (1), 35-39. 28. Babonneau, F.; Leite, L.; Fontlupt, S., Structural characterization of organically-modified porous silicates synthesized using CTA(+) surfactant and acidic conditions. Journal of Materials Chemistry 1999, 9, (1), 175-178. 29. Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. F., Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. Journal of Physical Chemistry B 2005, 109, (5), 1763-1769. 30. Chong, A. S. M.; Zhao, X. S., Functionalization of SBA-15 with APTES and characterization of functionalized materials. Journal of Physical Chemistry B 2003, 107, (46), 12650-12657. 31. Peng, C. Y.; Zhang, H. J.; Yu, J. B.; Meng, Q. G.; Fu, L. S.; Li, H. R.; Sun, L. N.; Guo, X. M., Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. Journal of Physical Chemistry B 2005, 109, (32), 15278-15287. 32. Calleja, G.; Serrano, D. P.; Sanz, R.; Pizarro, P.; Garcia, A., Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Industrial & Engineering Chemistry Research 2004, 43, (10), 2485-2492. 33. Fung, K. Z.; Sung, C. C.; Hung, I. M.; Hon, M. H., Synthesis of highly ordered and worm-like mesoporous TiO2 assisted by tri-block copolymer. Solid State Ionics 2008, 179, (27-32), 1300-1304. 34. Choi, H.; Kim, Y. J.; Varma, R. S.; Dionysiou, D. D., Thermally stable nanocrystalline TiO2 photocatalysts synthesized via sol-gel methods modified with ionic liquid and surfactant molecules. Chemistry of Materials 2006, 18, (22), 5377-5384. 35. Yoo, K. S.; Lee, T. G.; Kim, J., Preparation and characterization of mesoporous TiO2 particles by modified sol-gel method using ionic liquids. Microporous and Mesoporous Materials 2005, 84, (1-3), 211-217. 36. Choi, H.; Stathatos, E.; Dionysiou, D. D., Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B-Environmental 2006, 63, (1-2), 60-67. 37. Ding, K. L.; Miao, Z. J.; Liu, Z. M.; Zhang, Z. F.; Han, B. X.; An, G. M.; Miao, S. D.; Xie, Y., Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. Journal of the American Chemical Society 2007, 129, (20), 6362-+. 38. Sreethawong, T.; Suzuki, Y.; Yoshikawa, S., Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template. International Journal of Hydrogen Energy 2005, 30, (10), 1053-1062. 39. Kluson, P.; Kacer, P.; Cajthaml, T.; Kalaji, M., Preparation of titania mesoporous materials using a surfactant-mediated sol-gel method. Journal of Materials Chemistry 2001, 11, (2), 644-651. 40. Yu, N. Y.; Gong, L. M.; Song, H. J.; Liu, Y.; Yin, D. H., Ionic liquid of [Bmim](+) Cl- for the preparation of hierarchical nanostructured rutile titania. Journal of Solid State Chemistry 2007, 180, (2), 799-803. 41. Kim, D. S.; Kwak, S. Y., The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Applied Catalysis a-General 2007, 323, 110-118. 42. Tan, R. Q.; He, Y.; Zhu, Y. F.; Xu, B. Q.; Cao, L. L., Hydrothermal preparation of mesoporous TiO2 powder from Ti(SO4)(2) with poly(ethylene glycol) as template. Journal of Materials Science 2003, 38, (19), 3973-3978. 43. Tian, G. H.; Fu, H. G.; Jing, L. Q.; Xin, B. F.; Pan, K., Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. Journal of Physical Chemistry C 2008, 112, (8), 3083-3089. 44. Huang, C. H.; Yang, Y. T.; Doong, R. A., Microwave-assisted hydrothermal synthesis of mesoporous anatase TiO2 via sol-gel process for dye-sensitized solar cells. Microporous and Mesoporous Materials 2011, 142, (2-3), 473-480. 45. Fan, X. X.; Yu, T.; Wang, Y.; Zheng, J.; Gao, L.; Li, Z. S.; Ye, J. H.; Zou, Z. G., Role of phosphorus in synthesis of phosphated mesoporous TiO2 photocatalytic materials by EISA method. Applied Surface Science 2008, 254, (16), 5191-5198. 46. Liu, Z. M.; Miao, S. D.; Miao, Z. J.; Han, B. X.; Zhang, H.; Zhang, J., Synthesis of mesoporous TiO2 films in ionic liquid dissolving cellulose. Microporous and Mesoporous Materials 2006, 95, (1-3), 26-30. 47. Han, C. C.; Ho, S. Y.; Lin, Y. P.; Lai, Y. C.; Liang, W. C.; Chen-Yang, Y. W., Effect of pi-pi stacking of water miscible ionic liquid template with different cation chain length and content on morphology of mesoporous TiO2 prepared via sol-gel method and the applications. Microporous and Mesoporous Materials 2010, 131, (1-3), 217-223. 48. Liu, H.; Liang, Y. G.; Hu, H. J.; Wang, M. Y., Hydrothermal synthesis of mesostructured nanocrystalline TiO2 in an ionic liquid-water mixture and its photocatalytic performance. Solid State Sciences 2009, 11, (9), 1655-1660. 49. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B., Thermal properties of imidazolium ionic liquids. Thermochimica Acta 2000, 357, 97-102. 50. Earle, M. J.; Seddon, K. R., Ionic liquids. Green solvents for the future. Pure and Applied Chemistry 2000, 72, (7), 1391-1398. 51. Jaeger, D. A.; Tucker, C. E., Diels-Alder Reactions in Ethylammonium Nitrate, a Low-Melting Fused Salt. Tetrahedron Letters 1989, 30, (14), 1785-1788. 52. Visser, A. E.; Swatloski, R. P.; Rogers, R. D., pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior. Green Chemistry 2000, 2, (1), 1-4. 53. Zhu, H. P.; Yang, F.; Tang, J.; He, M. Y., Bronsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chemistry 2003, 5, (1), 38-39. 54. Stepnowski, P., Solid-phase extraction of room-temperature imidazolium ionic liquids from aqueous environmental samples. Analytical and Bioanalytical Chemistry 2005, 381, (1), 189-193. 55. Kuntz, E. G., Homogeneous Catalysis ... In Water. Chemtech 1987, 17, (9), 570-575. 56. Kaufmann, D. E.; Nouroozian, M.; Henze, H., Molten salts as an efficient medium for palladium catalyzed C-C coupling reactions. Synlett 1996, (11), 1091-&. 57. MacFarlane, D. R.; Huang, J. H.; Forsyth, M., Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 1999, 402, (6763), 792-794. 58. Doyle, M.; Choi, S. K.; Proulx, G., High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. Journal of the Electrochemical Society 2000, 147, (1), 34-37. 59. Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S., Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chemical Communications 2002, (4), 374-375. 60. Carda-Broch, S.; Berthod, A.; Armstrong, D. W., Ionic matrices for matrix-assisted laser desorption/ionization time-of-flight detection of DNA oligomers. Rapid Communications in Mass Spectrometry 2003, 17, (6), 553-560. 61. Yoo, K.; Choi, H.; Dionysiou, D. D., Ionic liquid assisted preparation of nanostructured TiO2 particles. Chemical Communications 2004, (17), 2000-2001. 62. Ding, K.; Zhao, M.; Wang, Q., Catalysis of the electrochemical oxygen reduction in room-temperature ionic liquids on a pyrolytic graphite electrode by iron-containing superoxide dismutase. Russian Journal of Electrochemistry 2007, 43, (9), 1082-1090. 63. Choi, E. H.; Hong, S. I.; Moon, D. J., Preparation of thermally stable mesostructured nano-sized TiO2 particles by modified sol-gel method using ionic liquid. Catalysis Letters 2008, 123, (1-2), 84-89. 64. Zhai, Y. G.; Zhang, Q.; Liu, F. Q.; Gao, G., Synthesis of nanostructure rutile TiO2 in a carboxyl-containing ionic liquid. Materials Letters 2008, 62, (30), 4563-4565. 65. Yoo, K. S.; Choi, H.; Dionysiou, D. D., Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis. Catalysis Communications 2005, 6, (4), 259-262. 66. Sonwane, C. G.; Bhatia, S. K., Adsorption in mesopores: A molecular-continuum model with application to MCM-41. Chemical Engineering Science 1998, 53, (17), 3143-3156. 67. Prouzet, E.; Pinnavaia, T. J., Assembly of mesoporous molecular sieves containing wormhole motifs by a nonionic surfactant pathway: Control of pore size by synthesis temperature. Angewandte Chemie-International Edition 1997, 36, (5), 516-518. 68. Sierra, L.; Guth, J. L., Synthesis of mesoporous silica with tunable pore size from sodium silicate solutions and a polyethylene oxide surfactant. Microporous and Mesoporous Materials 1999, 27, (2-3), 243-253. 69. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8, (8), 1682-1701. 70. Wu, L.; Yu, J. C.; Wang, X. C.; Zhang, L. Z.; Yu, J. G., Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature. Journal of Solid State Chemistry 2005, 178, (1), 321-328. 71. Alvaro, M.; Aprile, C.; Benitez, M.; Carbonell, E.; Garcia, H., Photocatalytic activity of structured mesoporous TiO2 materials. Journal of Physical Chemistry B 2006, 110, (13), 6661-6665. 72. Yu, J. G.; Wang, G. H.; Cheng, B.; Zhou, M. H., Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B-Environmental 2007, 69, (3-4), 171-180. 73. Zhou, X.; Xie, Z. X.; Jiang, Z. Y.; Kuang, Q.; Zhang, S. H.; Xu, T.; Huang, R. B.; Zheng, L. S., Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chemical Communications 2005, (44), 5572-5574. 74. Guth, J. L.; Sierra, L., Synthesis of mesoporous silica with tunable pore size from sodium silicate solutions and a polyethylene oxide surfactant. Microporous and Mesoporous Materials 1999, 27, (2-3), 243-253. 75. Handbook of X-ray Photoelectron Spectrosopy: Perkin-Elmer Corporation, Physical Elelctronics Division, 1992. In. 76. Pan, T. M.; Liao, K. M., Comparison of structural and sensing characteristics of Pr2O3 and PrTiO3 sensing membrane for pH-ISFET application. Sensors and Actuators B-Chemical 2008, 133, (1), 97-104. 77. Agenson, K. O.; Oh, J. I.; Urase, T., Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: controlling parameters of process. Journal of Membrane Science 2003, 225, (1-2), 91-103. 78. E. R. Nightingale, Jr., Phenomenological theory of ion solvation : effective radii of hydrated ions. Received January 10, 1959, (63), 1381-1387
|