帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:徐樹剛
作者(英文):Hsu, Shu-Kang
論文名稱(中文):結合光子晶體與奈米探測材開發環境光學感測元件
論文名稱(英文):Development of Environental Optical Sensing Devices by a Combination of Photonic Crystals and Nano-Probes
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-min
口試委員:孫毓璋
陳三元
陳燦耀
劉沛宏
張淑閔
口試委員(英文):Sun, Yuh-Chang
Chen, San-Yuan
Chen, Tsan-Yao
Liu, Pey-horng
Chang, Sue-min
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9619801
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:115
中文關鍵詞:光子晶體分子拓印高分子量子點雙酚ACu2+離子布拉格反射鏡螢光增強
外文關鍵詞:Photonic crystalMolecularly imprinted polymersQuantum dotsCopper ionBragg mirrorFluorescence enhancement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
環境感測器主要為提供有效、即時之環境資訊,以作環境品質確保、突發污染事件範圍確定及追蹤與污染控制成效判定等等運用,須具備於複雜環境基質中快速分析出目標物質之能力。光學感測器以光做為感測訊號轉譯機制,具有可量測訊號種類多、反應快與非接觸等等特點,常見於各類環境感測應用。然光學感測器一般有使用藥劑與光學元件成本偏高等缺點,限制了其環境感測應用範圍。
光子晶體為不同折射率材料以週期性規則排列之結構,具有可反射特定波長光之光能隙。利用此一特性,可將光學感測訊號直接轉譯或放大,有助於拓展光學感測器之環境應用範圍與提高其感測效能。本研究將光子晶體光能隙特性與奈米感測材料結合,開發可簡易且快速感測水中雙酚A與Cu2+離子之奈米光學元件。分別利用具反蛋白石結構之分子拓印矽基材料,吸附雙酚A後造成光子晶體光能隙變化進行雙酚A感知,與利用一維光子晶體--膽固醇液晶膜之布拉格反射鏡機制,使量子點螢光訊號放大並提高其Cu2+離子感知能力。
雙酚A為製造塑膠製品常使用之原料,國際間普遍認為其具環境荷爾蒙物質特性,需密切關注其於環境之流佈狀況。本研究以分子拓印聚合物(molecularly imprinted polymers, MIPs)技術,製備出對雙酚A具有良好選擇性吸附能力之矽基分子拓印材料,並以聚苯乙烯微米球自組裝之模板,將其製成具光子晶體特性之反蛋白石結構,藉由材料吸附雙酚A後,整體折射率改變並造成反射光波長偏移特性,進行水中雙酚A濃度感測。本研究所製得雙酚A矽基分子拓印材料之拓印因子(α)為10.5,與4-叔丁基苯酚比較之選擇性係數(β)為3.94,以此拓印材料製得的反蛋白石感測元件可於10分鐘內響應分析物濃度,並對水中BPA濃度1 - 100 mg/L範圍具訊號線性關係(r2=0.974)。
銅因良好電與熱導體特性,為工業製造常使用之原物料,然銅亦屬對生態系統與人類健康有不良影響之重金屬,需嚴格監測其於水體中存在狀況。本研究以巰基包覆CdS/ZnS量子點為Cu2+離子感測探針,藉由低成本、材料穩定之一維光子晶體—膽固醇液晶膜,放大量子點螢光感測訊號強度與提高其應用性。研究顯示,以L-半胱氨酸、2-巰基琥珀酸與巰基乙酸等包覆劑所製備水溶性CdS/ZnS量子點,具備感測含高濃度Ca2+,Mg2+,Na+,K+和NH4+等陽離子之TFT-LCD工業廢水中微量Cu2+離子能力,可做為工業廢水Cu2+離子排放是否超出0.15 mg/L排放標準之早期預警工具。另結合具光子晶體光能隙特性之膽固醇液晶膜與鏡子基板,可放大CdS/ZnS量子點感測Cu2+離子之螢光訊號達7.5-10.3倍,於自來水樣品外添加0.5-1.0 mg/L濃度Cu2+離子之回收率可達88-114 %。顯示膽固醇液晶膜搭配鏡子基板為一低成本、高穩定度之螢光訊號放大方法,有助於擴大量子點螢光感測法之應用範圍。
Environmental sensors are developed for demands of efficient analysis of pollutants in order to well control environmental quality, identify scope of contamination areas, and evaluate treatment performance. In the regard, they have to be capable of identifying targets rapidly and selectively in complex matrix. Optical sensors, due to the advantages of multi-signals, rapid response, and non-contact detection, are popular in various environmental monitoring and sensing applications. However, the chemicals and optical components used for optical sensors are expensive, thus constraining the growth in the market.
Photonic crystals (PCs) are periodically structured dielectric media with specific photonic bandgaps. The light with the energy underlying the bandgap cannot propagate through the structure. This unique optical property can be applied in sensing systems in terms of translating stimuli events into optical signals or amplifying optical signals of sensing probes. In this study, we combined photonic crystals with nano-probes to develop two photonic-crystal-based sensing systems for detection of bisphenol A (BPA) and Cu2+ ions, in which photonic crystals were used as a signal transducer and an amplifier, respectively.
BPA, being considered as one of environmental hormones, is commonly used for manufacturing plastic products. In this study, a silicon-based molecularly imprinted polymers (MIPs) with good selectivity for BPA was fabricated, and it was also constructed as an inverse opal film (IOF) by using a polystyrene microsphere opal as the template. The reflection wavelength of inverse opal film will be shifted after BPA adsorption due the overall refractive index of MIPs changed. Compared with the analog compound of 4-tert-Butyl phenol (4-BP), the imprinting factor (α) and selectivity coefficient (β) of the BPA silicon-based MIPs prepared in this study were 10.5 and 3.94, respectively. The MIP-IOF sensor responded BPA molecules within 10 minutes and had a signal linearity (r2 = 0.974) in the concentration range of 1 - 100 mg / L.
Copper is widely used as a conductive material in the manufacturing industries. Because of the serious impact of Cu2+ ions on the ecosystem and human health, the discharge of Cu species should be monitored in the effluent of wastewater treatment plants. In this study, thiol-capped CdS/ZnS quantum dots (QDs) were used as fluorescence probes for Cu2+ ions determination. Three types of ligands, including L-cysteine (LC), mercaptosuccinic acid (MSA), and thioglycolic acid (TGA), were used as capping agents for stabilizing and functionalizing the QDs. They have well performance, high recovery (81.7-114.5 %), high precision (relative standard deviation=0.36-4.56 %), for detection of Cu2+ ions in the field samples, even though it contained Ca2+, Mg2+, Na+, K+ and NH4+ ions, which were 300-16,600 times higher in concentrations than the target. A cholesteric liquid crystal (CLC), which is one-dimensional PCs, and an aluminium mirror were further introduced into the system to enhance the fluorescence of TGA-capped CdS/ZnS QDs for Cu2+ ions determination. The intensities of enhanced-fluorescence were 7.5-10.3 times higher than the original values. The results clearly show that the low cost optical systems are sensitive and reliable for environmental sensing.
目 錄
摘 要 i
ABSTRACT iii
誌 謝 vi
目 錄 vii
表目錄 ix
圖目錄 x
第一章 研究背景 1
1.1 光子晶體介紹 1
1.1.1 光子晶體的光學特性與自然界的光子晶體 2
1.1.2 光子晶體於感測器的應用介紹 4
1.2 研究動機與目的 7
1.2.1 研究動機 7
1.2.2 研究目的 7
1.3 研究架構 8
第二章 文獻回顧 9
2.1 光子晶體製備 9
2.1.1 半導體製備技術 9
2.1.2 膠體自組裝法 10
2.1.3 模板輔助法(反蛋白石結構) 15
2.1.4 其他 15
2.1.5 小結 18
2.2 光子晶體於比色法感測器之應用研究 19
2.2.1 氣體與液體感測器 19
2.2.2 機械應力感測器 22
2.2.3 生化感測器 23
2.2.4 分子拓印光子晶體感測器 24
2.2.5 小結 27
2.3 光子晶體於螢光增強之感測應用 28
2.3.1 螢光感測與訊號增強技術 28
2.3.2 布拉格反射鏡機制之螢光增強應用 31
2.3.3 慢光效應之螢光增強應用 36
2.3.4 小結 40
第三章 矽基分子拓印材料選擇性吸附雙酚A與光子晶體訊號轉譯研究 41
3.1 研究背景與目的 41
3.2 研究方法與設備 43
3.2.1 矽基MIP材料製備與反蛋白石感測元件製備 43
3.2.2 材料特徵分析 46
3.2.3 矽基MIP與NIP粉體材料吸附特性測試 47
3.2.4 苯矽基MIP感測膜BPA感測能力測試 48
3.3 結果與討論 49
3.3.1 矽基MIP材料特徵分析 49
3.3.2 矽基MIP與NIP粉體材料吸附特性測試 55
3.3.3 矽基MIP感測膜光學特徵分析 59
3.3.4 矽基MIP感測膜之BPA感測能力測試 61
3.4 小結 63
第四章 量子點工業廢水Cu2+離子感測與應用光子晶體增強螢光訊號 64
4.1 研究背景與目的 64
4.2 研究方法與設備 69
4.2.1 Thiol-capped CdS/ZnS量子點製備 69
4.2.2 材料特徵分析與水質分析方法 70
4.2.3 水樣Cu2+離子量子點感測測試 70
4.2.4螢光增強感測試片製作與Cu2+離子感測應用測試 71
4.3 結果與討論 72
4.3.1 Thiol-capped CdS/ZnS量子點特性分析與Cu2+離子感測能力測試 72
4.3.2 TFT-LCD工業廢水特性分析與對thiol-capped CdS/ZnS量子點感測影響 79
4.3.3 應用Thiol-capped CdS/ZnS量子點感測TFT-LCD工業廢水中Cu2+離子濃度 83
4.3.4 TGA-capped CdS/ZnS量子點與膽固醇液晶膜材料光學特徵 87
4.3.5螢光增強感測試片之螢光增強效應與Cu2+離子感測應用測試 88
4.4 小結 93
第五章 結論與建議 94
參考文獻 96

(1) Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys Rev Lett 1987, 58.
(2) John, S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys Rev Lett 1987, 58 (23), 2486–2489.
(3) Inan, H.; Poyraz, M.; Inci, F.; Lifson, M. A.; Baday, M.; Cunningham, B. T.; Demirci, U. Photonic Crystals: Emerging Biosensors and Their Promise for Point-of-Care Applications. Chem. Soc. Rev. 2017, 46 (2), 366–388.
(4) Wang, Z.; Zhang, J.; Xie, J.; Yin, Y.; Wang, Z.; Shen, H.; Li, Y.; Li, J.; Liang, S.; Cui, L.; et al. Patterning Organic/Inorganic Hybrid Bragg Stacks by Integrating One-Dimensional Photonic Crystals and Macrocavities through Photolithography: Toward Tunable Colorful Patterns as Highly Selective Sensors. ACS Appl Mater Interfaces 2012, 4 (3), 1397–1403.
(5) Schneider, D.; Liaqat, F.; El Boudouti, E. H.; El Hassouani, Y.; Djafari-Rouhani, B.; Tremel, W.; Butt, H.-J.; Fytas, G. Engineering the Hypersonic Phononic Band Gap of Hybrid Bragg Stacks. Nano Lett 2012.
(6) Ganesh, N.; Zhang, W.; Mathias, P. C.; Chow, E.; SoaresJ. A. N. T.; Malyarchuk, V.; Smith, A. D.; Cunningham, B. T. Enhanced Fluorescence Emission from Quantum Dots on a Photonic Crystal Surface. Nat Nano 2007, 2 (8), 515–520.
(7) Carvajal, J. J.; Peña, A.; Kumar, R.; Pujol, M. C.; Mateos, X.; Aguiló, M.; Díaz, F.; Vázquez de Aldana, J. R.; Méndez, C.; Moreno, P.; et al. New Approaches for the Fabrication of Photonic Structures of Nonlinear Optical Materials. Spec. Issue Based 15th Int. Conf. Lumin. Opt. Spectrosc. Condens. Matter ICL08 2009, 129 (12), 1441–1447.
(8) Li, H.; Wang, J.; Liu, F.; Song, Y.; Wang, R. Fluorescence Enhancement by Heterostructure Colloidal Photonic Crystals with Dual Stopbands. J. Colloid Interface Sci. 2011, 356 (1), 63–68.
(9) Fudouzi, H. Fabricating High-Quality Opal Films with Uniform Structure over a Large Area. J. Colloid Interface Sci. 2004, 275 (1), 277–283.
(10) Aguirre, C. I.; Reguera, E.; Stein, A. Tunable Colors in Opals and Inverse Opal Photonic Crystals. Adv. Funct. Mater. 2010, 20 (16), 2565–2578.
(11) Wang, H.; Zhang, K.-Q. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors. Sensors 2013, 13 (4), 4192–4213.
(12) Li, Q.; Zeng, Q.; Shi, L.; Zhang, X.; Zhang, K.-Q. Bio-Inspired Sensors Based on Photonic Structures of Morpho Butterfly Wings: A Review. J Mater Chem C 2016, 4 (9), 1752–1763.
(13) Kinoshita, S.; Yoshioka, S. Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure. ChemPhysChem 2005, 6 (8), 1442–1459.
(14) Zhao, Y.; Xie, Z.; Gu, H.; Zhu, C.; Gu, Z. Bio-Inspired Variable Structural Color Materials. Chem. Soc. Rev. 2012, 41 (8), 3297–3317.
(15) Yin, H.; Shi, L.; Sha, J.; Li, Y.; Qin, Y.; Dong, B.; Meyer, S.; Liu, X.; Zhao, L.; Zi, J. Iridescence in the Neck Feathers of Domestic Pigeons. Phys Rev E 2006, 74 (5), 051916.
(16) Zi, J.; Yu, X.; Li, Y.; Hu, X.; Xu, C.; Wang, X.; Liu, X.; Fu, R. Coloration Strategies in Peacock Feathers. Proc. Natl. Acad. Sci. 2003, 100 (22), 12576–12578.
(17) Parker, A.; McPhedran, R.; McKenzie, D.; Botten, L.; Nicorovici, N. Photonic Engineering. Aphrodite’s Iridescence. Nature 2001, 409 (6816), 36–37.
(18) Galusha, J. W.; Richey, L. R.; Gardner, J. S.; Cha, J. N.; Bartl, M. H. Discovery of a Diamond-Based Photonic Crystal Structure in Beetle Scales. Phys Rev E 2008, 77 (5), 050904.
(19) Tian, E.; Wang, J.; Zheng, Y.; Song, Y.; Jiang, L.; Zhu, D. Colorful Humidity Sensitive Photonic Crystal Hydrogel. J. Mater. Chem. 2008, {18} ({10}), {1116-1122}.
(20) Zhang, Y.-Q.; Wang, J.-X.; Ji, Z.-Y.; Hu, W.-P.; Jiang, L.; Song, Y.-L.; Zhu, D.-B. Solid-State Fluorescence Enhancement of Organic Dyes by Photonic Crystals. J Mater Chem 2007, 17 (1), 90–94.
(21) Eftekhari, E.; Li, X.; Kim, T. H.; Gan, Z.; Cole, I. S.; Zhao, D.; Kielpinski, D.; Gu, M.; Li, Q. Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals–A Multifunctional Fluorescence-Based Sensor Platform. Sci. Rep. 2015, 5 (1).
(22) Pokhriyal, A.; Lu, M.; Chaudhery, V.; George, S.; Cunningham, B. T. Enhanced Fluorescence Emission Using a Photonic Crystal Coupled to an Optical Cavity. Appl. Phys. Lett. 2013, 102 (22), 221114.
(23) Nishimura, S.; Abrams, N.; Lewis, B. A.; Halaoui, L. I.; Mallouk, T. E.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J. Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals. J. Am. Chem. Soc. 2003, 125 (20), 6306–6310.
(24) Lodahl, P.; Floris van Driel, A.; Nikolaev, I. S.; Irman, A.; Overgaag, K.; Vanmaekelbergh, D.; Vos, W. L. Controlling the Dynamics of Spontaneous Emission from Quantum Dots by Photonic Crystals. Nature 2004, 430 (7000), 654–657.
(25) Nikolaev, I. S.; Lodahl, P.; Vos, W. L. Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals. J. Phys. Chem. C 2008, 112 (18), 7250–7254.
(26) Ng, K. C.; Thu, K.; Kim, Y.; Chakraborty, A.; Amy, G. Adsorption Desalination: An Emerging Low-Cost Thermal Desalination Method. New Dir. Desalination 2013, 308, 161–179.
(27) Tada, T.; Poborchii, V. V.; Kanayama, T. Channel Waveguides Fabricated in 2D Photonic Crystals of Si Nanopillars. 5th Int. Symp. New Phenom. Mesoscopic Struct. 2002, 63 (1), 259–265.
(28) Todaro, M. T.; Stomeo, T.; Vitale, V.; DeVittorio, M.; Passaseo, A.; Cingolani, R.; Romanato, F.; Businaro, L.; Di Fabrizio, E. Nanofabrication of High Refractive Index Contrast Two-Dimensional Photonic Crystal Waveguides. Proc. 28th Int. Conf. Micro- Nano-Eng. 2003, 67, 670–675.
(29) Pokhriyal, A.; Lu, M.; Chaudhery, V.; Huang, C.-S.; Schulz, S.; Cunningham, B. T. Photonic Crystal Enhanced Fluorescence Using a Quartz Substrate to Reduce Limits of Detection. Opt. Express 2010, 18 (24), 24793–24808.
(30) Stein, A.; Schroden, R. C. Colloidal Crystal Templating of Three-Dimensionally Ordered Macroporous Solids: Materials for Photonics and Beyond. Curr. Opin. Solid State Mater. Sci. 2001, 5 (6), 553–564.
(31) Pusey, P. N.; van Megen, W. Phase Behaviour of Concentrated Suspensions of Nearly Hard Colloidal Spheres. Nature 1986, 320 (6060), 340–342.
(32) DAVIS, K. E.; RUSSEL, W. B.; GLANTSCHNIG, W. J. Disorder-to-Order Transition in Settling Suspensions of Colloidal Silica: X-Ray Measurements. Science 1989, 245 (4917), 507.
(33) Johnson, N. .; McComb, D. .; Richel, A.; Treble, B. .; De La Rue, R. . Synthesis and Optical Properties of Opal and Inverse Opal Photonic Crystals. Synth. Met. 2001, 116 (1–3), 469–473.
(34) Dziomkina, N. V.; Vancso, G. J. Colloidal Crystal Assembly on Topologically Patterned Templates. Soft Matter 2005, 1 (4), 265–279.
(35) Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C. Opals: Status and Prospects. Angew. Chem. Int. Ed. 2009, 48 (34), 6212–6233.
(36) Dimitrov, A. S.; Nagayama, K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces. Langmuir 1996, 12 (5), 1303–1311.
(37) Park, S. H.; Xia, Y. Assembly of Mesoscale Particles over Large Areas and Its Application in Fabricating Tunable Optical Filters. Langmuir 1999, 15 (1), 266–273.
(38) Yablonovitch, E.; Gmitter, T. J.; Leung, K. M. Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms. Phys. Rev. Lett. 1991, 67 (17), 2295–2298.
(39) Yang, H.; Jiang, P. Large-Scale Colloidal Self-Assembly by Doctor Blade Coating. Langmuir 2010, 26 (16), 13173–13182.
(40) Jiang, P.; McFarland, M. J. Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating. J. Am. Chem. Soc. 2004, 126 (42), 13778–13786.
(41) Sanchez, C.; Boissière, C.; Grosso, D.; Laberty, C.; Nicole, L. Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity. Chem. Mater. 2008, 20 (3), 682–737.
(42) Cui, L.; Li, Y.; Wang, J.; Tian, E.; Zhang, X.; Zhang, Y.; Song, Y.; Jiang, L. Fabrication of Large-Area Patterned Photonic Crystals by Ink-Jet Printing. J. Mater. Chem. 2009, 19 (31), 5499–5502.
(43) Xu, X.; Friedman, G.; Humfeld, K. D.; Majetich, S. A.; Asher, S. A. Synthesis and Utilization of Monodisperse Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals. Chem. Mater. 2002, 14 (3), 1249–1256.
(44) Ge, J.; Hu, Y.; Yin, Y. Highly Tunable Superparamagnetic Colloidal Photonic Crystals. Angew. Chem. Int. Ed. 2007, 46 (39), 7428–7431.
(45) Jia, X.; Wang, J.; Wang, K.; Zhu, J. Highly Sensitive Mechanochromic Photonic Hydrogels with Fast Reversibility and Mechanical Stability. Langmuir 2015, 31 (31), 8732–8737.
(46) S?nner, T.; Stichel, T.; Kwon, S.-H.; Schlereth, T. W.; H?fling, S.; Kamp, M.; Forchel, A. Photonic Crystal Cavity Based Gas Sensor. Appl. Phys. Lett. 2008, 92 (26), 261112.
(47) Zhao, Y.; Zhang, Y.-N.; Wang, Q. Research Advances of Photonic Crystal Gas and Liquid Sensors. Sens. Actuators B Chem. 2011, 160 (1), 1288–1297.
(48) King, B. H.; Gramada, A.; Link, J. R.; Sailor, M. J. Internally Referenced Ammonia Sensor Based on an Electrochemically Prepared Porous SiO2 Photonic Crystal. Adv. Mater. 2007, 19 (22), 4044–4048.
(49) Li, H.; Chang, L.; Wang, J.; Yang, L.; Song, Y. A Colorful Oil-Sensitive Carbon Inverse Opal. J. Mater. Chem. 2008, 18 (42), 5098–5103.
(50) Fudouzi, H.; Xia, Y. Colloidal Crystals with Tunable Colors and Their Use as Photonic Papers. Langmuir 2003, 19 (23), 9653–9660.
(51) Hu, X.; Huang, J.; Zhang, W.; Li, M.; Tao, C.; Li, G. Photonic Ionic Liquids Polymer for Naked-Eye Detection of Anions. Adv. Mater. 2008, 20 (21), 4074–4078.
(52) Li, J.; Wu, Y.; Fu, J.; Cong, Y.; Peng, J.; Han, Y. Reversibly Strain-Tunable Elastomeric Photonic Crystals. Chem. Phys. Lett. 2004, 390 (1), 285–289.
(53) Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, I.; et al. From Colour Fingerprinting to the Control of Photoluminescence in Elastic Photonic Crystals. Nat Mater 2006, 5 (3), 179–184.
(54) Iwayama, Y.; Yamanaka, J.; Takiguchi, Y.; Takasaka, M.; Ito, K.; Shinohara, T.; Sawada, T.; Yonese, M. Optically Tunable Gelled Photonic Crystal Covering Almost the Entire Visible Light Wavelength Region. Langmuir 2003, 19 (4), 977–980.
(55) Vekris, E.; Ozin, G. A.; Kitaev, V. Curling Colloidal Photonic Crystals. Adv. Mater. 2006, 18 (18), 2481–2485.
(56) Zlatanovic, S.; Mirkarimi, L. W.; Sigalas, M. M.; Bynum, M. A.; Chow, E.; Robotti, K. M.; Burr, G. W.; Esener, S.; Grot, A. Photonic Crystal Microcavity Sensor for Ultracompact Monitoring of Reaction Kinetics and Protein Concentration. Sens. Actuators B Chem. 2009, 141 (1), 13–19.
(57) Rossetti, C.; Abdel Qader, A.; Halvorsen, T. G.; Sellergren, B.; Reubsaet, L. Antibody-Free Biomarker Determination: Exploring Molecularly Imprinted Polymers for Pro-Gastrin Releasing Peptide. Anal. Chem. 2014, 86 (24), 12291–12298.
(58) Kunath, S.; Panagiotopoulou, M.; Maximilien, J.; Marchyk, N.; Sänger, J.; Haupt, K. Cell and Tissue Imaging with Molecularly Imprinted Polymers as Plastic Antibody Mimics. Adv. Healthc. Mater. 2015, 4 (9), 1322–1326.
(59) Liu, Z.-S.; Zheng, C.; Yan, C.; Gao, R.-Y. Molecularly Imprinted Polymers as a Tool for Separation in CEC. ELECTROPHORESIS 2007, 28 (1–2), 127–136.
(60) Spégel, P.; Schweitz, L.; Nilsson, S. Molecularly Imprinted Polymers in Capillary Electrochromatography: Recent Developments and Future Trends. ELECTROPHORESIS 2003, 24 (22–23), 3892–3899.
(61) Sellergren, B.; Hall, A. J. Chapter 2 - Fundamental Aspects on the Synthesis and Characterisation of Imprinted Network Polymers. In Techniques and Instrumentation in Analytical Chemistry; Börje Sellergren, Ed.; Elsevier, 2001; Vol. Volume 23, pp 21–57.
(62) Ge, Y.; Turner, A. P. F. Too Large to Fit? Recent Developments in Macromolecular Imprinting. Trends Biotechnol. 2008, 26 (4), 218–224.
(63) Whitcombe, M. J.; Kirsch, N.; Nicholls, I. A. Molecular Imprinting Science and Technology: A Survey of the Literature for the Years 2004–2011. J. Mol. Recognit. 2014, 27 (6), 297–401.
(64) Hu, X.; Li, G.; Huang, J.; Zhang, D.; Qiu, Y. Construction of Self-Reporting Specific Chemical Sensors with High Sensitivity. Adv. Mater. 2007, 19 (24), 4327–4332.
(65) Wu, Z.; Hu, X.; Tao, C.; Li, Y.; Liu, J.; Yang, C.; Shen, D.; Li, G. Direct and Label-Free Detection of Cholic Acid Based on Molecularly Imprinted Photonic Hydrogels. J. Mater. Chem. 2008, {18} ({45}), {5452-5458}.
(66) Hu, X.; Li, G.; Li, M.; Huang, J.; Li, Y.; Gao, Y.; Zhang, Y. Ultrasensitive Specific Stimulant Assay Based on Molecularly Imprinted Photonic Hydrogels. Adv. Funct. Mater. 2008, {18} ({4}), {575-583}.
(67) Agbaria, R. A.; Oldham, P. B.; McCarroll, M.; McGown, L. B.; Warner, I. M. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal. Chem. 2002, 74 (16), 3952–3962.
(68) Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Rapid Deposition of Triangular Silver Nanoplates on Planar Surfaces:? Application to Metal-Enhanced Fluorescence. J. Phys. Chem. B 2005, 109 (13), 6247–6251.
(69) Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured Plasmonic Sensors. Chem. Rev. 2008, 108 (2), 494–521.
(70) Deng, W.; Xie, F.; Baltar, H. T. M. C. M.; Goldys, E. M. Metal-Enhanced Fluorescence in the Life Sciences: Here, Now and Beyond. Phys. Chem. Chem. Phys. 2013, 15 (38), 15695–15708.
(71) Lakowicz, J. R.; Fu, Y. Modification of Single Molecule Fluorescence near Metallic Nanostructures. Laser Photonics Rev. 2009, 3 (1–2), 221–232.
(72) Mertens, H.; Koenderink, A. F.; Polman, A. Plasmon-Enhanced Luminescence near Noble-Metal Nanospheres: Comparison of Exact Theory and an Improved Gersten and Nitzan Model. Phys. Rev. B 2007, 76 (11), 115123.
(73) Zhang, J.; Matveeva, E.; Gryczynski, I.; Leonenko, Z.; Lakowicz, J. R. Metal-Enhanced Fluoroimmunoassay on a Silver Film by Vapor Deposition. J. Phys. Chem. B 2005, 109 (16), 7969–7975.
(74) Geddes, C. D.; Lakowicz, J. R. Editorial: Metal-Enhanced Fluorescence. J. Fluoresc. 2002, 12 (2), 121–129.
(75) Lakowicz, J. R. Radiative Decay Engineering: Biophysical and Biomedical Applications. Anal. Biochem. 2001, 298 (1), 1–24.
(76) Kim, H. J.; Kim, S.; Jeon, H.; Ma, J.; Choi, S. H.; Lee, S.; Ko, C.; Park, W. Fluorescence Amplification Using Colloidal Photonic Crystal Platform in Sensing Dye-Labeled Deoxyribonucleic Acids. Sens. Actuators B Chem. 2007, 124 (1), 147–152.
(77) Hu, J.; Zhao, X.-W.; Zhao, Y.-J.; Li, J.; Xu, W.-Y.; Wen, Z.-Y.; Xu, M.; Gu, Z.-Z. Photonic Crystal Hydrogel Beads Used for Multiplex Biomolecular Detection. J. Mater. Chem. 2009, 19 (32), 5730–5736.
(78) Li, M.; He, F.; Liao, Q.; Liu, J.; Xu, L.; Jiang, L.; Song, Y.; Wang, S.; Zhu, D. Ultrasensitive DNA Detection Using Photonic Crystals. Angew. Chem. Int. Ed. 2008, 47 (38), 7258–7262.
(79) Dovzhenko, D.; Osipov, E.; Martynov, I.; Linkov, P.; Chistyakov, A. Enhancement of Spontaneous Emission from CdSe/CdS/ZnS Quantum Dots at the Edge of the Photonic Band Gap in a Porous Silicon Bragg Mirror. 4th Int. Conf. Photonics Inf. Opt. PhIO 2015 28-30 January 2015 Mosc. Russ. Fed. 2015, 73, 126–130.
(80) Lukishova, S. G.; Winkler, J. M.; Mihaylova, D.; Liapis, A.; Bissell, L. J.; Goldberg, D.; Menon, V. M.; Shi, Z.; Boyd, R. W.; Chen, G.; et al. Nanocrystal Fluorescence in Photonic Bandgap Microcavities and Plasmonic Nanoantennas. J. Phys. Conf. Ser. 2015, 594, 012005.
(81) Zhu, Z.; Zhang, J.; Wang, C.-F.; Chen, S. Construction of Hydrogen-Bond-Assisted Crack-Free Photonic Crystal Films and Their Performance on Fluorescence Enhancement Effect. Macromol. Mater. Eng. 2017, 302 (6), 1700013–n/a.
(82) Chen, J. I. L.; von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. Slow Photons in the Fast Lane in Chemistry. J. Mater. Chem. 2008, 18 (4), 369–373.
(83) Eftekhari, E.; Cole, I. S.; Li, Q. The Effect of Fluorophore Incorporation on Fluorescence Enhancement in Colloidal Photonic Crystals. Phys. Chem. Chem. Phys. 2016, 18 (3), 1743–1749.
(84) Chen, T.; Deng, Z.-Y.; Yin, S.-N.; Chen, S.; Xu, C. The Fabrication of 2D and 3D Photonic Crystal Arrays towards High Performance Recognition of Metal Ions and Biomolecules. J. Mater. Chem. C 2016, 4 (7), 1398–1404.
(85) Kim, S. H.; Kim, K.-S.; Char, K.; Yoo, S. I.; Sohn, B.-H. Short-Range Ordered Photonic Structures of Lamellae-Forming Diblock Copolymers for Excitation-Regulated Fluorescence Enhancement. Nanoscale 2016, 8 (20), 10823–10831.
(86) Mathias, P. C.; Ganesh, N.; Cunningham, B. T. Application of Photonic Crystal Enhanced Fluorescence to a Cytokine Immunoassay. Anal. Chem. 2008, 80 (23), 9013–9020.
(87) Liao, J.; Yang, Z.; Wu, H.; Yan, D.; Qiu, J.; Song, Z.; Yang, Y.; Zhou, D.; Yin, Z. Enhancement of the Up-Conversion Luminescence of Yb3+/Er3+ or Yb3+/Tm3+ Co-Doped NaYF4 Nanoparticles by Photonic Crystals. J. Mater. Chem. C 2013, 1 (40), 6541–6546.
(88) Chen, J. I. L.; von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. Amplified Photochemistry with Slow Photons. Adv. Mater. 2006, 18 (14), 1915–1919.
(89) Li, H.; Wang, J.; Lin, H.; Xu, L.; Xu, W.; Wang, R.; Song, Y.; Zhu, D. Amplification of Fluorescent Contrast by Photonic Crystals in Optical Storage. Adv. Mater. 2010, 22 (11), 1237–1241.
(90) Ganesh, N.; Mathias, P. C.; Zhang, W.; Cunningham, B. T. Distance Dependence of Fluorescence Enhancement from Photonic Crystal Surfaces. J. Appl. Phys. 2008, 103 (8), 083104.
(91) Tao, C.; Zhu, W.; An, Q.; Yang, H.; Li, W.; Lin, C.; Yang, F.; Li, G. Coupling of Nanoparticle Plasmons with Colloidal Photonic Crystals as a New Strategy to Efficiently Enhance Fluorescence. J. Phys. Chem. C 2011, 115 (41), 20053–20060.
(92) Neuschäfer, D.; Budach, W.; Wanke, C.; Chibout, S.-D. Evanescent Resonator Chips: A Universal Platform with Superior Sensitivity for Fluorescence-Based Microarrays. Biosens. Bioelectron. 2003, 18 (4), 489–497.
(93) Huang, C.-S.; George, S.; Lu, M.; Chaudhery, V.; Tan, R.; Zangar, R. C.; Cunningham, B. T. Application of Photonic Crystal Enhanced Fluorescence to Cancer Biomarker Microarrays. Anal. Chem. 2011, 83 (4), 1425–1430.
(94) Yin, Z.; Zhu, Y.; Xu, W.; Wang, J.; Xu, S.; Dong, B.; Xu, L.; Zhang, S.; Song, H. Remarkable Enhancement of Upconversion Fluorescence and Confocal Imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ Nanocrystals. Chem. Commun. 2013, 49 (36), 3781–3783.
(95) Zhou, P.; Zhou, D.; Tao, L.; Zhu, Y.; Xu, W.; Xu, S.; Cui, S.; Xu, L.; Song, H. 320-Fold Luminescence Enhancement of [Lsqb]Ru(Dpp)3[Rsqb]Cl2 Dispersed on PMMA Opal Photonic Crystals and Highly Improved Oxygen Sensing Performance. Light Sci Appl 2014, 3, e209.
(96) Shi, F.; Jia, Z.; Lv, X.; Zhang, H.; Zhou, J. Enhancement of the R6G Fluorescence by Gold Nanoparticle Depositions in Porous Silicon Bragg Reflectors. Phys. Status Solidi A 2015, 212 (3), 662–665.
(97) Ning, H.; Mihi, A.; Geddes, J. B.; Miyake, M.; Braun, P. V. Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals. Adv. Mater. 2012, 24 (23), OP153-OP158.
(98) Maskaly, G. R.; Petruska, M. A.; Nanda, J.; Bezel, I. V.; Schaller, R. D.; Htoon, H.; Pietryga, J. M.; Klimov, V. I. Amplified Spontaneous Emission in Semiconductor-Nanocrystal/Synthetic-Opal Composites: Optical-Gain Enhancement via a Photonic Crystal Pseudogap. Adv. Mater. 2006, 18 (3), 343–347.
(99) Zhang, Y.; Mu, L.; Zhou, R.; Li, P.; Liu, J.; Gao, L.; Heng, L.; Jiang, L. Fluoral-p Infiltrated SiO 2 Inverse Opal Photonic Crystals as Fluorescent Film Sensors for Detecting Formaldehyde Vapor. J Mater Chem C 2016, 4 (41), 9841–9847.
(100) Wang, X.; Wolfbeis, O. S. Optical Methods for Sensing and Imaging Oxygen: Materials, Spectroscopies and Applications. Chem. Soc. Rev. 2014, 43 (10), 3666–3761.
(101) Ródenas, A.; Zhou, G.; Jaque, D.; Gu, M. Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals. Adv. Mater. 2009, 21 (34), 3526–3530.
(102) Li, M.; Liao, Q.; Liu, Y.; Li, Z.; Wang, J.; Jiang, L.; Song, Y. A White-Lighting LED System with a Highly Efficient Thin Luminous Film. Appl. Phys. A 2009, 98 (1), 85.
(103) Cui, L.; Shi, W.; Wang, J.; Song, Y.; Ma, H.; Jiang, L. Enhanced Sensitivity in a Hg2+ Sensor by Photonic Crystals. Anal. Methods 2010, 2 (5), 448–450.
(104) Seidlová-Wuttke, D.; Jarry, H.; Christoffel, J.; Rimoldi, G.; Wuttke, W. Effects of Bisphenol-A (BPA), Dibutylphtalate (DBP), Benzophenone-2 (BP2), Procymidone (Proc), and Linurone (Lin) on Fat Tissue, a Variety of Hormones and Metabolic Parameters: A 3 Months Comparison with Effects of Estradiol (E2) in Ovariectomized (Ovx) Rats. Toxicology 2005, 213 (1–2), 13–24.
(105) Takeuchi, T.; Tsutsumi, O. Serum Bisphenol A Concentrations Showed Gender Differences, Possibly Linked to Androgen Levels. Biochem. Biophys. Res. Commun. 2002, 291 (1), 76–78.
(106) Murray, A.; Örmeci, B.; Lai, E. P. C. Removal of Endocrine Disrupting Compounds from Wastewater Using Polymer Particles. Water Sci. Technol. 2016, 73 (1), 176.
(107) Murray, A.; Örmeci, B. Application of Molecularly Imprinted and Non-Imprinted Polymers for Removal of Emerging Contaminants in Water and Wastewater Treatment: A Review. Environ. Sci. Pollut. Res. 2012, 19 (9), 3820–3830.
(108) Rodriguez-Mozaz, S.; López de Alda, M. J.; Barceló, D. Monitoring of Estrogens, Pesticides and Bisphenol A in Natural Waters and Drinking Water Treatment Plants by Solid-Phase Extraction–liquid Chromatography–mass Spectrometry. J. Chromatogr. A 2004, 1045 (1–2), 85–92.
(109) Ballesteros-Gómez, A.; Rubio, S.; Pérez-Bendito, D. Analytical Methods for the Determination of Bisphenol A in Food. Tools REACH Programme - Anal. Methods Eval. Ind. Contam. 2009, 1216 (3), 449–469.
(110) Figueiredo, L.; Erny, G. L.; Santos, L.; Alves, A. Applications of Molecularly Imprinted Polymers to the Analysis and Removal of Personal Care Products: A Review. Talanta 2016, 146, 754–765.
(111) Alexiadou, D. K.; Maragou, N. C.; Thomaidis, N. S.; Theodoridis, G. A.; Koupparis, M. A. Molecularly Imprinted Polymers for Bisphenol A for HPLC and SPE from Water and Milk. J. Sep. Sci. 2008, 31 (12), 2272–2282.
(112) Foguel, M. V.; Pedro, N. T. B.; Wong, A.; Khan, S.; Zanoni, M. V. B.; Sotomayor, M. del P. T. Synthesis and Evaluation of a Molecularly Imprinted Polymer for Selective Adsorption and Quantification of Acid Green 16 Textile Dye in Water Samples. Talanta 2017, 170, 244–251.
(113) Hu, X.; Wu, X.; Yang, F.; Wang, Q.; He, C.; Liu, S. Novel Surface Dummy Molecularly Imprinted Silica as Sorbent for Solid-Phase Extraction of Bisphenol A from Water Samples. Talanta 2016, 148, 29–36.
(114) Caro, E.; Marcé, R. M.; Cormack, P. A. G.; Sherrington, D. C.; Borrull, F. On-Line Solid-Phase Extraction with Molecularly Imprinted Polymers to Selectively Extract Substituted 4-Chlorophenols and 4-Nitrophenol from Water. J. Chromatogr. A 2003, 995 (1–2), 233–238.
(115) Zhang, X.; Peng, Y.; Bai, J.; Ning, B.; Sun, S.; Hong, X.; Liu, Y.; Liu, Y.; Gao, Z. A Novel Electrochemical Sensor Based on Electropolymerized Molecularly Imprinted Polymer and Gold Nanomaterials Amplification for Estradiol Detection. Sens. Actuators B Chem. 2014, 200, 69–75.
(116) Feng, S.; Hu, Y.; Ma, L.; Lu, X. Development of Molecularly Imprinted Polymers-Surface-Enhanced Raman Spectroscopy/Colorimetric Dual Sensor for Determination of Chlorpyrifos in Apple Juice. Sens. Actuators B Chem. 2017, 241, 750–757.
(117) Yue, Y.; Gong, J. P. Tunable One-Dimensional Photonic Crystals from Soft Materials. J. Photochem. Photobiol. C Photochem. Rev. 2015, 23, 45–67.
(118) Waterhouse, G. I. N.; Chen, W.-T.; Chan, A.; Jin, H.; Sun-Waterhouse, D.; Cowie, B. C. Structural, Optical and Catalytic Support Properties of γ-Al2O3 Inverse Opals. J Phys Chem C 2015.
(119) Wang, Z.; Zhang, J.; Xie, J.; Li, C.; Li, Y.; Liang, S.; Tian, Z.; Wang, T.; Zhang, H.; Li, H.; et al. Bioinspired Water-Vapor-Responsive Organic/Inorganic Hybrid One-Dimensional Photonic Crystals with Tunable Full-Color Stop Band. Adv. Funct. Mater. 2010, 20 (21), 3784–3790.
(120) Ge, J.; Yin, Y. Responsive Photonic Crystals. Angew. Chem. Int. Ed. 2011, 50 (7), 1492–1522.
(121) Kamel, A. H.; Yamani, H. Z.; Safwat, N.; Galal, H. R. ASSESSMENT OF PESTICIDES IN ENVIRONMENTAL SAMPLES USING VOLTAMMETRIC MOLECULAR IMPRINTED BASED SENSORS: A REVIEW (2006-2015). Eur. Chem. Bull. 2016, 5 (2), 69–76.
(122) Yang, P.; Hou, W. D.; Qiu, H. D.; Liu, X.; Jiang, S. X. Preparation of Quercetin Imprinted Core–shell Organosilicate Microspheres Using Surface Imprinting Technique. Chin. Chem. Lett. 2012, 23 (5), 615–618.
(123) Lin, Z.; Yang, F.; He, X.; Zhao, X.; Zhang, Y. Preparation and Evaluation of a Macroporous Molecularly Imprinted Hybrid Silica Monolithic Column for Recognition of Proteins by High Performance Liquid Chromatography. J. Chromatogr. A 2009, 1216 (49), 8612–8622.
(124) Zhang, W.; Qin, L.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Novel Surface Modified Molecularly Imprinted Polymer Using Acryloyl-β-Cyclodextrin and Acrylamide as Monomers for Selective Recognition of Lysozyme in Aqueous Solution. J. Chromatogr. A 2009, 1216 (21), 4560–4567.
(125) Fei, B.; Chen, C.; Peng, S.; Zhao, X.; Wang, X.; Dong, L. FTIR Study of Poly(Propylene Carbonate)/Bisphenol A Blends. Polym. Int. 2004, 53 (12), 2092–2098.
(126) Al-Oweini, R.; El-Rassy, H. Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared Using Several Si(OR)4 and R′′Si(OR′)3 Precursors. J. Mol. Struct. 2009, 919 (1–3), 140–145.
(127) Llusar, M.; Monros, G.; Roux, C.; Pozzo, J. L.; Sanchez, C. One-Pot Synthesis of Phenyl- and Amine-Functionalized Silica Fibers through the Use of Anthracenic and Phenazinic Organogelators. J. Mater. Chem. 2003, 13 (10), 2505–2514.
(128) Majoul, N.; Aouida, S.; Bessaïs, B. Progress of Porous Silicon APTES-Functionalization by FTIR Investigations. Appl. Surf. Sci. 2015, 331, 388–391.
(129) Ou, D. L.; Seddon, A. B. Near-and Mid-Infrared Spectroscopy of Sol–gel Derived Ormosils: Vinyl and Phenyl Silicates. J. Non-Cryst. Solids 1997, 210 (2), 187–203.
(130) Wang, F.; Nimmo, S. L.; Cao, B.; Mao, C. Oxide Formation on Biological Nanostructures via a Structure-Directing Agent: Towards an Understanding of Precise Structural Transcription. Chem. Sci. R. Soc. Chem. 2010 2012, 3 (8), 2639–2645.
(131) Peña-Alonso, R.; Rubio, F.; Rubio, J.; Oteo, J. L. Study of the Hydrolysis and Condensation of γ-Aminopropyltriethoxysilane by FT-IR Spectroscopy. J. Mater. Sci. 2007, 42 (2), 595–603.
(132) Liu, X.; Matsushima, A.; Shimohigashi, M.; Shimohigashi, Y. A Characteristic Back Support Structure in the Bisphenol A-Binding Pocket in the Human Nuclear Receptor ERRγ. PLoS ONE 2014, 9 (6), e101252.
(133) MATSUMURA, Y. Surface Structures of Adsorbents Used for Adsorption Sampling of Airborne Organic Vapors. Ind. Health 1987, 25 (2), 63–72.
(134) Liu, H.; Chen, X.; Mu, L.; Wang, J.; Sun, B. Application of Quantum Dot–Molecularly Imprinted Polymer Core–Shell Particles Sensitized with Graphene for Optosensing of Nε-Carboxymethyllysine in Dairy Products. J. Agric. Food Chem. 2016, 64 (23), 4801–4806.
(135) Zhang, C.; Wang, Y.; Zhou, Y.; Guo, J.; Liu, Y. Silica-Based Surface Molecular Imprinting for Recognition and Separation of Lysozymes. Anal. Methods 2014, 6 (21), 8584–8591.
(136) Zhang, Z.; Chen, X.; Rao, W.; Chen, H.; Cai, R. Synthesis and Properties of Magnetic Molecularly Imprinted Polymers Based on Multiwalled Carbon Nanotubes for Magnetic Extraction of Bisphenol A from Water. J. Chromatogr. B 2014, 965, 190–196.
(137) ZHU, L.-L.; CAO, Y.-H.; CAO, G.-Q. Preparation and Application of Core-Shell Magnetic Imprinted Nanoparticles for Bisphenol A. Chin. J. Anal. Chem. 2013, 41 (11), 1724–1728.
(138) Wang, Z.; Qiu, T.; Guo, L.; Ye, J.; He, L.; Li, X. The Synthesis of Hydrophilic Molecularly Imprinted Polymer Microspheres and Their Application for Selective Removal of Bisphenol A from Water. React. Funct. Polym.
(139) Shang, J.; Song, Y.; Rong, C.; Wang, Y.; Wang, L.; Zhang, Y.; Yu, K. Preparation and Selective Adsorption of Organic Pollutants by an Inorganic Molecular Imprinted Polymer. Water Sci. Technol. 2016, 74 (5), 1193.
(140) Bossi, A.; Bonini, F.; Turner, A. P. F.; Piletsky, S. A. Molecularly Imprinted Polymers for the Recognition of Proteins: The State of the Art. Biosens. Bioelectron. 2007, 22 (6), 1131–1137.
(141) Duan, F.; Chen, C.; Zhao, X.; Yang, Y.; Liu, X.; Qin, Y. Water-Compatible Surface Molecularly Imprinted Polymers with Synergy of Bi-Functional Monomers for Enhanced Selective Adsorption of Bisphenol A from Aqueous Solution. Environ. Sci. Nano 2016, 3 (1), 213–222.
(142) Yu, C.; Ramstrom, O.; Mosbach, K. Enantiomeric Recognition by Molecularly Imprinted Polymers Using Hydrophobic Interactions. Anal. Lett. 1997, 30 (12), 2123–2140.
(143) Ren, Y.; Ma, W.; Ma, J.; Wen, Q.; Wang, J.; Zhao, F. Synthesis and Properties of Bisphenol A Molecular Imprinted Particle for Selective Recognition of BPA from Water. J. Colloid Interface Sci. 2012, 367 (1), 355–361.
(144) Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K. H.; Aizenberg, J. Assembly of Large-Area, Highly Ordered, Crack-Free Inverse Opal Films. Proc. Natl. Acad. Sci. 2010, 107 (23), 10354–10359.
(145) Lee, J. A.; Ha, S. T.; Choi, H. K.; Shin, D. O.; Kim, S. O.; Im, S. H.; Park, O. O. Novel Fabrication of 2D and 3D Inverted Opals and Their Application. Small 2011, 7 (18), 2581–2586.
(146) Guo, W.; Wang, M.; Xia, W.; Dai, L. Two Substrate-Confined Sol–Gel Coassembled Ordered Macroporous Silica Structures with an Open Surface. Langmuir 2013.
(147) Zhang, Y.; Huang, S.; Xu, D.; Chen, J.; Wu, Q.; He, J. Preparation of Novel Three-Dimensionally Ordered Macroporous Molecularly Imprinted Microspheres and Its Recognition for Proteins. Int. J. Polym. Mater. Polym. Biomater. 2017, 66 (2), 82–88.
(148) Feng, Y.; Liu, Q.; Ye, L.; Wu, Q.; He, J. Ordered Macroporous Quercetin Molecularly Imprinted Polymers: Preparation, Characterization, and Separation Performance. J. Sep. Sci. 2017, 40 (4), 971–978.
(149) Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative Diseases and Oxidative Stress. Biomed. Pharmacother. 2004, 58 (1), 39–46.
(150) Waggoner, D. J.; Bartnikas, T. B.; Gitlin, J. D. The Role of Copper in Neurodegenerative Disease. Neurobiol. Dis. 1999, 6 (4), 221–230.
(151) Chen, H.; Zhang, J.; Liu, X.; Gao, Y.; Ye, Z.; Li, G. Colorimetric Copper(Ii) Ion Sensor Based on the Conformational Change of Peptide Immobilized onto the Surface of Gold Nanoparticles. Anal. Methods 2014, 6 (8), 2580–2585.
(152) Daniele, S.; Bragato, C.; Antonietta Baldo, M.; Wang, J.; Lu, J. The Use of a Remote Stripping Sensor for the Determination of Copper and Mercury in the Lagoon of Venice. Analyst 2000, 125 (4), 731–735.
(153) Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustain. Chem. Eng. 2013, 1 (7), 713–723.
(154) Goswami, S.; Sen, D.; Das, N. K. A New Highly Selective, Ratiometric and Colorimetric Fluorescence Sensor for Cu2+ with a Remarkable Red Shift in Absorption and Emission Spectra Based on Internal Charge Transfer. Org. Lett. 2010, 12 (4), 856–859.
(155) Li, H.; Wei, X.; Xu, Y.; Lu, K.; Zhang, Y.; Yan, Y.; Li, C. A Thin Shell and “Sunny Shape” Molecular Imprinted Fluorescence Sensor in Selective Detection of Trace Level Pesticides in River. J. Alloys Compd. 2017, 705, 524–532.
(156) Wang, Q.; Jiang, J.; Sui, W.; Lin, X.; Liu, B. Sensitive Molecularly Imprinted Fluorescence Determination of Pyrethroids Using Green Zinc Oxide Quantum Dots. Anal. Lett. 2016, null-null.
(157) Xu, X.; Daniel, W. L.; Wei, W.; Mirkin, C. A. Colorimetric Cu2+ Detection Using DNA-Modified Gold-Nanoparticle Aggregates as Probes and Click Chemistry. Small 2010, 6 (5), 623–626.
(158) Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat Meth 2008, 5 (9), 763–775.
(159) Li, H.; Wei, X.; Xu, Y.; Hao, T.; Dai, J.; Wang, J.; Gao, L.; Yan, Y. Determination of Aspirin Using Functionalized Cadmium-Tellurium Quantum Dots as a Fluorescence Probe. Anal. Lett. 2015, 48 (7), 1117–1127.
(160) Wu, P.; Zhao, T.; Wang, S.; Hou, X. Semiconductor Quantum Dots-Based Metal Ion Probes. Nanoscale 2014, 6 (1), 43–64.
(161) Yu, W. W.; Chang, E.; Drezek, R.; Colvin, V. L. Water-Soluble Quantum Dots for Biomedical Applications. Biochem. Biophys. Res. Commun. 2006, 348 (3), 781–786.
(162) Cai, Z.-X.; Yang, H.; Zhang, Y.; Yan, X.-P. Preparation, Characterization and Evaluation of Water-Soluble l-Cysteine-Capped-CdS Nanoparticles as Fluorescence Probe for Detection of Hg(II) in Aqueous Solution. Anal. Chim. Acta 2006, 559 (2), 234–239.
(163) Cai, C.; Cheng, H.; Wang, Y.; Bao, H. Mercaptosuccinic Acid Modified CdTe Quantum Dots as a Selective Fluorescence Sensor for Ag+ Determination in Aqueous Solutions. RSC Adv. 2014, 4 (103), 59157–59163.
(164) Wu, H.; Liang, J.; Han, H. A Novel Method for the Determination of Pb2+ Based on the Quenching of the Fluorescence of CdTe Quantum Dots. Microchim. Acta 2008, 161 (1), 81–86.
(165) Zhang, Y.; Zhang, H.; Guo, X.; Wang, H. L-Cysteine-Coated CdSe/CdS Core-Shell Quantum Dots as Selective Fluorescence Probe for Copper(II) Determination. Microchem. J. 2008, 89 (2), 142–147.
(166) Vázquez-González, M.; Carrillo-Carrion, C. Analytical Strategies Based on Quantum Dots for Heavy Metal Ions Detection. J Biomed Opt 2014, 19 (10), 101503.
(167) Wang, X.; Ruedas‐Rama, M. J.; Hall, E. A. H. The Emerging Use of Quantum Dots in Analysis. Anal. Lett. 2007, 40 (8), 1497–1520.
(168) Bo, C.; Ping, Z. A New Determining Method of Copper(II) Ions at Ng Ml−1 Levels Based on Quenching of the Water-Soluble Nanocrystals Fluorescence. Anal. Bioanal. Chem. 2005, 381 (4), 986–992.
(169) Koneswaran, M.; Narayanaswamy, R. L-Cysteine-Capped ZnS Quantum Dots Based Fluorescence Sensor for Cu2+ Ion. Eur. IX Proc. 9th Eur. Conf. Opt. Chem. Sens. BiosensorsEUROPTRODE IX Proc. 9th Eur. Conf. Opt. Chem. Sens. Biosens. 2009, 139 (1), 104–109.
(170) Guang-Li Wang and Yu-Ming Dong and Zai-Jun Li. Metal Ion (Silver, Cadmium and Zinc Ions) Modified CdS Quantum Dots for Ultrasensitive Copper Ion Sensing. Nanotechnology 2011, 22 (8), 085503.
(171) Nurerk, P.; Kanatharana, P.; Bunkoed, O. A Selective Determination of Copper Ions in Water Samples Based on the Fluorescence Quenching of Thiol-Capped CdTe Quantum Dots. Luminescence 2016, 31 (2), 515–522.
(172) Xia, Y.-S.; Zhu, C.-Q. Use of Surface-Modified CdTe Quantum Dots as Fluorescent Probes in Sensing Mercury (II). Talanta 2008, 75 (1), 215–221.
(173) L Chen and Y Liu and C Lai and R M Berry and K C Tam. Aqueous Synthesis and Biostabilization of CdS@ZnS Quantum Dots for Bioimaging Applications. Mater. Res. Express 2015, 2 (10), 105401.
(174) Liu, L.; Hu, S.; Pan, Y.; Zhang, J.; Feng, Y.; Zhang, X. Optimizing the Synthesis of CdS/ZnS Core/Shell Semiconductor Nanocrystals for Bioimaging Applications. Beilstein J. Nanotechnol. 2014, 5, 919–926.
(175) Endo, T.; Ueda, C.; Kajita, H.; Okuda, N.; Tanaka, S.; Hisamoto, H. Enhancement of the Fluorescence Intensity of DNA Intercalators Using Nano-Imprinted 2-Dimensional Photonic Crystal. Microchim. Acta 2013, 180 (9), 929–934.
(176) Mathias, P. C.; Wu, H.-Y.; Cunningham, B. T. Employing Two Distinct Photonic Crystal Resonances to Improve Fluorescence Enhancement. Appl. Phys. Lett. 2009, 95 (2), 021111.
(177) Mitov, M. Cholesteric Liquid Crystals with a Broad Light Reflection Band. Adv. Mater. 2012, 24 (47), 6260–6276.
(178) Lan-Ying Zhang and Yan-Zi Gao and Ping Song and Xiao-Juan Wu and Xiao Yuan and Bao-Feng He and Xing-Wu Chen and Wang Hu and Ren-Wei Guo and Hang-Jun Ding and Jiu-Mei Xiao and Huai Yang. Research Progress of Cholesteric Liquid Crystals with Broadband Reflection Characteristics in Application of Intelligent Optical Modulation Materials. Chin. Phys. B 2016, 25 (9), 096101.
(179) Chen, S.; Zhang, X.; Zhang, Q.; Hou, X.; Zhou, Q.; Yan, J.; Tan, W. CdSe Quantum Dots Decorated by Mercaptosuccinic Acid as Fluorescence Probe for Cu2+. J. Lumin. 2011, 131 (5), 947–951.
(180) Elevathoor Vikraman, A.; Rosin Jose, A.; Jacob, M.; Girish Kumar, K. Thioglycolic Acid Capped CdS Quantum Dots as a Fluorescent Probe for the Nanomolar Determination of Dopamine. Anal Methods 2015, 7 (16), 6791–6798.
(181) Amiri, O.; Emadi, H.; Mostafa Hosseinpour-Mashkani, S. S.; Sabet, M.; Rad, M. M. Simple and Surfactant Free Synthesis and Characterization of CdS/ZnS Core–shell Nanoparticles and Their Application in the Removal of Heavy Metals from Aqueous Solution. RSC Adv. 2014, 4 (21), 10990.
(182) Kort, R.; O’Brien, A. C.; van Stokkum, I. H. M.; Oomes, S. J. C. M.; Crielaard, W.; Hellingwerf, K. J.; Brul, S. Assessment of Heat Resistance of Bacterial Spores from Food Product Isolates by Fluorescence Monitoring of Dipicolinic Acid Release. Appl. Environ. Microbiol. 2005, 71 (7), 3556–3564.
(183) Thomsen, V.; Roberts, G.; Burgess, K. The Concept of Background Equivalent Concentration in Spectrochemistry. Spectroscopy 2000, 15 (1), 33–+.
(184) Picot, O. T.; Dai, M.; Broer, D. J.; Peijs, T.; Bastiaansen, C. W. M. New Approach toward Reflective Films and Fibers Using Cholesteric Liquid-Crystal Coatings. ACS Appl. Mater. Interfaces 2013, 5 (15), 7117–7121.
(185) Picot, O. T.; Dai, M.; Billoti, E.; Broer, D. J.; Peijs, T.; Bastiaansen, C. W. M. A Real Time Optical Strain Sensor Based on a Cholesteric Liquid Crystal Network. RSC Adv. 2013, 3 (41), 18794–18798.
(186) Zhu, J.; Zhou, M.; Xu, J.; Liao, X. Preparation of CdS and ZnS Nanoparticles Using Microwave Irradiation. Mater. Lett. 2001, 47 (1), 25–29.
(187) Zhang, K.; Yu, Y.; Sun, S. Facile Synthesis L-Cysteine Capped CdS:Eu Quantum Dots and Their Hg2+ Sensitive Properties. Appl. Surf. Sci. 2013, 276, 333–339.
(188) Koneswaran, M.; Narayanaswamy, R. Ultrasensitive Detection of Vitamin B6 Using Functionalised CdS/ZnS Core–shell Quantum Dots. Sens. Actuators B Chem. 2015, 210, 811–816.
(189) Koneswaran, M.; Narayanaswamy, R. Mercaptoacetic Acid Capped CdS Quantum Dots as Fluorescence Single Shot Probe for Mercury(II). Eur. IX Proc. 9th Eur. Conf. Opt. Chem. Sens. BiosensorsEUROPTRODE IX Proc. 9th Eur. Conf. Opt. Chem. Sens. Biosens. 2009, 139 (1), 91–96.
(190) Chan, Y.-H.; Chen, J.; Liu, Q.; Wark, S. E.; Son, D. H.; Batteas, J. D. Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced and Photo-Brightened Luminescence of CdSe Quantum Dots. Anal. Chem. 2010, 82 (9), 3671–3678.
(191) Li, H.; Zhang, Y.; Wang, X.; Gao, Z. A Luminescent Nanosensor for Hg(II) Based on Functionalized CdSe/ZnS Quantum Dots. Microchim. Acta 2008, 160 (1), 119–123.
(192) Jin, L.-H.; Han, C.-S. Ultrasensitive and Selective Fluorimetric Detection of Copper Ions Using Thiosulfate-Involved Quantum Dots. Anal. Chem. 2014, 86 (15), 7209–7213.
(193) Xie, H.-Y.; Liang, J.-G.; Zhang, Z.-L.; Liu, Y.; He, Z.-K.; Pang, D.-W. Luminescent CdSe-ZnS Quantum Dots as Selective Cu2+ Probe. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2004, 60 (11), 2527–2530.
(194) Rezaei, B.; Shahshahanipour, M.; Ensafi, A. A. A Simple and Sensitive Label-Free Fluorescence Sensing of Heparin Based on Cdte Quantum Dots: A Simple and Sensitive Label-Free Heparin Sensing. Luminescence 2016, 31 (4), 958–964.
(195) Tang, C.-R.; Su, Z.; Lin, B.-G.; Huang, H.-W.; Zeng, Y.-L.; Li, S.; Huang, H.; Wang, Y.-J.; Li, C.-X.; Shen, G.-L.; et al. A Novel Method for Iodate Determination Using Cadmium Sulfide Quantum Dots as Fluorescence Probes. Anal. Chim. Acta 2010, 678 (2), 203–207.
(196) Iwanaga, H. Development of Highly Soluble Anthraquinone Dichroic Dyes and Their Application to Three-Layer Guest-Host Liquid Crystal Displays. Materials 2009, 2 (4), 1636–1661.
(197) Gattas-Asfura, K. M.; Leblanc, R. M. Peptide-Coated CdS Quantum Dots for the Optical Detection of Copper(Ii) and Silver(I). Chem. Commun. 2003, No. 21, 2684–2685.
(198) Ren, J.; Chen, H. L.; Ren, C. L.; Sun, J. F.; Liu, Q.; Wang, M.; Chen, X. G. L-Cysteine Capped CdSe as Sensitive Sensor for Detection of Trace Lead Ion in Aqueous Solution. Mater. Res. Innov. 2010, 14 (2), 133–137.
(199) Wang, C.; Zhao, J.; Wang, Y.; Lou, N.; Ma, Q.; Su, X. Sensitive Hg (II) Ion Detection by Fluorescent Multilayer Films Fabricated with Quantum Dots. Sens. Actuators B Chem. 2009, 139 (2), 476–482.
(200) Hosseini, M. S.; Pirouz, A. Study of Fluorescence Quenching of Mercaptosuccinic Acid-Capped CdS Quantum Dots in the Presence of Some Heavy Metal Ions and Its Application to Hg(II) Ion Determination. Luminescence 2014, 29 (7), 798–804.
(201) Chen, J.; Zheng, A.; Gao, Y.; He, C.; Wu, G.; Chen, Y.; Kai, X.; Zhu, C. Functionalized CdS Quantum Dots-Based Luminescence Probe for Detection of Heavy and Transition Metal Ions in Aqueous Solution. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2008, 69 (3), 1044–1052.
(202) Rao, H.; Ge, H.; Lu, Z.; Liu, W.; Chen, Z.; Zhang, Z.; Wang, X.; Zou, P.; Wang, Y.; He, H.; et al. Copper Nanoclusters as an On-off-on Fluorescent Probe for Ascorbic Acid. Microchim. Acta 2016, 183 (5), 1651–1657.
(203) Bukharov, M. S.; Shtyrlin, V. G.; Mukhtarov, A. S.; Mamin, G. V.; Stapf, S.; Mattea, C.; Krutikov, A. A.; Il’in, A. N.; Serov, N. Y. Study of Structural and Dynamic Characteristics of Copper(Ii) Amino Acid Complexes in Solutions by Combined EPR and NMR Relaxation Methods. Phys. Chem. Chem. Phys. 2014, 16 (20), 9411–9421.
(204) Kusler, K.; Odoh, S. O.; Silakov, A.; Poyton, M. F.; Pullanchery, S.; Cremer, P. S.; Gagliardi, L. What Is the Preferred Conformation of Phosphatidylserine–Copper(II) Complexes? A Combined Theoretical and Experimental Investigation. J. Phys. Chem. B 2016, 120 (50), 12883–12889.
(205) Guang-Li Wang and Yu-Ming Dong and Zai-Jun Li. Metal Ion (Silver, Cadmium and Zinc Ions) Modified CdS Quantum Dots for Ultrasensitive Copper Ion Sensing. Nanotechnology 2011, 22 (8), 085503.
(206) Lai, S. h o u j u n; Chang, X. i j u n; Fu, C. h u a n. Cadmium Sulfide Quantum Dots Modified by Chitosan as Fluorescence Probe for Copper (II) Ion Determination. Microchim. ACTA 2009, 165 (1–2), 39–44.
(207) Abolhasani, J.; Hassanzadeh, J.; Ghorbani-Kalhor, E.; Saeedi, Z. Fluorescence Quenching of CdS Quantum Dots and Its Application to Determination of Copper and Nickel Contamination in Well and Dam Water. J. Chem. Health Risks 2015, 5 (2).
(208) Liu, Z.; Liu, S.; Yin, P.; He, Y. Fluorescence Enhancement of CdTe/CdS Quantum Dots by Coupling of Glyphosate and Its Application for Sensitive Detection of Copper Ion. Anal. Chim. Acta 2012, 745, 78–84.
(209) Liu, S.; Li, Y.; Su, X. Determination of Copper(Ii) and Cadmium(Ii) Based on Ternary CuInS2 Quantum Dots. Anal. Methods 2012, 4 (5), 1365.
(210) Yao, J.; Zhang, K.; Zhu, H.; Ma, F.; Sun, M.; Yu, H.; Sun, J.; Wang, S. Efficient Ratiometric Fluorescence Probe Based on Dual-Emission Quantum Dots Hybrid for On-Site Determination of Copper Ions. Anal. Chem. 2013, 85 (13), 6461–6468.
(211) Nurerk, P.; Kanatharana, P.; Bunkoed, O. A Selective Determination of Copper Ions in Water Samples Based on the Fluorescence Quenching of Thiol-Capped CdTe Quantum Dots. Luminescence 2016, 31 (2), 515–522.
(212) Cao, J.; Chen, C. P.; Bae, B. S.; Song, J.-K.; Kim, D. S.; Jhun, C. G. Enhanced Reflectance of Cholesteric Liquid Crystal Device with Quantum Dots. Mol. Cryst. Liq. Cryst. 2015, 613 (1), 59–62.
(213) Peng, W.; Chen, Y.; Ai, W.; Zhang, D. A Nanofluidic Biosensor Based on Nanoreplica Molding Photonic Crystal. Nanoscale Res. Lett. 2016, 11 (1), 427.
(214) Zhang, Y.; Gao, L.; Wen, L.; Heng, L.; Song, Y. Highly Sensitive, Selective and Reusable Mercury(Ii) Ion Sensor Based on a SsDNA-Functionalized Photonic Crystal Film. Phys. Chem. Chem. Phys. 2013, 15 (28), 11943.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *