帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:胥穎亞
作者(英文):Hsu, Ying-Ya
論文名稱(中文):鋯離子摻雜與金沉積對中孔洞二氧化鈦微結構與光催化還原二氧化碳研究
論文名稱(英文):Microstructures and photoreductive behavior of the mesoporous TiO2 photocatalysts: Effect of Zr4+ doping and Au deposition
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9719503
出版年(民國):100
畢業學年度:100
語文別:英文
論文頁數:130
中文關鍵詞:光催化還原二氧化碳二氧化鈦中孔洞
外文關鍵詞:PhotoreductionCO2TiO2mesoporous
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
近年來全球暖化的影響日趨嚴重,光催化還原CO2被視為最理想的解決技術之一,其靈感來於自然界植物的光合作用,不但處理溫室氣體的同時,也提供可利用的碳氫化合物做為能源。本研究成功利用蒸發誘導自組裝法(evaporation-induced self-assembly)合成中孔洞鋯離子摻雜二氧化鈦,並另以沉積沉澱法(deposition-precipitation)在材料表面沉積奈米金顆粒。此中孔洞材料以三區段共聚高分子(triblock copolymer)作為孔洞模板,具有高的比表面積(103-217 m2 g-1)及較集中的孔徑分部。分析結果顯示,鋯摻雜濃度決定鋯離子在二氧化鈦結構中的分佈,以致影響二氧化鈦結構與物化特性,當Zr/Ti整體元素比為0.02-0.04時,鋯離子傾向摻雜於TiO2晶粒表面,除提高孔洞熱穩定性外,也使TiO2晶粒由9.6nm增加至11.6 nm,能隙由3.09提高至3.15 eV,然而鋯離子在高濃度時傾向摻雜於內部晶格,除抑制TiO2結晶外,也致使光催化氧化RhB的活性變差,當Zr/Ti比例為0.03與Au負載量為1.0 wt.%時,TiO2有最高的光催化氧化活性。CO2光催化還原實驗以水氣作為還原劑,以批次反應槽中進行,而甲烷為反應唯一的偵測產物。相較於修飾的光觸媒,單純二氧化鈦擁有較高的還原活性,於第一小時可產生0.73 μmole g-1甲烷量,並在第四小時達最高累積量1.03 μmole g-1,隨後甲烷氧化速率提升,於第八小時降低為0.45 μmole g-1。摻雜鋯離子與沈積Au奈米顆粒雖使TiO2初始甲烷產率降低為0.23與0.33 mole g-1,然而卻抑制CH4被氧化的逆反應速率,經8小時反應後,Zr-doped TiO2(Zr/Ti=0.03)與Au-TiO2樣品累積甲烷量可分別達0.81與0.54 μmole g-1。EPR結果顯示電荷能有效於觸媒表面轉移至CO2與H2O,因此產生難還原的中間產物是導致低還原效率的原因,Au奈米顆粒為電荷再結合的媒介,對光催化反應會造成負面影響,而Zr4+摻雜導入的缺陷能階決定其反應活性與逆反應速率。
Photocatalytic reduction of CO2 that mimics natural photosynthesis is a promising technology to both reduces the greenhouse gas emissions and provides alternative energy sources. In this study, mesoporous TiO2 and Zr-doped TiO2 photocatalysts were successfully synthesized using an EISA process. In addition, Au nanoparticles were loaded through a deposition-precipitation (DP) method. These mesostructured materials possess large surface areas of 103-217m2 g-1 and narrow pore size distributions. The concentration of Zr4+ ions determines the distribution of the doped ions in the TiO2 matrix, so as the microstructures and physicochemical properties. When the Zr/Ti ratio was in the range of 0.02-0.04, the Zr4+ ions were doped within the boundaries. As the result, the thermal stability of the porous structure was improved. In addition, the crystallite size of the TiO2 increased from 9.6 to 11.6 nm, and the corresponding bandgap increased from 3.09 to 3.15 eV. When the Zr/Ti ratio was over 0.05, the Zr4+ ions tend to be doped within the TiO2 lattice, thus inhibiting crystallization and photocatalytic activity of the doped TiO2 samples. The TiO2 samples exhibited the highest activity for RhB degradation when the Zr/Ti ratio and Au-loading were 0.03 and 1.0 wt.%, respectively. Photoreduction of CO2 with water vapor was carried out in a batch system. CH4 was the only detectable product in the reduction. The pure TiO2 exhibited the highest activity over the modified samples. It generated 0.45 μmole g-1 CH4 in the first hour, while the Zr-doped TiO2 (Zr/Ti= 0.03) and 1.0 wt.% Au-TiO2 produced 0.23 and 0.33 μmole g-1, respectively. The pure TiO2 reached to the highest CH4 yield of 1.03 μmole g-1 at 4th hour. The yield subsequently reduced to 0.45 μmole g-1 at the 8th hour because of increased reoxidation rate. The reoxidation of CH4 was suppressed by the Zr-doped and Au-loaded TiO2 samples, which resulted in 0.81 and 0.54 μmole g-1 CH4 after 8 hr irradiation. EPR results show that interfacial charge transfer from the catalysts to the adsorbed CO2 and water is prompt. The formation of the intermediates which have high reductive barriers determines the low reduction efficiency. The Au nanoparticles serve as the mediator to promote charge recombination, thus are detrimental for the photocatalytic activity. On the other hand, the impurities energy levels introduced by the doped Zr4+ ions within the bandgap dominate the reductive activity of the doped TiO2 and reoxidation rate of CH4.
中文摘要 i
Abstract ii
謝誌 iv
Figure Index vii
Table Index ix
Chapter 1. Introduction 1
1-1. Motivation 1
1-2. Objectives 3
Chapter 2. Background and Theory 4
2-1. Photocatalysis 4
2-1-1. Principle of photocatalysis 4
2-1-2. Material properties of TiO2 8
2-2. Sol-gel method 10
2-3. Mesoporous materials 13
2-3-1. Mechanisms and templates 14
2-3-2. Mesoporous TiO2 17
2-3-3. Evaporation induced self-assembly (EISA) process 22
2-4. Surface modification 24
2-5. Photocatalytic reduction of CO2 25
2-5-1. The mechanism of photoreduction of CO2 27
2-5-2. The photocatalytic reduction of CO2 over TiO2 30
Chapter 3. Materials and methods 35
3-1. Materials 35
3-2. Preparation of mesoporous Au-loaded and Zr-doped TiO2 samples 38
3-3. Characterization 41
3-3-1. High Resolution Transmission Electron Microscopy (HTEM) 41
3-3-2. Nitrogen adsorption and desorption isothermal 41
3-3-3. X-ray Powder Diffractometry (XRPD) 41
3-3-4. Electron Paramagnetic resonance (EPR) 42
3-3-5. Thermo Gravimetric Analysis and Differential Scanning Calorimetry (TGA/DSC) 42
3-3-6. X-ray Photoelectron Spectroscopy (XPS) 43
3-3-7. UV-vis Spectrometer 44
3-3-8. X-ray Absorption Spectroscopy (XAS) 44
3-3-9. CO2 Adsorption Test 45
3-3-10. CO2 Photoreduction Test 45
Chapter 4. Results and Discussion 50
4-1. Thermal analysis 50
4-2. Chemical composition 52
4-3. Pore Structure 57
4-4. Crystalline structure 67
4-5. Local geometric structure 70
4-6. Optical property 78
4-7. Photodegradation of RhB 83
4-8. CO2 adsorption isotherm 86
4-9. Photoreduction of CO2 88
4-10. EPR results 90
Chapter 5. Conclusions 102
References 103
Appendix A. Calibration curve 113
Appendix B. XPS patterns of catalysts 114
Appendix C. TEM images of catalysts 117
Appendix D. Zr K-edge XAS spectra of catalysts 118
Appendix E. CO2 adsorption-desorption isotherm of catalysts 120
Appendix F. CO2 adsorption-desorption isotherm of catalysts 128
1. Roy, S.C., Varghese, O.K., Paulose, M., and Grimes, C.A., "Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons", Acs Nano, 2010, 4 (3), 1259-1278.
2. Huo, Q.S., Margolese, D.I., Ciesla, U., Feng, P.Y., Gier, T.E., Sieger, P., Leon, R., Petroff, P.M., Schuth, F., and Stucky, G.D., "Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials", Nature, 1994, 368 (6469), 317-321.
3. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., Mccullen, S.B., Higgins, J.B., and Schlenker, J.L., "A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates", Journal of the American Chemical Society, 1992, 114 (27), 10834-10843.
4. Corma, A., "From microporous to mesoporous molecular sieve materials and their use in catalysis", Chemical Reviews, 1997, 97 (6), 2373-2419.
5. He, X. and Antonelli, D., "Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves", Angewandte Chemie-International Edition, 2001, 41 (2), 214-229.
6. Wight, A.P. and Davis, M.E., "Design and preparation of organic-inorganic hybrid catalysts", Chemical Reviews, 2002, 102 (10), 3589-3613.
7. De Vos, D.E., Dams, M., Sels, B.F., and Jacobs, P.A., "Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations", Chemical Reviews, 2002, 102 (10), 3615-3640.
8. Brinker, C.J., Lu, Y.F., Sellinger, A., and Fan, H.Y., "Evaporation-induced self-assembly: Nanostructures made easy", Advanced Materials, 1999, 11 (7), 579.
9. Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., and Stucky, G.D., "Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks", Nature, 1998, 396 (6707), 152-155.
10. Das, D., Mishra, H.K., Pradhan, N.C., Dalai, A.K., and Parida, K.M., "Studies on structural properties, surface acidity and benzene isopropylation activity of sulphated ZrO2-TiO2 mixed oxide catalysts", Microporous and Mesoporous Materials, 2005, 80 (1-3), 327-336.
11. Zorn, M.E., Tompkins, D.T., Zeltner, W.A., and Anderson, M.A., "Photocatalytic oxidation of acetone vapor on TiO2/ZrO2 thin films", Applied Catalysis B-Environmental, 1999, 23 (1), 1-8.
12. Haruta, M., "Novel catalysis of gold deposited on metal oxides", Catalysis Surveys of Japan, 1997, 1 61-73.
13. Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., and Honda, M., "Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt", Journal of Physical Chemistry B, 1997, 101 (14), 2632-2636.
14. Li, Y., Wang, W.N., Zhan, Z.L., Woo, M.H., Wu, C.Y., and Biswas, P., "Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts", Applied Catalysis B-Environmental, 2010, 100 (1-2), 386-392.
15. Sasirekha, N., Basha, S.J.S., and Shanthi, K., "Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide", Applied Catalysis B-Environmental, 2006, 62 (1-2), 169-180.
16. Fujishima, A. and Honda, K., "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 1992, 238 37-38.
17. Hoffmann, M.R., Martin, S.T., Choi, W.Y., and Bahnemann, D.W., "Environmental Applications of Semiconductor Photocatalysis", Chemical Reviews, 1995, 95 (1), 69-96.
18. Bilmes, S.A., Mandelbaum, P., Alvarez, F., and Victoria, N.M., "Surface and electronic structure of titanium dioxide photocatalysts", Journal of Physical Chemistry B, 2000, 104 (42), 9851-9858.
19. Linsebigler, A.L., Lu, G.Q., and Yates, J.T., "Photocatalysis on TiO2 Surfaces-Principles, Mechanisms, and Selected Results", Chemical Reviews, 1995, 95 (3), 735-758.
20. Parida, K.M., Sahu, N., Biswal, N.R., Naik, B., and Pradhan, A.C., "Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light", Journal of Colloid and Interface Science, 2008, 318 (2), 231-237.
21. Zhang, Z.B., Wang, C.C., Zakaria, R., and Ying, J.Y., "Role of particle size in nanocrystalline TiO2-based photocatalysts", Journal of Physical Chemistry B, 1998, 102 (52), 10871-10878.
22. Gratzel, M., "Photoelectrochemical cells", Nature, 2001, 414 (6861), 338-344.
23. Sanjines, R., Tang, H., Berger, H., Gozzo, F., Margaritondo, G., and Levy, F., "Electronic-Structure of Anatase TiO2 Oxide", Journal of Applied Physics, 1994, 75 (6), 2945-2951.
24. Diebold, U., "The surface science of titanium dioxide", Surface Science Reports, 2003, 48 (5-8), 53-229.
25. Ebelmen, H.M., Annales de Chimie et de Physique, 1846, 16 129.
26. Barringer, E.A. and Bowen, H.K., "Formation, Packing, and Sintering of Monodisperse TiO2 Powders", Journal of the American Ceramic Society, 1982, 65 (12), C199-C201.
27. Hench, L.L. and West, J.K., "The Sol-Gel Process", Chemical Reviews, 1990, 90 (1), 33-72.
28. Cushing, B.L., Kolesnichenko, V.L., and O'Connor, C.J., "Recent advances in the liquid-phase syntheses of inorganic nanoparticles", Chemical Reviews, 2004, 104 (9), 3893-3946.
29. Davis, M.E. and Lobo, R.F., "Zeolite and Molecular-Sieve Synthesis", Chemistry of Materials, 1992, 4 (4), 756-768.
30. Ying, J.Y., Mehnert, C.P., and Wong, M.S., "Synthesis and applications of supramolecular-templated mesoporous materials", Angewandte Chemie-International Edition, 1999, 38 (1-2), 56-77.
31. Sayari, A., Danumah, C., and Moudrakovski, I.L., "Boron-Modified MCM-41 Mesoporous Molecular-Sieves", Chemistry of Materials, 1995, 7 (5), 813-815.
32. Hoffmann, F., Cornelius, M., Morell, J., and Froba, M., "Silica-based mesoporous organic-inorganic hybrid materials", Angewandte Chemie-International Edition, 2006, 45 (20), 3216-3251.
33. Vartuli, J.C., Schmitt, K.D., Kresge, C.T., Roth, W.J., Leonowicz, M.E., Mccullen, S.B., Hellring, S.D., Beck, J.S., Schlenker, J.L., Olson, D.H., and Sheppard, E.W., "Effect of Surfactant Silica Molar Ratios on the Formation of Mesoporous Molecular-Sieves - Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications", Chemistry of Materials, 1994, 6 (12), 2317-2326.
34. Forster, S. and Antonietti, M., "Amphiphilic block copolymers in structure-controlled nanomaterial hybrids", Advanced Materials, 1998, 10 (3), 195.
35. Kramer, E., Forster, S., Goltner, C., and Antonietti, M., "Synthesis of nanoporous silica with new pore morphologies by templating the assemblies of ionic block copolymers", Langmuir, 1998, 14 (8), 2027-2031.
36. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F., and Stucky, G.D., "Continuous mesoporous silica films with highly ordered large pore structures", Advanced Materials, 1998, 10 (16), 1380-1385.
37. Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., "Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores", Science, 1998, 279 (5350), 548-552.
38. Antonelli, D.M. and Ying, J.Y., "Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method", Angewandte Chemie-International Edition in English, 1995, 34 (18), 2014-2017.
39. Kim, A., Bruinsma, P., Chen, Y., Wang, L.Q., and Liu, J., "Amphoteric surfactant templating route for mesoporous zirconia", Chemical Communications, 1997, (2), 161-162.
40. Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., and Stucky, G.D., "Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework", Chemistry of Materials, 1999, 11 (10), 2813-2826.
41. Soler-Illia, G.J.D.A., Crepaldi, E.L., Grosso, D., and Sanchez, C., "Block copolymer-templated mesoporous oxides", Current Opinion in Colloid & Interface Science, 2003, 8 (1), 109-126.
42. Calleja, G., Serrano, D.P., Sanz, R., Pizarro, P., and Garcia, A., "Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants", Industrial & Engineering Chemistry Research, 2004, 43 (10), 2485-2492.
43. Wu, L., Yu, J.C., Wang, X.C., Zhang, L.Z., and Yu, J.G., "Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature", Journal of Solid State Chemistry, 2005, 178 (1), 321-328.
44. Yue, Y.H. and Gao, Z., "Synthesis of mesoporous TiO2 with a crystalline framework", Chemical Communications, 2000, (18), 1755-1756.
45. Kluson, P., Kacer, P., Cajthaml, T., and Kalaji, M., "Preparation of titania mesoporous materials using a surfactant-mediated sol-gel method", Journal of Materials Chemistry, 2001, 11 (2), 644-651.
46. Yu, J.G., Wang, G.H., Cheng, B., and Zhou, M.H., "Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders", Applied Catalysis B-Environmental, 2007, 69 (3-4), 171-180.
47. Wu, M.M., Lin, G., Chen, D.H., Wang, G.G., He, D., Feng, S.H., and Xu, R.R., "Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide", Chemistry of Materials, 2002, 14 (5), 1974-1980.
48. Peng, T.Y., Zhao, D., Dai, K., Shi, W., and Hirao, K., "Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity", Journal of Physical Chemistry B, 2005, 109 (11), 4947-4952.
49. Wang, H.W., Kuo, C.H., Lin, H.C., Kuo, I.T., and Cheng, C.F., "Rapid formation of active mesoporous TiO2 photocatalysts via micelle in a microwave hydrothermal process", Journal of the American Ceramic Society, 2006, 89 (11), 3388-3392.
50. Wang, Y.Q., Tang, X.H., Yin, L.X., Huang, W.P., Hacohen, Y.R., and Gedanken, A., "Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures", Advanced Materials, 2000, 12 (16), 1183-1186.
51. Yu, J.C., Zhang, L.Z., and Yu, J.G., "Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework", Chemistry of Materials, 2002, 14 (11), 4647-4653.
52. Soler-Illia, G.J.D.A., Louis, A., and Sanchez, C., "Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly", Chemistry of Materials, 2002, 14 (2), 750-759.
53. Liu, K.S., Fu, H.G., Shi, K.H., Xin, B.F., Jing, L.Q., and Zhou, W., "Hydrophilicity and formation mechanism of large-pore mesoporous TiO2 thin films with tunable pore diameters", Nanotechnology, 2006, 17 (15), 3641-3648.
54. Beyers, E., Cool, P., and Vansant, E.F., "Stabilisation of mesoporous TiO2 by different bases influencing the photocatalytic activity", Microporous and Mesoporous Materials, 2007, 99 (1-2), 112-117.
55. Antonelli, D.M. and Ying, J.Y., "Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves", Chemistry of Materials, 1996, 8 (4), 874-881.
56. Yoshitake, H., Sugihara, T., and Tatsumi, T., "Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition", Chemistry of Materials, 2002, 14 (3), 1023-1029.
57. On, D.T., "A simple route for the synthesis of mesostructured lamellar and hexagonal phosphorus-free titania (TiO2)", Langmuir, 1999, 15 (25), 8561-8564.
58. Zheng, J.Y., Pang, J.B., Qiu, K.Y., and Wei, Y., "Synthesis and characterization of mesoporous titania and silica-titania materials by urea templated sol-gel reactions", Microporous and Mesoporous Materials, 2001, 49 (1-3), 189-195.
59. Soler-Illia, G.J.D.A., Scolan, E., Louis, A., Albouy, P.A., and Sanchez, C., "Design of meso-structured titanium oxo based hybrid organic-inorganic networks", New Journal of Chemistry, 2001, 25 (1), 156-165.
60. Miller, J.B. and Ko, E.I., "Control of mixed oxide textural and acidic properties by the sol-gel method", Catalysis Today, 1997, 35 (3), 269-292.
61. Gao, X.T. and Wachs, I.E., "Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties", Catalysis Today, 1999, 51 (2), 233-254.
62. Yu, J.C., Lin, J., and Kwok, R.W.M., "Ti1-xZrxO2 solid solutions for the photocatalytic degradation of acetone in air", Journal of Physical Chemistry B, 1998, 102 (26), 5094-5098.
63. Lukac, J., Klementova, M., Bezdicka, P., Bakardjieva, S., Subrt, J., Szatmary, L., Bastl, Z., and Jirkovsky, J., "Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol", Applied Catalysis B-Environmental, 2007, 74 (1-2), 83-91.
64. Gao, B.F., Lim, T.M., Subagio, D.P., and Lim, T.T., "Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A", Applied Catalysis a-General, 2010, 375 (1), 107-115.
65. Schattka, J.H., Shchukin, D.G., Jia, J.G., Antonietti, M., and Caruso, R.A., "Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating", Chemistry of Materials, 2002, 14 (12), 5103-5108.
66. Zhou, W., Liu, K.S., Fu, H.G., Pan, K., Zhang, L.L., Wang, L., and Sun, C.C., "Multi-modal mesoporous TiO2-ZrO2 composites with high photocatalytic activity and hydrophilicity", Nanotechnology, 2008, 19 (3), -.
67. Sekulic, J., Magraso, A., ten Elshof, J.E., and Blank, D.H.A., "Influence of ZrO2 addition on microstructure and liquid permeability of mesoporous TiO2 membranes", Microporous and Mesoporous Materials, 2004, 72 (1-3), 49-57.
68. Yuan, Q., Liu, Y., Li, L.L., Li, Z.X., Fang, C.J., Duan, W.T., Li, X.G., and Yan, C.H., "Highly ordered mesoporous titania-zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution", Microporous and Mesoporous Materials, 2009, 124 (1-3), 169-178.
69. Serrano, D.P., Calleja, G., Sanz, R., and Pizarro, P., "Development of crystallinity and photocatalytic properties in porous TiO2 by mild acid treatment", Journal of Materials Chemistry, 2007, 17 (12), 1178-1187.
70. Ao, Y.H., Xu, J.J., and Fu, D.G., "Study on the effect of different acids on the structure and photocatalytic activity of mesoporous titania", Applied Surface Science, 2009, 256 (1), 239-245.
71. Kartini, I., Meredith, P., Da Costa, J.C.D., and Lu, G.Q., "A novel route to the synthesis of mesoporous Titania with full anatase nanocrystalline domains", Journal of Sol-Gel Science and Technology, 2004, 31 (1-3), 185-189.
72. Tan, R.Q., He, Y., Zhu, Y.F., Xu, B.Q., and Cao, L.L., "Hydrothermal preparation of mesoporous TiO2 powder from Ti(SO4)2 with poly(ethylene glycol) as template", Journal of Materials Science, 2003, 38 (19), 3973-3978.
73. Kim, D.S. and Kwak, S.Y., "The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity", Applied Catalysis a-General, 2007, 323 110-118.
74. Liu, K.S., Fu, H.G., Shi, K.Y., Xiao, F.S., Jing, L.Q., and Xin, B.F., "Preparation of large-pore mesoporous nanocrystalline TiO2 thin films with tailored pore diameters", Journal of Physical Chemistry B, 2005, 109 (40), 18719-18722.
75. Lu, Y.F., Fan, H.Y., Stump, A., Ward, T.L., Rieker, T., and Brinker, C.J., "Aerosol-assisted self-assembly of mesostructured spherical nanoparticles", Nature, 1999, 398 (6724), 223-226.
76. Mann, S. and Ozin, G.A., "Synthesis of inorganic materials with complex form", Nature, 1996, 382 (6589), 313-318.
77. Raman, N.K., Anderson, M.T., and Brinker, C.J., "Template-based approaches to the preparation of amorphous, nanoporous silicas", Chemistry of Materials, 1996, 8 (8), 1682-1701.
78. Choi, W.Y., Termin, A., and Hoffmann, M.R., "The Role of Metal-Ion Dopants in Quantum-Sized TiO2-Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics", Journal of Physical Chemistry, 1994, 98 (51), 13669-13679.
79. Dvoranova, D., Brezova, V., Mazur, M., and Malati, M.A., "Investigations of metal-doped titanium dioxide photocatalysts", Applied Catalysis B-Environmental, 2002, 37 (2), 91-105.
80. Di Paola, A., Garcia-Lopez, E., Ikeda, S., Marci, G., Ohtani, B., and Palmisano, L., "Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2", Catalysis Today, 2002, 75 (1-4), 87-93.
81. Lin, S.D., Bollinger, M., and Vannice, M.A., "Low-Temperature CO Oxidation over Au/TiO2 and Au/SiO2 Catalysts", Catalysis Letters, 1993, 17 (3-4), 245-262.
82. Herrmann, J.M., Tahiri, H., AitIchou, Y., Lassaletta, G., GonzalezElipe, A.R., and Fernandez, A., "Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz", Applied Catalysis B-Environmental, 1997, 13 (3-4), 219-228.
83. Subramanian, V., Wolf, E.E., and Kamat, P.V., "Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration", Journal of the American Chemical Society, 2004, 126 (15), 4943-4950.
84. Tsubota, S., Cunningham, D.A.H., Bando, Y., and Haruta, M., "Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO", Preparation of Catalysts Vi, 1995, 91 227-235.
85. Comotti, M., Li, W.C., Spliethoff, B., and Schuth, F., "Support effect in high activity gold catalysts for CO oxidation", Journal of the American Chemical Society, 2006, 128 (3), 917-924.
86. Wolf, A. and Schuth, F., "A systematic study of the synthesis conditions for the preparation of highly active gold catalysts", Applied Catalysis a-General, 2002, 226 (1-2), 1-13.
87. Grunwaldt, J.D., Kiener, C., Wogerbauer, C., and Baiker, A., "Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids", Journal of Catalysis, 1999, 181 (2), 223-232.
88. Azizi, Y., Pitchon, V., and Petit, C., "Effect of support parameters on activity of gold catalysts: Studies of ZrO2, TiO2 and mixture", Applied Catalysis a-General, 2010, 385 (1-2), 170-177.
89. Usubharatana, P., McMartin, D., Veawab, A., and Tontiwachwuthikul, P., "Photocatalytic process for CO2 emission reduction from industrial flue gas streams", Industrial & Engineering Chemistry Research, 2006, 45 (8), 2558-2568.
90. Riemer, P., "Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse gas R&D programme", Energy Conversion and Management, 1996, 37 (6-8), 665-670.
91. Meisen, A. and Shuai, X.S., "Research and development issues in CO2 capture", Energy Conversion and Management, 1997, 38 S37-S42.
92. Kosugi, T., Hayashi, A., Matsumoto, T., Akimoto, K., Tokimatsu, K., Yoshida, H., Tomoda, T., and Kaya, Y., "Time to realization: Evaluation of CO2 capture technology R&Ds by GERT (Graphical evaluation and review technique) analysese", Energy, 2004, 29 (9-10), 1297-1308.
93. Dijkstra, J.W. and Jansen, D., "Novel concepts for CO2 capture", Energy, 2004, 29 (9-10), 1249-1257.
94. Sakakura, T., Choi, J.C., and Yasuda, H., "Transformation of carbon dioxide", Chemical Reviews, 2007, 107 (6), 2365-2387.
95. Graetzel, M., "Energy Resources through Photochemistry and Catalysis". 1983 New York: Academic Press.
96. Koci, K., Obalova, L., and Lacny, Z., "Photocatalytic reduction of CO2 over TiO2 based catalysts", Chemical Papers, 2008, 62 (1), 1-9.
97. Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon-Dioxide in Aqueous Suspensions of Semiconductor Powders", Nature, 1979, 277 (5698), 637-638.
98. Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2", Energy, 1999, 24 (1), 21-30.
99. Mizuno, T., Adachi, K., Ohta, K., and Saji, A., "Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions", Journal of Photochemistry and Photobiology a-Chemistry, 1996, 98 (1-2), 87-90.
100. Anpo, M., Yamashita, H., Ichihashi, Y., and Ehara, S., "Photocatalytic Reduction of Co2 with H2o on Various Titanium-Oxide Catalysts", Journal of Electroanalytical Chemistry, 1995, 396 (1-2), 21-26.
101. Liu, B.J., Torimoto, T., Matsumoto, H., and Yoneyama, H., "Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices", Journal of Photochemistry and Photobiology a-Chemistry, 1997, 108 (2-3), 187-192.
102. Tseng, I.H., Chang, W.C., and Wu, J.C.S., "Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts", Applied Catalysis B-Environmental, 2002, 37 (1), 37-48.
103. Halmann, M., Katzir, V., Borgarello, E., and Kiwi, J., "Photoassisted Carbon-Dioxide Reduction on Aqueous Suspensions of Titanium-Dioxide", Solar Energy Materials, 1984, 10 (1), 85-91.
104. Anpo, M. and Yamashita, H., "Heterogeneous Photocatalysis". 1997, London, U.K. Wiley. 133.
105. Yamashita, H., Nishiguchi, H., Kamada, N., Anpo, M., Teraoka, Y., Hatano, H., Ehara, S., Kikui, K., Palmisano, L., Sclafani, A., Schiavello, M., and Fox, M.A., "Photocatalytic Reduction of CO2 with H2O on TiO2 and Cu/TO2 Catalysts", Research on Chemical Intermediates, 1994, 20 (8), 815-823.
106. Yang, C.C., Yu, Y.H., van der Linden, B., Wu, J.C.S., and Mul, G., "Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction?", Journal of the American Chemical Society, 2010, 132 (24), 8398-8406.
107. Ishitani, O., Inoue, C., Suzuki, Y., and Ibusuki, T., "Photocatalytic Reduction of Carbon-Dioxide to Methane and Acetic-Acid by an Aqueous Suspension of Metal-Deposited TiO2", Journal of Photochemistry and Photobiology a-Chemistry, 1993, 72 (3), 269-271.
108. Zhang, Q.H., Han, W.D., Hong, Y.J., and Yu, J.G., "Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst", Catalysis Today, 2009, 148 (3-4), 335-340.
109. Kaneco, S., Kurimoto, H., Ohta, K., Mizuno, T., and Saji, A., "Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium", Journal of Photochemistry and Photobiology a-Chemistry, 1997, 109 (1), 59-63.
110. Kaneco, S., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger", Journal of Photochemistry and Photobiology a-Chemistry, 1998, 115 (3), 223-226.
111. Yamashita, H., Fujii, Y., Ichihashi, Y., Zhang, S.G., Ikeue, K., Park, D.R., Koyano, K., Tatsumi, T., and Anpo, M., "Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves", Catalysis Today, 1998, 45 (1-4), 221-227.
112. Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., and Yoshida, S., "Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2", Journal of Photochemistry and Photobiology a-Chemistry, 1999, 126 (1-3), 117-123.
113. Tseng, I.H., Wu, J.C.S., and Chou, H.Y., "Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction", Journal of Catalysis, 2004, 221 (2), 432-440.
114. Nguyen, T.V. and Wu, J.C.S., "Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier", Applied Catalysis a-General, 2008, 335 (1), 112-120.
115. Nguyen, T.V., Wu, J.C.S., and Chiou, C.H., "Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight", Catalysis Communications, 2008, 9 (10), 2073-2076.
116. Chang, S.M. and Doong, R.A., "Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures", Journal of Physical Chemistry B, 2006, 110 (42), 20808-20814.
117. Kumar, K.N.P., Kumar, J., and Keizer, K., "Effect of Peptization on Densification and Phase-Transformation Behavior of Sol Gel-Derived Nanostructured Titania", Journal of the American Ceramic Society, 1994, 77 (5), 1396-1400.
118. Ravikovitch, P.I. and Neimark, A.V., "Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: Equilibrium, pore blocking, and cavitation", Langmuir, 2002, 18 (25), 9830-9837.
119. Luca, V., "Comparison of Size-Dependent Structural and Electronic Properties of Anatase and Rutile Nanoparticles", Journal of Physical Chemistry C, 2009, 113 (16), 6367-6380.
120. Dimitrijevic, N.M., Vijayan, B.K., Poluektov, O.G., Rajh, T., Gray, K.A., He, H.Y., and Zapol, P., "Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania", Journal of the American Chemical Society, 2011, 133 (11), 3964-3971.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *