帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:古芝萍
作者(英文):Gu, Jhih-Ping
論文名稱(中文):多孔性硫酸化二氧化鋯結構與表面酸性對質子導度影響之研究
論文名稱(英文):Texture and Surface Acidity Dependent Proton Conductivities of Porous Sulfated Zirconia
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9819510
出版年(民國):101
畢業學年度:100
語文別:英文
論文頁數:88
中文關鍵詞:硫酸化二氧化鋯中孔洞微孔洞質子導度表面酸度
外文關鍵詞:sulfated zirconiamesoporousmicroporousproton conductivitysurface acidity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
在本文研究,我們製備了多孔性的硫酸化二氧化鋯並且應用其特性在質子交換膜燃料電池中質子傳導膜的基材。除了檢測其材料的多孔結構性質及表面酸度外,並加以討論此兩者的相互關係及兩者對質子導度的單方及相互的影響。製備多孔結構的硫酸化二氧化鋯,是利用不同長碳鏈的介面活性劑當作模板以共沉澱法或水熱法合成。中孔洞硫酸化二氧化鋯隨著界面活性劑的增加,其比表面積從78增加至128 m2/g,相對的質子導度也從1.2×10-2提升至2.0 ×10-2 S/cm。微孔洞硫酸化二氧化鋯有較高的質子導度約2.6×10-2 S/cm。推測其微孔的小孔徑及其高的表面酸度使得質子易在表面傳遞。而利用中孔洞硫酸化二氧化鋯(C16TAB/Zr= 0.5, average pore size= 2.8, surface area= 128 m2/g)的樣品用0.9M的硫酸溶液做再披覆後發現,質子導度提升為原本2.0 ×10-2 S/cm至9.5 ×10-2 S/cm,且此數值比現今商業質子交換膜(Nafion, 5.2×10-2 S/cm)之效益高約兩倍。孔徑大小與表面酸性皆影響著水含量並且控制著質子傳導的能力。即便微孔洞的硫酸化二氧化鋯有著最高的水分吸附能力,但其質子導度卻並沒有如經過再披覆硫酸的樣品來的高,推測小於0.6 nm的微孔洞材料,水分會因為太緊密的吸附在表面而導致質子不易傳導,因此適當的孔徑大小和表面酸性結合可使材料具有高的質子導度特性。
In this study, porous sulfated ZrO2 (S-ZrO2) powders were prepared as a promising alternative proton-conducting material for fuel cells. The porous structure, surface acidity and proton conductivity were examined and their relationships were investigated. The S-ZO2 samples were prepared through templating precipitation and hydrothermal method. The mesoporous S-ZrO2 samples exhibited the proton conductivities of 1.2-2.0×10-2 S/cm, and the conductivities were highly dependent on their specific surface areas (78-128 m2/g). The microporous S-ZrO2 sample templated with octyltrimethylammonium bromide (C8TAB) had a higher proton conductivity of 2.6 ×10-2 S/cm. Small pore sizes assist protons hopping between bulk water and surface acidic sites to promote conductive efficiency. Post impregnation of the mesoporous S-ZrO2 sample (C16TAB/Zr= 0.5, average pore size= 2.8, surface area= 128 m2/g) with a 0.9 M H2SO4 solution remarkably improved its proton conductivity from 2.0 ×10-2 to 9.5 ×10-2 S/cm. This value is twice higher than that of the commercial Nafion (5.2×10-2 S/cm). Both the pore size and surface acidity determine the water content and control the proton conductivity. Even though the microporous S-ZrO2 samples showed the highest capability for keeping water molecules, their proton conductivity were not higher than the post sulfation powders. Microporous channels with the pore size smaller than 0.6 nm block water tightly and retard proton diffusion. Therefore, the optimal pore size (0.6-2.8nm) and surface acidity can contribute to high proton conductivity.
中文摘要 i
Abstract ii
謝誌 iii
Content Index iv
Figure Index vi
Table Index viii
Chapter 1. Introduction - 1 -
1-1. Motivation - 1 -
1-2. Objectives - 3 -
Chapter 2. Literature Review - 4 -
2-1. Proton exchange membranes (PEMs) - 4 -
2-1-1. Proton exchange membrane fuel cell (PEMFCs) - 4 -
2-1-2. Function of the PEM 7
2-1-3. Nafion 8
2-2. Proton Conductivity 10
2-2-1. Proton transfer mechanism in aqueous solution 10
2-2-2. Proton transfer mechanism in hydrated acidic polymer 13
2-2-3. Conductivity measurement 15
2-3. Different kind of proton-conducting materials 19
2-4. Key factors to high proton conductivity 27
2-4-1. Water content 27
2-4-2. Surface acidity 28
2-4-3. Microstructures 30
2-5. Sulfated zirconia 31
2-5-1. Properties of sulfated zirconia 31
2-6. Porous structure material 33
2-6-1. Templates 33
Chapter 3. Materials and Methods 36
3-1. Chemicals 36
3-2. Preparation of porous sulfated zirconium 36
3-2-1. Precipitation process 36
3-2-2. Hydrothermal process 37
3-3. Characterization 37
3-3-1. Nitrogen adsorption and desorption isothermal 37
3-3-2. Fourier Transform Infrared Spectrometer (FTIR) 37
3-3-3. X-ray photoelectron Spectroscopy (XPS) 38
3-3-4. Thermo Gravimetric Analysis (TGA) 39
3-3-5. Water content measurement 39
3-3-6. Proton conductivity measurement 39
3-3-7. Temperature programmed desorption (TPD) 40
3-3-8. High Resolution Transmission Electron Microscope (TEM) 41
3-3-9. Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) 41
Chapter 4. Result and Discussion 42
4-1. Thermal Analysis 42
4-2. Surface functional group 45
4-3. Chemical compositions 47
4-4. NH3 adsorption and desorption 54
4-5. Textures and proton conductivities of the sulfated zirconia 55
4-6. Post sulfation 62
4-7 Water content 67
Chapter 5. Summary 70
5-1. Conclusions 70
References 71
Appendix A. XPS patterns of S-ZrO2 77
Appendix B. N2 adsorption and desorption isotherm and BJH pore size distribution of S-ZrO2. 80
Appendix C. SEM images of sulfatd ZrO2 82
Appendix D. Water content of C16S-ZrO2 series samples 85
Appendix F. TEM images of sulfated ZrO2 87

Figure Index
Figure 2 1 A diagram of a fuel cell - 5 -
Figure 2 2 Total Number of PEM Units Installed Globally by Application [20] 7
Figure 2 3 These two models were the microphases of swollen Nafion membranes. A, B and C represented the hydrophobic polymer, the solvent bridges and the hydrophilic regions, respectively.[5] 9
Figure 2 4 Klaus’smodel is called Parallel water-channel (inverted-micelle cylinder) of Nafion[23]. 10
Figure 2 5 Showed Proton conduction in water.[2] 11
Figure 2 6 The hydrodynamic model of Grotthuss diffusion mechanism.[3] 12
Figure 2 7 Two-dimensional illustration of some microstructural features of Nafion for an intermediate water content.[2] 13
Figure 2 8 Proton transfer in the Nafion in a fully hydrated condition.[3] 14
Figure 2 9 Sample arrangements of (a) 2-probe (b) 4-probe measurement in the direction of thickness 16
Figure 2 10 The Nyquist plot 18
Figure 2 11 The equivalent circuit for the complex impedance of the Nafion membranes and the electrode structure.[25] 19
Figure 2 12 Acid strength of various liquid and solid acids.[50] 32
Figure 2 13 Sulfated Zirconia Structure Proposed by (a) Jin et al. and (b) Ward and Ko.[50] 33
Figure 2 14 Different kinds of members of the M41S family.[60] 34
Figure 2 15 Illustration of the synthesis procedure of mesoporous metal oxides possessing a 2D hexagonal pore structure by self-assembly method. [61] 34
Figure 2 16 The two-step mechanism of the formation of the zirconia/CTAB mesophase.[63] 35
Figure 4 1 The TGA curve of Zr(SO4)2 • 4H2O, and as-prepared C16S-ZrO2, C16S-ZrO2, C8S-ZrO2, C8S-ZrO2 (EtOH) and C8S-ZrO2 (IEE). 43
Figure 4 2 The TGA curves of C16S-ZrO2, C16SS-ZrO2, C8S-ZrO2(IEE), C8S-ZrO2(EtOH), and S-ZrO2 samples. 44
Figure 4 3 FTIR spectra of the S-ZrO2, C16S- S-ZrO2, C16SS- S-ZrO2, C8S- S-ZrO2 (IEE), and C8S-ZrO2 (EtOH) samples. (a) the original spectra, and (b) the zoom-in spectra in the 700-2200 cm-1. 46
Figure 4 4 The S (2p) XPS of the S-ZrO2, C16S-ZrO2, C16SS-ZrO2, C8S-ZrO2 (EtOH), and C8S-ZrO2 (IEE) samples. 48
Figure 4 5 The O (1s) XPS of the S-ZrO2, C16S-ZrO2, C16SS-ZrO2, C8S-ZrO2 (EtOH), and C8S-ZrO2 (IEE) samples. 51
Figure 4 6 The chemical structures of the sulfated groups on the different ZrO2 samples. (a) the S-ZrO2 powder, (b) the C16S-ZrO2, C16SS-ZrO2, and C8S-ZrO2 (EtOH) samples, (c) the C8S-ZrO2 (IEE) sample. 52
Figure 4 7 Formation of C8S-ZrO2 (IEE). 53
Figure 4 8 NH3 TPD patterns of the S-ZrO2, C16S-ZrO2, C16SS-ZrO2, C8S-ZrO2 (EtOH), and C8-S-ZrO2 (IEE) samples. 54
Figure 4 9 Nitrogen adsorption-desorption isotherms of the C16S-ZrO2 samples synthesized with different CTAB/Zr molar ratios. 56
Figure 4 10 Pore size distributions of the C16S-ZrO2 samples synthesized with different CTAB/Zr molar ratios. 56
Figure 4 11 N2 adsorption and desorption isotherm and BJH pore size distribution of the C16SS-ZrO2 sample. 59
Figure 4 12 N2 adsorption and desorption isotherm and BJH pore size distribution of C8S-ZrO2 (IEE) 60
Figure 4 13 N2 adsorption and desorption isotherm and BJH pore size distribution of C8S-ZrO2 (EOH) samples. 60
Figure 4 14 NH3 TPD patterns for C16S-ZrO2 (CTAB/Zr= 0.5) and which impregnated with different concentrations of H2SO4. 64


Table Index
Table 2 1 Different kind of FCs [20] 6
Table 2 2-2. The references regarding organic membranes. 24
Table 2 3 The references regarding organic-inorganic complex membranes. 25
Table 2 4 The references regarding inorganic membranes. 26
Table 4 1 Sulfur-to-zirconium atomic ratios in the different sulfated ZrO2 samples. 49
Table 4 2 The surface O-S/S, O-Zr/Zr, and O-H/Zr atomic ratios 50
Table 4 3 Summaries of the BET properties and the proton conductivities of the C16S-ZrO2 synthesized with different CTAB/Zr molar ratios. 57
Table 4 4 The textural results and proton conductivities of S-ZrO2, C16SS-ZrO2, C8S-ZrO2 (IEE) and C8S-ZrO2 (EtOH) samples. 61
Table 4 5 The total and surface S/Zr ratios of the C16S-ZrO2 sample post treated with sulfuric acid at different concentrations. 63
Table 4 6 The O-S/S, O-Zr/Zr, and O-H/Zr ratios of the C16S-ZrO2 sample impregnated with sulfuric acid at different concentrations. 63
Table 4 7 The textural properties and the proton conductivities of the C16S-ZrO2 powders after post sulfation. 66
Table 4 8 The water content, proton conductivity and pore size of all sulfated ZrO2 samples. 69
1. H.L. Lin, T.L. Yu, and F.H. Han, "A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC". Journal of Polymer Research, 2006, 13(5), 379-385.
2. S. Paddison, "Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes". Annual Review of Materials Research, 2003, 33(1), 289-319.
3. P. Choi, N.H. Jalani, and R. Datta, "Thermodynamics and proton transport in Nafion". Journal of The Electrochemical Society, 2005, 152E123.
4. S. Slade, S. Campbell, T. Ralph, and F. Walsh, "Ionic conductivity of an extruded Nafion 1100 EW series of membranes". Journal of The Electrochemical Society, 2002, 149A1556.
5. E. Spohr, "Proton transport in polymer electrolyte fuel cell membranes". Ionic soft matter: modern trends in theory and applications, 2005, 361-379.
6. R. Marschall, J. Rathousky, and M. Wark, "Ordered Functionalized Silica Materials with High Proton Conductivity". Chemistry of Materials, 2007, 19(26), 6401-6407.
7. P. CHOI, N.H. JALANI, and R. DATTA, "Thermodynamics and proton transport in Nafion. II. Proton diffusion mechanisms and conductivity". Journal of The Electrochemical Society, 2005, 152(3), E123-E130.
8. M. Navarra, F. Croce, and B. Scrosati, "New, high temperature superacid zirconia-doped Nafion(tm) composite membranes". J. Mater. Chem., 2007, 17(30), 3210-3215.
9. A. D!|Epifanio, M.A. Navarra, F.C. Weise, B. Mecheri, J. Farrington, S. Licoccia, and S. Greenbaum, "Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton Transport Characteristics". Chemistry of Materials, 2009, 22(3), 813-821.
10. S. Zaidi, S.D. Mikhailenko, G. Robertson, M. Guiver, and S. Kaliaguine, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications". Journal of Membrane Science, 2000, 173(1), 17-34.
11. M. Nogami, R. Nagao, C. Wong, T. Kasuga, and T. Hayakawa, "High Proton Conductivity in porous P2O5-SiO2 Glasses". The Journal of Physical Chemistry B, 1999, 103(44), 9468-9472.
12. F.M. Vichi, M.I. Tejedor-Tejedor, and M.A. Anderson, "Effect of pore-wall chemistry on proton conductivity in mesoporous titanium dioxide". Chemistry of Materials, 2000, 12(6), 1762-1770.
13. C.Y. Tai, B.Y. Hsiao, and H.Y. Chiu, "Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion". Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 237(1-3), 105-111.
14. D.R. Rolison, P.L. Hagans, K.E. Swider, and J.W. Long, "Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity". Langmuir, 1999, 15(3), 774-779.
15. S. Hara and M. Miyayama, "Proton conductivity of superacidic sulfated zirconia". Solid State Ionics, 2004, 168(1-2), 111-116.
16. C. Morterra, G. Cerrato, F. Pinna, and M. Signoretto, "Brosted Acidity of a Superacid Sulfate-Doped ZrO2 System". The Journal of Physical Chemistry, 1994, 98(47), 12373-12381.
17. C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, and J. Beck, "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism". Nature, 1992, 359(6397), 710-712.
18. H. Zhou, D. Li, M. Hibino, and I. Honma, "A Self Ordered, Crystalline!VGlass, Mesoporous Nanocomposite for Use as a Lithium Based Storage Device with Both High Power and High Energy Densities". Angewandte Chemie International Edition, 2005, 44(5), 797-802.
19. S. Hara, S. Takano, and M. Miyayama, "Proton-conducting properties and microstructure of hydrated tin dioxide and hydrated zirconia". The Journal of Physical Chemistry B, 2004, 108(18), 5634-5639.
20. S. Srinivasan, Fuel cells: from fundamentals to applications2006: Springer Verlag.
21. T. Gierke, G. Munn, and F. Wilson, "The morphology in nafion perfluorinated membrane products, as determined by wide and small angle x ray studies". Journal of Polymer Science: Polymer Physics Edition, 1981, 19(11), 1687-1704.
22. T. Gierke, "GE MUNN and FC WILSON". Journal of Polymer Science Part B-Polymer Physics, 1981, 19(11),
23. K. Schmidt-Rohr and Q. Chen, "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes". Nature materials, 2007, 7(1), 75-83.
24. K.D. Kreuer, S.J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology". Chemical Reviews, 2004, 104(10), 4637-4678.
25. C.H. Lee, H.B. Park, Y.M. Lee, and R.D. Lee, "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application". Industrial & engineering chemistry research, 2005, 44(20), 7617-7626.
26. Y. Sone, P. Ekdunge, and D. Simonsson, "Proton Conductivity of Nafion 117 as Measured by a Four Electrode AC Impedance Method". Journal of The Electrochemical Society, 1996, 1431254.
27. X. Yuan, H. Wang, J. Colin Sun, and J. Zhang, "AC impedance technique in PEM fuel cell diagnosis--A review". International Journal of Hydrogen Energy, 2007, 32(17), 4365-4380.
28. B.A. Holmberg and Y. Yan, "An apparatus for direct proton conductivity measurement of powdered materials". Journal of The Electrochemical Society, 2006, 153A146.
29. C. Ho, I. Raistrick, and R. Huggins, "Application of A C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films". Journal of The Electrochemical Society, 1980, 127343.
30. M.A. Barique, L. Wu, N. Takimoto, K. Kidena, and A. Ohira, "Effect of Water on the Changes in Morphology and Proton Conductivity for the Highly Crystalline Hydrocarbon Polymer Electrolyte Membrane for Fuel Cells". The Journal of Physical Chemistry B, 2009, 113(49), 15921-15927.
31. W. Zhang, P.L. Yue, and P. Gao, "Crystallinity Enhancement of Nafion Electrolyte Membranes Assisted by a Molecular Gelator". Langmuir, 2011,
32. K. Matsumoto, T. Higashihara, and M. Ueda, "Locally and densely sulfonated poly (ether sulfone) s as proton exchange membrane". Macromolecules, 2009, 42(4), 1161-1166.
33. K. Xu, H. Oh, M.A. Hickner, and Q. Wang, "Highly Conductive Aromatic Ionomers with Perfluorosulfonic Acid Side Chains for Elevated Temperature Fuel Cells". Macromolecules, 2011,
34. Y. Yao, L. Ji, Z. Lin, Y. Li, M. Alcoutlabi, H. Hamouda, and X. Zhang, "Sulfonated Polystyrene Fiber Network-Induced Hybrid Proton Exchange Membranes". ACS Applied Materials & Interfaces, 2011,
35. B.D. Ghosh, K.F. Lott, and J.E. Ritchie, "Conductivity dependence of PEG content in an anhydrous proton conducting sol-gel electrolyte". Chemistry of Materials, 2005, 17(3), 661-669.
36. D. Truffier-Boutry, A. De Geyer, L. Guetaz, O. Diat, and G. Gebel, "Structural study of zirconium phosphate-Nafion hybrid membranes for high-temperature proton exchange membrane fuel cell applications". Macromolecules, 2007, 40(23), 8259-8264.
37. H. Zarrin, D. Higgins, J. Yu, M. Fowler, and Z. Chen, "Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells". The Journal of Physical Chemistry C, 2011,
38. B.P. Tripathi and V.K. Shahi, "Functionalized Organic− Inorganic Nanostructured N-p-Carboxy Benzyl Chitosan− Silica− PVA Hybrid Polyelectrolyte Complex as Proton Exchange Membrane for DMFC Applications". The Journal of Physical Chemistry B, 2008, 112(49), 15678-15690.
39. M.K. Mistry, N.R. Choudhury, N.K. Dutta, R. Knott, Z. Shi, and S. Holdcroft, "Novel Organic− Inorganic Hybrids with Increased Water Retention for Elevated Temperature Proton Exchange Membrane Application". Chemistry of Materials, 2008, 20(21), 6857-6870.
40. R. Marschall, J. Rathousky, and M. Wark, "Ordered Functionalized Silica Materials with High Proton Conductivity". Chemistry of Materials, 2007, 19(26), 6401-6407.
41. J.C. McKeen, Y.S. Yan, and M.E. Davis, "Proton conductivity in sulfonic acid-functionalized zeolite beta: effect of hydroxyl group". Chemistry of Materials, 2008, 20(12), 3791-3793.
42. S. Tominaka, N. Akiyama, F. Croce, T. Momma, B. Scrosati, and T. Osaka, "Sulfated zirconia nanoparticles as a proton conductor for fuel cell electrodes". Journal of Power Sources, 2008, 185(2), 656-663.
43. G.L. Athens, D. Kim, J.D. Epping, S. Cadars, Y. Ein-Eli, and B.F. Chmelka, "Molecular Optimization of Multiply-Functionalized Mesoporous Films with Ion Conduction Properties". Journal of the American Chemical Society, 2011,
44. J. Zeng and S.P. Jiang, "Characterization of High-Temperature Proton-Exchange Membranes Based on Phosphotungstic Acid Functionalized Mesoporous Silica Nanocomposites for Fuel Cells". The Journal of Physical Chemistry C, 2011,
45. T.J. Peckham, J. Schmeisser, and S. Holdcroft, "Relationships of acid and water content to proton transport in statistically sulfonated proton exchange membranes: variation of water content via control of relative humidity". The Journal of Physical Chemistry B, 2008, 112(10), 2848-2858.
46. M. Saito, K. Hayamizu, and T. Okada, "Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells". The Journal of Physical Chemistry B, 2005, 109(8), 3112-3119.
47. D.E. Moilanen, D. Spry, and M. Fayer, "Water dynamics and proton transfer in Nafion fuel cell membranes". Langmuir, 2008, 24(8), 3690-3698.
48. K. Kunimatsu, B. Bae, K. Miyatake, H. Uchida, and M. Watanabe, "ATR-FTIR Study of Water in Nafion Membrane Combined with Proton Conductivity Measurements during Hydration/Dehydration Cycle". The Journal of Physical Chemistry B, 2011,
49. E.S.S. Iyer and A. Datta, "Importance of Electrostatic Interactions in The Mobility of Cations in Nafion". Journal of Physical Chemistry B, 2011, 115(27), 8707-8712.
50. B.M. Reddy and M.K. Patil, "Organic syntheses and transformations catalyzed by sulfated zirconia". Chemical Reviews, 2009, 109(6), 2185-2208.
51. N.H. Jalani, K. Dunn, and R. Datta, "Synthesis and characterization of Nafion -MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells". Electrochimica acta, 2005, 51(3), 553-560.
52. M. Yamada, D. Li, I. Honma, and H. Zhou, "A Self-Ordered, Crystalline Glass, Mesoporous Nanocomposite with High Proton Conductivity of 2× 10-2 S cm-1 at Intermediate Temperature". Journal of the American Chemical Society, 2005, 127(38), 13092-13093.
53. B. Yameen, A. Kaltbeitzel, A. Langner, H. Duran, F. Mueller, U. Goesele, O. Azzaroni, and W. Knoll, "Facile large-scale fabrication of proton conducting channels". Journal of the American Chemical Society, 2008, 130(39), 13140-13144.
54. Manish. K. Mishra, B. Tyagi, and R.V. Jasra*, "Effect of synthetic parameters on structural, textural, and catalytic properties of nanocrystalline sulfated zirconia prepared by sol-gel technique". Industrial & engineering chemistry research, 2003, 42(23), 5727-5736.
55. T. Jin, T. Yamaguchi, and K. Tanabe, "Mechanism of acidity generation on sulfur-promoted metal oxides". The Journal of Physical Chemistry, 1986, 90(20), 4794-4796.
56. L. Kustov, V. Kazansky, F. Figueras, and D. Tichit, "Investigation of the Acidic Properties of ZrO2 Modified by SO2-4 Anions". Journal of Catalysis, 1994, 150(1), 143-149.
57. S.Y. Chen, L.Y. Jang, and S. Cheng, "Synthesis of thermally stable zirconia-based mesoporous materials via a facile post-treatment". The Journal of Physical Chemistry B, 2006, 110(24), 11761-11771.
58. U. Ciesla, M. Froba, G. Stucky, and F. Schuth, "Highly ordered porous zirconias from surfactant-controlled syntheses: Zirconium oxide-sulfate and zirconium oxo phosphate". Chemistry of Materials, 1999, 11(2), 227-234.
59. C.S. Griffith, G.D. Sizgek, E. Sizgek, N. Scales, P.J. Yee, and V. Luca, "Mesoporous Zirconium Titanium Oxides. Part 1: Porosity Modulation and Adsorption Properties of Xerogels". Langmuir, 2008, 24(21), 12312-12322.
60. J.Y. Ying, C.P. Mehnert, and M.S. Wong, "Synthesis and Applications of Supramolecular Templated Mesoporous Materials". Angewandte Chemie International Edition, 1999, 38(1 2), 56-77.
61. G.D. Stucky, A. Monnier, F. Schuth, Q. Huo, D. Margolese, D. Kumar, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B.F. Chmelka, "MOLECULAR AND ATOMIC ARRAYS IN NANOPOROUS AND MESOPOROUS MATERIALS SYNTHESIS". Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals, 1994, 240187-200.
62. U. Ciesla and F. Schuth, "Ordered mesoporous materials". Microporous and Mesoporous Materials, 1999, 27(2-3), 131-149.
63. F. Ne, F. Testard, T. Zemb, and I. Grillo, "How does ZrO2/surfactant mesophase nucleate? Formation mechanism". Langmuir, 2003, 19(20), 8503-8510.
64. A. Hofmann and J. Sauer, "Surface structure of hydroxylated and sulfated zirconia. A periodic density-functional study". The Journal of Physical Chemistry B, 2004, 108(38), 14652-14662.
65. R. Marcus, U. Diebold, and R.D. Gonzalez, "The locus of sulfate sites on sulfated zirconia". Catalysis letters, 2003, 86(4), 151-156.
66. D.R. Milburn, R.A. Keogh, D.E. Sparks, and B.H. Davis, "XPS investigation of an iron/manganese/sulfated zirconia catalyst". Applied surface science, 1998, 126(1-2), 11-15.
67. C.L. Bianchi, S. Ardizzone, and G. Cappelletti, "Surface state of sulfated zirconia: the role of the sol!Vgel reaction parameters". Surface and interface analysis, 2004, 36(8), 745-748.
68. M. Hino, M. Kurashige, H. Matsuhashi, and K. Arata, "The surface structure of sulfated zirconia: Studies of XPS and thermal analysis". Thermochimica acta, 2006, 441(1), 35-41.
69. N. Lang and A. Tuel, "A fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials". Chemistry of Materials, 2004, 16(10), 1961-1966.
70. N. Tangchupong, W. Khaodee, B. Jongsomjit, N. Laosiripojana, P. Praserthdam, and S. Assabumrungrat, "Effect of calcination temperature on characteristics of sulfated zirconia and its application as catalyst for isosynthesis". Fuel Processing Technology, 2010, 91(1), 121-126.
71. H. Shibata, T. Morita, T. Ogura, K. Nishio, H. Sakai, M. Abe, and M. Matsumoto, "Preparation and mesostructure control of highly ordered zirconia particles having crystalline walls". Journal of materials science, 2009, 44(10), 2541-2547.
72. Q. Yuan, L.L. Li, S.L. Lu, H.H. Duan, Z.X. Li, Y.X. Zhu, and C.H. Yan, "Facile synthesis of Zr-based functional materials with highly ordered mesoporous structures". The Journal of Physical Chemistry C, 2009, 113(10), 4117-4124.
73. F. Maddox Sayler, M.G. Bakker, J.H. Smatt, and M. Linden, "Correlation between Electrical Conductivity, Relative Humidity, and Pore Connectivity in Mesoporous Silica Monoliths". The Journal of Physical Chemistry C, 2010, 114(19), 8710-8716.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *