|
1. H.L. Lin, T.L. Yu, and F.H. Han, "A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC". Journal of Polymer Research, 2006, 13(5), 379-385. 2. S. Paddison, "Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes". Annual Review of Materials Research, 2003, 33(1), 289-319. 3. P. Choi, N.H. Jalani, and R. Datta, "Thermodynamics and proton transport in Nafion". Journal of The Electrochemical Society, 2005, 152E123. 4. S. Slade, S. Campbell, T. Ralph, and F. Walsh, "Ionic conductivity of an extruded Nafion 1100 EW series of membranes". Journal of The Electrochemical Society, 2002, 149A1556. 5. E. Spohr, "Proton transport in polymer electrolyte fuel cell membranes". Ionic soft matter: modern trends in theory and applications, 2005, 361-379. 6. R. Marschall, J. Rathousky, and M. Wark, "Ordered Functionalized Silica Materials with High Proton Conductivity". Chemistry of Materials, 2007, 19(26), 6401-6407. 7. P. CHOI, N.H. JALANI, and R. DATTA, "Thermodynamics and proton transport in Nafion. II. Proton diffusion mechanisms and conductivity". Journal of The Electrochemical Society, 2005, 152(3), E123-E130. 8. M. Navarra, F. Croce, and B. Scrosati, "New, high temperature superacid zirconia-doped Nafion(tm) composite membranes". J. Mater. Chem., 2007, 17(30), 3210-3215. 9. A. D!|Epifanio, M.A. Navarra, F.C. Weise, B. Mecheri, J. Farrington, S. Licoccia, and S. Greenbaum, "Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton Transport Characteristics". Chemistry of Materials, 2009, 22(3), 813-821. 10. S. Zaidi, S.D. Mikhailenko, G. Robertson, M. Guiver, and S. Kaliaguine, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications". Journal of Membrane Science, 2000, 173(1), 17-34. 11. M. Nogami, R. Nagao, C. Wong, T. Kasuga, and T. Hayakawa, "High Proton Conductivity in porous P2O5-SiO2 Glasses". The Journal of Physical Chemistry B, 1999, 103(44), 9468-9472. 12. F.M. Vichi, M.I. Tejedor-Tejedor, and M.A. Anderson, "Effect of pore-wall chemistry on proton conductivity in mesoporous titanium dioxide". Chemistry of Materials, 2000, 12(6), 1762-1770. 13. C.Y. Tai, B.Y. Hsiao, and H.Y. Chiu, "Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion". Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 237(1-3), 105-111. 14. D.R. Rolison, P.L. Hagans, K.E. Swider, and J.W. Long, "Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity". Langmuir, 1999, 15(3), 774-779. 15. S. Hara and M. Miyayama, "Proton conductivity of superacidic sulfated zirconia". Solid State Ionics, 2004, 168(1-2), 111-116. 16. C. Morterra, G. Cerrato, F. Pinna, and M. Signoretto, "Brosted Acidity of a Superacid Sulfate-Doped ZrO2 System". The Journal of Physical Chemistry, 1994, 98(47), 12373-12381. 17. C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, and J. Beck, "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism". Nature, 1992, 359(6397), 710-712. 18. H. Zhou, D. Li, M. Hibino, and I. Honma, "A Self Ordered, Crystalline!VGlass, Mesoporous Nanocomposite for Use as a Lithium Based Storage Device with Both High Power and High Energy Densities". Angewandte Chemie International Edition, 2005, 44(5), 797-802. 19. S. Hara, S. Takano, and M. Miyayama, "Proton-conducting properties and microstructure of hydrated tin dioxide and hydrated zirconia". The Journal of Physical Chemistry B, 2004, 108(18), 5634-5639. 20. S. Srinivasan, Fuel cells: from fundamentals to applications2006: Springer Verlag. 21. T. Gierke, G. Munn, and F. Wilson, "The morphology in nafion perfluorinated membrane products, as determined by wide and small angle x ray studies". Journal of Polymer Science: Polymer Physics Edition, 1981, 19(11), 1687-1704. 22. T. Gierke, "GE MUNN and FC WILSON". Journal of Polymer Science Part B-Polymer Physics, 1981, 19(11), 23. K. Schmidt-Rohr and Q. Chen, "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes". Nature materials, 2007, 7(1), 75-83. 24. K.D. Kreuer, S.J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology". Chemical Reviews, 2004, 104(10), 4637-4678. 25. C.H. Lee, H.B. Park, Y.M. Lee, and R.D. Lee, "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application". Industrial & engineering chemistry research, 2005, 44(20), 7617-7626. 26. Y. Sone, P. Ekdunge, and D. Simonsson, "Proton Conductivity of Nafion 117 as Measured by a Four Electrode AC Impedance Method". Journal of The Electrochemical Society, 1996, 1431254. 27. X. Yuan, H. Wang, J. Colin Sun, and J. Zhang, "AC impedance technique in PEM fuel cell diagnosis--A review". International Journal of Hydrogen Energy, 2007, 32(17), 4365-4380. 28. B.A. Holmberg and Y. Yan, "An apparatus for direct proton conductivity measurement of powdered materials". Journal of The Electrochemical Society, 2006, 153A146. 29. C. Ho, I. Raistrick, and R. Huggins, "Application of A C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films". Journal of The Electrochemical Society, 1980, 127343. 30. M.A. Barique, L. Wu, N. Takimoto, K. Kidena, and A. Ohira, "Effect of Water on the Changes in Morphology and Proton Conductivity for the Highly Crystalline Hydrocarbon Polymer Electrolyte Membrane for Fuel Cells". The Journal of Physical Chemistry B, 2009, 113(49), 15921-15927. 31. W. Zhang, P.L. Yue, and P. Gao, "Crystallinity Enhancement of Nafion Electrolyte Membranes Assisted by a Molecular Gelator". Langmuir, 2011, 32. K. Matsumoto, T. Higashihara, and M. Ueda, "Locally and densely sulfonated poly (ether sulfone) s as proton exchange membrane". Macromolecules, 2009, 42(4), 1161-1166. 33. K. Xu, H. Oh, M.A. Hickner, and Q. Wang, "Highly Conductive Aromatic Ionomers with Perfluorosulfonic Acid Side Chains for Elevated Temperature Fuel Cells". Macromolecules, 2011, 34. Y. Yao, L. Ji, Z. Lin, Y. Li, M. Alcoutlabi, H. Hamouda, and X. Zhang, "Sulfonated Polystyrene Fiber Network-Induced Hybrid Proton Exchange Membranes". ACS Applied Materials & Interfaces, 2011, 35. B.D. Ghosh, K.F. Lott, and J.E. Ritchie, "Conductivity dependence of PEG content in an anhydrous proton conducting sol-gel electrolyte". Chemistry of Materials, 2005, 17(3), 661-669. 36. D. Truffier-Boutry, A. De Geyer, L. Guetaz, O. Diat, and G. Gebel, "Structural study of zirconium phosphate-Nafion hybrid membranes for high-temperature proton exchange membrane fuel cell applications". Macromolecules, 2007, 40(23), 8259-8264. 37. H. Zarrin, D. Higgins, J. Yu, M. Fowler, and Z. Chen, "Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells". The Journal of Physical Chemistry C, 2011, 38. B.P. Tripathi and V.K. Shahi, "Functionalized Organic− Inorganic Nanostructured N-p-Carboxy Benzyl Chitosan− Silica− PVA Hybrid Polyelectrolyte Complex as Proton Exchange Membrane for DMFC Applications". The Journal of Physical Chemistry B, 2008, 112(49), 15678-15690. 39. M.K. Mistry, N.R. Choudhury, N.K. Dutta, R. Knott, Z. Shi, and S. Holdcroft, "Novel Organic− Inorganic Hybrids with Increased Water Retention for Elevated Temperature Proton Exchange Membrane Application". Chemistry of Materials, 2008, 20(21), 6857-6870. 40. R. Marschall, J. Rathousky, and M. Wark, "Ordered Functionalized Silica Materials with High Proton Conductivity". Chemistry of Materials, 2007, 19(26), 6401-6407. 41. J.C. McKeen, Y.S. Yan, and M.E. Davis, "Proton conductivity in sulfonic acid-functionalized zeolite beta: effect of hydroxyl group". Chemistry of Materials, 2008, 20(12), 3791-3793. 42. S. Tominaka, N. Akiyama, F. Croce, T. Momma, B. Scrosati, and T. Osaka, "Sulfated zirconia nanoparticles as a proton conductor for fuel cell electrodes". Journal of Power Sources, 2008, 185(2), 656-663. 43. G.L. Athens, D. Kim, J.D. Epping, S. Cadars, Y. Ein-Eli, and B.F. Chmelka, "Molecular Optimization of Multiply-Functionalized Mesoporous Films with Ion Conduction Properties". Journal of the American Chemical Society, 2011, 44. J. Zeng and S.P. Jiang, "Characterization of High-Temperature Proton-Exchange Membranes Based on Phosphotungstic Acid Functionalized Mesoporous Silica Nanocomposites for Fuel Cells". The Journal of Physical Chemistry C, 2011, 45. T.J. Peckham, J. Schmeisser, and S. Holdcroft, "Relationships of acid and water content to proton transport in statistically sulfonated proton exchange membranes: variation of water content via control of relative humidity". The Journal of Physical Chemistry B, 2008, 112(10), 2848-2858. 46. M. Saito, K. Hayamizu, and T. Okada, "Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells". The Journal of Physical Chemistry B, 2005, 109(8), 3112-3119. 47. D.E. Moilanen, D. Spry, and M. Fayer, "Water dynamics and proton transfer in Nafion fuel cell membranes". Langmuir, 2008, 24(8), 3690-3698. 48. K. Kunimatsu, B. Bae, K. Miyatake, H. Uchida, and M. Watanabe, "ATR-FTIR Study of Water in Nafion Membrane Combined with Proton Conductivity Measurements during Hydration/Dehydration Cycle". The Journal of Physical Chemistry B, 2011, 49. E.S.S. Iyer and A. Datta, "Importance of Electrostatic Interactions in The Mobility of Cations in Nafion". Journal of Physical Chemistry B, 2011, 115(27), 8707-8712. 50. B.M. Reddy and M.K. Patil, "Organic syntheses and transformations catalyzed by sulfated zirconia". Chemical Reviews, 2009, 109(6), 2185-2208. 51. N.H. Jalani, K. Dunn, and R. Datta, "Synthesis and characterization of Nafion -MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells". Electrochimica acta, 2005, 51(3), 553-560. 52. M. Yamada, D. Li, I. Honma, and H. Zhou, "A Self-Ordered, Crystalline Glass, Mesoporous Nanocomposite with High Proton Conductivity of 2× 10-2 S cm-1 at Intermediate Temperature". Journal of the American Chemical Society, 2005, 127(38), 13092-13093. 53. B. Yameen, A. Kaltbeitzel, A. Langner, H. Duran, F. Mueller, U. Goesele, O. Azzaroni, and W. Knoll, "Facile large-scale fabrication of proton conducting channels". Journal of the American Chemical Society, 2008, 130(39), 13140-13144. 54. Manish. K. Mishra, B. Tyagi, and R.V. Jasra*, "Effect of synthetic parameters on structural, textural, and catalytic properties of nanocrystalline sulfated zirconia prepared by sol-gel technique". Industrial & engineering chemistry research, 2003, 42(23), 5727-5736. 55. T. Jin, T. Yamaguchi, and K. Tanabe, "Mechanism of acidity generation on sulfur-promoted metal oxides". The Journal of Physical Chemistry, 1986, 90(20), 4794-4796. 56. L. Kustov, V. Kazansky, F. Figueras, and D. Tichit, "Investigation of the Acidic Properties of ZrO2 Modified by SO2-4 Anions". Journal of Catalysis, 1994, 150(1), 143-149. 57. S.Y. Chen, L.Y. Jang, and S. Cheng, "Synthesis of thermally stable zirconia-based mesoporous materials via a facile post-treatment". The Journal of Physical Chemistry B, 2006, 110(24), 11761-11771. 58. U. Ciesla, M. Froba, G. Stucky, and F. Schuth, "Highly ordered porous zirconias from surfactant-controlled syntheses: Zirconium oxide-sulfate and zirconium oxo phosphate". Chemistry of Materials, 1999, 11(2), 227-234. 59. C.S. Griffith, G.D. Sizgek, E. Sizgek, N. Scales, P.J. Yee, and V. Luca, "Mesoporous Zirconium Titanium Oxides. Part 1: Porosity Modulation and Adsorption Properties of Xerogels". Langmuir, 2008, 24(21), 12312-12322. 60. J.Y. Ying, C.P. Mehnert, and M.S. Wong, "Synthesis and Applications of Supramolecular Templated Mesoporous Materials". Angewandte Chemie International Edition, 1999, 38(1 2), 56-77. 61. G.D. Stucky, A. Monnier, F. Schuth, Q. Huo, D. Margolese, D. Kumar, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B.F. Chmelka, "MOLECULAR AND ATOMIC ARRAYS IN NANOPOROUS AND MESOPOROUS MATERIALS SYNTHESIS". Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals, 1994, 240187-200. 62. U. Ciesla and F. Schuth, "Ordered mesoporous materials". Microporous and Mesoporous Materials, 1999, 27(2-3), 131-149. 63. F. Ne, F. Testard, T. Zemb, and I. Grillo, "How does ZrO2/surfactant mesophase nucleate? Formation mechanism". Langmuir, 2003, 19(20), 8503-8510. 64. A. Hofmann and J. Sauer, "Surface structure of hydroxylated and sulfated zirconia. A periodic density-functional study". The Journal of Physical Chemistry B, 2004, 108(38), 14652-14662. 65. R. Marcus, U. Diebold, and R.D. Gonzalez, "The locus of sulfate sites on sulfated zirconia". Catalysis letters, 2003, 86(4), 151-156. 66. D.R. Milburn, R.A. Keogh, D.E. Sparks, and B.H. Davis, "XPS investigation of an iron/manganese/sulfated zirconia catalyst". Applied surface science, 1998, 126(1-2), 11-15. 67. C.L. Bianchi, S. Ardizzone, and G. Cappelletti, "Surface state of sulfated zirconia: the role of the sol!Vgel reaction parameters". Surface and interface analysis, 2004, 36(8), 745-748. 68. M. Hino, M. Kurashige, H. Matsuhashi, and K. Arata, "The surface structure of sulfated zirconia: Studies of XPS and thermal analysis". Thermochimica acta, 2006, 441(1), 35-41. 69. N. Lang and A. Tuel, "A fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials". Chemistry of Materials, 2004, 16(10), 1961-1966. 70. N. Tangchupong, W. Khaodee, B. Jongsomjit, N. Laosiripojana, P. Praserthdam, and S. Assabumrungrat, "Effect of calcination temperature on characteristics of sulfated zirconia and its application as catalyst for isosynthesis". Fuel Processing Technology, 2010, 91(1), 121-126. 71. H. Shibata, T. Morita, T. Ogura, K. Nishio, H. Sakai, M. Abe, and M. Matsumoto, "Preparation and mesostructure control of highly ordered zirconia particles having crystalline walls". Journal of materials science, 2009, 44(10), 2541-2547. 72. Q. Yuan, L.L. Li, S.L. Lu, H.H. Duan, Z.X. Li, Y.X. Zhu, and C.H. Yan, "Facile synthesis of Zr-based functional materials with highly ordered mesoporous structures". The Journal of Physical Chemistry C, 2009, 113(10), 4117-4124. 73. F. Maddox Sayler, M.G. Bakker, J.H. Smatt, and M. Linden, "Correlation between Electrical Conductivity, Relative Humidity, and Pore Connectivity in Mesoporous Silica Monoliths". The Journal of Physical Chemistry C, 2010, 114(19), 8710-8716.
|