帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:石佳璇
作者(英文):Shih, Chia-Hsuan
論文名稱(中文):製備高光催化活性之有機修飾中孔洞二氧化鈦
論文名稱(英文):Fabrication of organic modified mesoporous TiO2 with high photocatalytic activity
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9619519
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:90
中文關鍵詞:二氧化鈦三辛基氧化膦非水解性溶膠凝膠內分泌干擾物質異相光催化反應
外文關鍵詞:Titaninm dioxideTrioctylphosphine oxidNon-hydrolytic sol-gelEndocrine disrupting chemicalsHeterogeneous photocatalytic reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:60
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本研究中首次以非水解性溶膠-凝膠法 (non-hydrolytic sol-gel),使用三辛基氧化膦 (TOPO) 與1,3,5-三甲基苯 (TMB) 分別作為模板劑及擴張劑,以單一步驟製備有機修飾的中孔洞二氧化鈦 (TiO2) 結晶體。樣品比表面積介於2-103 m2/g,且數值隨TOPO濃度增加而減小,當TOPO/Ti = 0.05 (sample TP 1) 時,TiO2顆粒間隙可形成中孔洞結構,而當TOPO/Ti比例提升到0.1 (sample TP 2) 時,TOPO形成的微胞使樣品隨即轉變為微孔洞結構,進一步提高TOPO/Ti比例則製備出TOPO披覆的奈米顆粒。添加TMB之後,微孔洞與連續孔洞樣品皆呈現Type Ⅳ isotherm,並且大幅提升了比表面積與孔洞數量和孔洞尺寸,由此可知TMB擴大微胞尺寸並幫助TOPO形成微胞而驅使TiO¬2形成中孔洞材料。其中TMB/TOPO/Ti為0.12/0.1/1的條件下,可得到高比表面積236 m2/g,平均孔洞尺寸為3.6 nm的樣品,且未經鍛燒即得到高程度的anatase 晶體,晶粒大小約為4.4 nm。在紅外光光譜分析中可以清楚看到C-H的波峰出現在2760-3150 cm-1,且P-O-Ti的波峰出現在1100 cm-1,相對於原TOPO的P=O在1150 cm-1,此紅位移的結果顯示TOPO以化學鍵結修飾於二氧化鈦上。由X光光電子能譜儀分析顯示,樣品表面的Ti-O/(Ti + P)比例大約1.3~1.8,略小於二氧化鈦的理論值2,因此樣品表面有缺陷形成。並且,從元素分析結果得到約有45-70 %的TOPO會在合成的過程中遺失。有機修飾中孔洞二氧化鈦降解環境荷爾蒙-酚甲烷 (Bisphenol-A, BPA) 的光催化能力高於純TiO2。吸附結果顯示TOPO修飾的孔洞結構藉由疏水性物質間非特定性吸附與毛細作用力對BPA展現極高的吸附能力,因此除高比表面積外,孔洞結構與表面有機修飾物協同性的增進光催化活性。
In this study, an organically modified mesoporous TiO2 is prepared using a non-hydrolytic sol-gel method when trioctylphosphine oxide (TOPO) and 1,3,5-trimethylbenzene (TMB) are used as the template and auxiliary swelling agent, respectively. The specific surface areas of the samples ranged 2-103 m2/g and increased with decreasing the TOPO concentrations. The critical TOPO/Ti ratio for microporous structure was 0.1. Addition of TMB led micro- and continuous porous samples exhibiting Type Ⅳ isotherm. In addition, remarkable increases in specific surface areas, pore volumes and pore sizes were obtained. This finding indicates that TMB assists the formation of TOPO micelles and expands the size of the micelles to form mesoporous TiO2. The optimal TMB/TOPO/Ti ratio for the mesoporous TiO2 was 0.12/0.1/1, at which the TiO2 exhibited the largest surface area of 236 m2/g and an average mesopore size of 3.6 nm. Highly anatase structures with a mean crystallite size of 4.4 nm were obtained. The mesoporous TiO2 clearly shows C-H and P-O-Ti stretching absorptions at 2760-3150 and 1100 cm-1, respectively, in the FTIR spectra. Moreover, the red shift of the P=O peak from 1150 to 1100 cm-1 indicates that the TOPO is chemically bound to the surface through the formation of P-O-Ti bonds. Surface Ti-O/(Ti + P) ratios ranged 1.3-1.8, which were smaller than the theoretical ratio of 2 of TiO2. It suggested that many defects are introduced into the surface lattice. The mesoporous TiO2 shows higher photocatalytic activity than pure TiO2 for degradation of bisphenol-A (BPA). The TOPO-modified mesoporous TiO2 samples not only contained large surface areas but also surface hydrophobic property and proper porous structures that exhibit extraordinarily high affinity for BPA, thus synergistically enhancing the photoactivity.
中文摘要 I
Abstract II
謝誌 III
Figure Index VII
Table Index IX
Chapter 1.Introduction 1
1-1. Motivation 1
1-2. Objectives 2
Chapter 2.Background and theory 4
2-1. Photocatalysis 4
2-1-1. Principle of photocatalysis 4
2-1-2. TiO2 photocatalysis 6
2-2. Mesoporous materials 8
2-2-1. Synthesis and templates 9
2-2-2. Mesoporous TiO2 11
2-2-3. The photocatalytic activity of mesoporous TiO2 14
2-3. Surface modification 16
2-3-1. Metal deposition 16
2-3-2. Transition metal modification 17
2-3-3. Organic modification 17
2-4. Non-hydrolytic sol-gel process 18
2-5. Endocrine disrupted chemicals 20
Chapter 3.Experimental materials and methods 24
3-1. Chemicals 24
3-2. Preparation of TOPO modified mesoporous TiO2 via NHSG process 27
3-3. Characterization 31
3-3-1. High Resolution Transmission Electron Microscopy (HRTEM) 31
3-3-2. Nitrogen adsorption and desorption isothermal 31
3-3-3. X-ray powder diffractmeter (XRPD) 31
3-3-4. UV-vis Spectrometer 32
3-3-5. Fourier Transform Infrared Spectrometer (FTIR) 32
3-3-6. Zeta Potential 33
3-3-7. Thermo Gravimetric Analysis / Differential Scanning Calorimetry (TGA/DSC) 33
3-3-8. X-ray photoelectron Spectroscopy (XPS) 33
3-4. Adsorption behavior 34
3-5. Photodegradation of BPA 35
Chapter 4.Results and Discussion 36
4-1. The pore structure and morphology 36
4-2. Crystalline structure and optical property 44
4-3. Surface property 48
4-3-1. Surface functional groups 48
4-3-2. Surface chemical composition 50
4-4. Adsorption isotherm 56
4-5. Photocatalytic activity 60
Chapter 5.Conclusions 65
References 66
Appendix A.Zeta potential of TOPO-TiO2 and Pure TiO2 74
Appendix B.JCPDS database of TiO2 (anatase) 76
Appendix C.EDX patterns of TP and TP 2-B samples 78
Appendix D.TGA/DSC curve of TP and TP 2-B samples 82
Appendix E.Calibration curve of BPA solution 87
Appendix F.Photodegradation of various BPA concentrations 89
(1) Kim, T. K.; Lee, M. N.; Lee, S. H.; Park, Y. C.; Jung, C. K.; Boo, J. H. Thin Solid Films 2005, 475, 171-77.
(2) Ren, W. J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z.; Fan, X. X.; Zou, Z. G. Applied Catalysis B-Environmental 2007, 69, 138-44.
(3) Wang, H. W.; Kuo, C. H.; Lin, H. C.; Kuo, I. T.; Cheng, C. F. Journal of the American Ceramic Society 2006, 89, 3388-92.
(4) Zhao, D.; Chen, C. C.; Wang, Y. F.; Ji, H. W.; Ma, W. H.; Zang, L.; Zhao, J. C. Journal of Physical Chemistry C 2008, 112, 5993-6001.
(5) Chang, S. M.; Chen, T. Y. “Preparation of surface salicylic acid modified titanium dioxide photocatalyst using microwave assisted method”; 236th ACS Annual Meeting, 2008, Philadelphia, PA, USA.
(6) Chang, S. M.; Hou, C. Y.; Lo, P. H.; Chang, C. T. Applied Catalysis B-Environmental 2009, 90, 233-41.
(7) Bannat, I.; Wessels, K.; Oekermann, T.; Rathousky, J.; Bahnemann, D.; Wark, M. Chemistry of Materials 2009, 21, 1645-53.
(8) Chang, S. M.; Lo, P. H.; Chang, C. T. Applied Catalysis B-Environmental 2009, 91, 619-27.
(9) Yu, J. C.; Zhang, L. Z.; Zheng, Z.; Zhao, J. C. Chemistry of Materials 2003, 15, 2280-86.
(10) An, T. C.; Liu, J. K.; Li, G. Y.; Zhang, S. Q.; Zhao, H. J.; Zeng, X. Y.; Sheng, G. Y.; Fu, J. M. Applied Catalysis A-General 2008, 350, 237-43.
(11) Yu, J. G.; Zhang, L. J.; Cheng, B.; Su, Y. R. Journal of Physical Chemistry C 2007, 111, 10582-89.
(12) Yu, J. G.; Wang, G. H.; Cheng, B.; Zhou, M. H. Applied Catalysis B-Environmental 2007, 69, 171-80.
(13) Rossmanith, R.; Weiss, C. K.; Geserick, J.; Husing, N.; Hormann, U.; Kaiser, U.; Landfester, K. Chemistry of Materials 2008, 20, 5768-80.
(14) Calleja, G.; Serrano, D. P.; Sanz, R.; Pizarro, P.; Garcia, A. Industrial & Engineering Chemistry Research 2004, 43, 2485-92.
(15) On, D. T. Langmuir 1999, 15, 8561-64.
(16) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710-12.
(17) Huang, D.; Wang, Y. J.; Yang, L. M.; Luo, G. S. Microporous and Mesoporous Materials 2006, 96, 301-06.
(18) Kim, D. S.; Kwak, S. Y. Applied Catalysis A-General 2007, 323, 110-18.
(19) Peng, T. Y.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. Journal of Physical Chemistry B 2005, 109, 4947-52.
(20) Tian, G. H.; Fu, H. G.; Jing, L. Q.; Xin, B. F.; Pan, K. Journal of Physical Chemistry C 2008, 112, 3083-89.
(21) Soler-Illia, G. J. D. A.; Louis, A.; Sanchez, C. Chemistry of Materials 2002, 14, 750-59.
(22) Kim, D. S.; Han, S. J.; Kwak, S. Y. Journal of Colloid and Interface Science 2007, 316, 85-91.
(23) Yu, J. C.; Zhang, L. Z.; Yu, J. G. Chemistry of Materials 2002, 14, 4647-53.
(24) Chen, L.; Yao, B.; Cao, Y.; Fan, K. Journal of Physical Chemistry C 2007, 111, 11849-53.
(25) Antonelli, D. M. Microporous and Mesoporous Materials 1999, 30, 315-19.
(26) Yoshitake, H.; Sugihara, T.; Tatsumi, T. Chemistry of Materials 2002, 14, 1023-29.
(27) Wang, Y. Q.; Tang, X. H.; Yin, L. X.; Huang, W. P.; Hacohen, Y. R.; Gedanken, A. Advanced Materials 2000, 12, 1183-86.
(28) Pavasupree, S.; Ngamsinlapasathian, S.; Suzuki, Y.; Yoshikawa, S. Materials Letters 2007, 61, 2973-77.
(29) Jitputti, J.; Pavasupree, S.; Suzuki, Y.; Yoshikawa, S. Journal of Solid State Chemistry 2007, 180, 1743-49.
(30) Kluson, P.; Kacer, P.; Cajthaml, T.; Kalaji, M. Journal of Materials Chemistry 2001, 11, 644-51.
(31) Ou, Y.; Lin, J. D.; Zou, H. M.; Liao, D. W. Journal of Molecular Catalysis A-Chemical 2005, 241, 59-64.
(32) Yu, J. C.; Ho, W. K.; Yu, J. G.; Hark, S. K.; Iu, K. Langmuir 2003, 19, 3889-96.
(33) Tian, G.; Fu, H.; Jing, L.; Xin, B.; Pan, K. J. Phys. Chem. C 2008, 112, 3083-89.
(34) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chemical Reviews 1995, 95, 735-58.
(35) Fujishima, A.; Honda, K. Nature 1972, 238, 37-38.
(36) Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Journal of Solid State Chemistry 2005, 178, 329-38.
(37) Vainshtein, B. K.; Fridkin, W. M.; Indenbom, V. L. Structure of Crystals. Berlin:Macmillan India Ltd 1994.
(38) Corma, A. Chemical Reviews 1997, 97, 2373-419.
(39) Lin, J.; Brown, C. W. Trac-Trends in Analytical Chemistry 1997, 16, 200-11.
(40) Chandrappa, G. T.; Steunou, N.; Livage, J. Nature 2002, 416, 702-02.
(41) Corbin, S. F.; Apte, P. S. Journal of the American Ceramic Society 1999, 82, 1693-701.
(42) Behrens, P. Advanced Materials 1993, 5, 127-32.
(43) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L. Journal of the American Chemical Society 1992, 114, 10834-43.
(44) Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angewandte Chemie-International Edition 1999, 38, 56-77.
(45) Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; W., E. Advanced Catalysis and Nanostructured Materials: Modern Synthesis Methods. New York, 1996
(46) Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature 1994, 368, 317-21.
(47) Schmidt-Winkel, P.; Glinka, C. J.; Stucky, G. D. Langmuir 2000, 16, 356-61.
(48) Antonelli, D. M.; Ying, J. Y. Angewandte Chemie-International Edition 1995, 34, 2014-17.
(49) Luzzati, V.; Vargas, R.; Mariani, P.; Gulik, A.; Delacroix, H. Journal of Molecular Biology 1993, 229, 540-51.
(50) Smarsly, B.; Grosso, D.; Brezesinski, T.; Pinna, N.; Boissiere, C.; Antonietti, M.; Sanchez, C. Chemistry of Materials 2004, 16, 2948-52.
(51) Miao, S. D.; Miao, Z. J.; Liu, Z. M.; Han, B. X.; Zhang, H.; Zhang, J. Microporous and Mesoporous Materials 2006, 95, 26-30.
(52) Wong, M. S.; Ying, J. Y. Chemistry of Materials 1998, 10, 2067-77.
(53) Serrano, D. P.; Calleja, G.; Sanz, R.; Pizarro, P. Journal of Materials Chemistry 2007, 17, 1178-87.
(54) Wang, L.; Yan, Z.; Qiao, S.; Lu, G. Q. M.; Huang, Y. Journal of Colloid and Interface Science 2007, 316, 954-61.
(55) Stone, V. F.; Davis, R. J. Chemistry of Materials 1998, 10, 1468-74.
(56) Konishi, J.; Fujita, K.; Nakanishi, K.; Hirao, K. Chemistry of Materials 2006, 18, 6069-74.
(57) Addamo, M.; Augugliaro, V.; Di Paola, A.; Garcia-Lopez, E.; Loddo, V.; Marci, G.; Molinari, R.; Palmisano, L.; Schiavello, M. Journal of Physical Chemistry B 2004, 108, 3303-10.
(58) Wu, L.; Yu, J. C.; Wang, X. C.; Zhang, L. H.; Yu, J. G. Journal of Solid State Chemistry 2005, 178, 321-28.
(59) Huang, D.; Wang, Y. J.; Cui, Y. C.; Luo, G. S. Microporous and Mesoporous Materials 2008, 116, 378-85.
(60) Keller, V.; Bernhardt, P.; Garin, F. Journal of Catalysis 2003, 215, 129-38.
(61) Li, H. X.; Bian, Z. F.; Zhu, J.; Huo, Y. N.; Li, H.; Lu, Y. F. Journal of the American Chemical Society 2007, 129, 4538-39.
(62) Krylova, G. V.; Gnatyuk, Y. I.; Smirnova, N. P.; Eremenko, A. M.; Gun'ko, V. M. Journal of Sol-Gel Science and Technology 2009, 50, 216-28.
(63) Zhang, F. L.; Zheng, Y. H.; Cao, Y. N.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. Journal of Materials Chemistry 2009, 19, 2771-77.
(64) Jin, S.; Shiraishi, F. Chemical Engineering Journal 2004, 97, 203-11.
(65) Yan, P. F.; Zhou, D. R.; Wang, J. Q.; Yang, L. B.; Zhang, D.; Fu, H. G. Chemical Journal of Chinese Universities-Chinese 2002, 23, 2317-21.
(66) Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M. Catalysis Today 2003, 84, 191-96.
(67) Wu, S. X.; Ma, Z.; Qin, Y. N.; Qi, X. Z.; Liang, Z. C. Acta Physico-Chimica Sinica 2004, 20, 138-43.
(68) Quan, X. J.; Zhao, Q. H.; Tan, H. Q.; Sang, X. M.; Wang, F. P.; Dai, Y. Materials Chemistry and Physics 2009, 114, 90-98.
(69) Huo, Y. N.; Zhu, J.; Li, J. X.; Li, G. S.; Li, H. X. Journal of Molecular Catalysis A-Chemical 2007, 278, 237-43.
(70) Makarova, O. V.; Rajh, T.; Thurnauer, M. C.; Martin, A.; Kemme, P. A.; Cropek, D. Environmental Science & Technology 2000, 34, 4797-803.
(71) Xagas, A. P.; Bernard, M. C.; Hugot-Le Goff, A.; Spyrellis, N.; Loizos, Z.; Falaras, P. Journal of Photochemistry and Photobiology A-Chemistry 2000, 132, 115-20.
(72) Jiang, D.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. H. Journal of Solid State Chemistry 2007, 180, 1787-91.
(73) Yamashita, H.; Nishida, Y.; Yuan, S.; Mori, K.; Narisawa, M.; Matsumura, Y.; Ohmichi, T.; Katayama, I. Catalysis Today 2007, 120, 163-67.
(74) Comparelli, R.; Fanizza, E.; Curri, M. L.; Cozzoli, P. D.; Mascolo, G.; Passino, R.; Agostiano, A. Applied Catalysis B-Environmental 2005, 55, 81-91.
(75) Angelome, P. C.; Soler-Illia, G. J. D. A. A. Chemistry of Materials 2005, 17, 322-31.
(76) Hench, L. L.; West, J. K. Chemical Reviews 1990, 90, 33-72.
(77) Su, C.; Hong, B. Y.; Tseng, C. M. Catalysis Today 2004, 96, 119-26.
(78) Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J. Chemical Reviews 2004, 104, 3893-946.
(79) Corriu, R. J. P.; Leclercq, D.; Lefevre, P.; Mutin, P. H.; Vioux, A. Journal of Materials Chemistry 1992, 2, 673-74.
(80) Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. Journal of Materials Chemistry 1997, 7, 279-84.
(81) Hay, J. N.; Raval, H. M. Chemistry of Materials 2001, 13, 3396-403.
(82) Guo, G. Q.; Whitesell, J. K.; Fox, M. A. Journal of Physical Chemistry B 2005, 109, 18781-85.
(83) Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H. Water Research 2007, 41, 4373-82.
(84) Esplugas, S.; Bila, D. M.; Krause, L. G. T.; Dezotti, M. Journal of Hazardous Materials 2007, 149, 631-42.
(85) Rodriguez-Mozaz, S.; de Alda, M. J. L.; Barcelo, D. Journal of Chromatography A 2007, 1152, 97-115.
(86) Lee, W. S.; Takeuchi, T. Analytical Sciences 2005, 21, 1125-28.
(87) Tai, C.; Jiang, G. B.; Liu, J. F.; Zhou, Q. F.; Liu, J. Y. Journal of Photochemistry and Photobiology A-Chemistry 2005, 172, 275-82.
(88) Wang, G. H.; Wu, F.; Zhang, X.; Luo, M. D.; Deng, N. S. Journal of Photochemistry and Photobiology A-Chemistry 2006, 179, 49-56.
(89) Kaneco, S.; Rahman, M. A.; Suzuki, T.; Katsumata, H.; Ohta, K. Journal of Photochemistry and Photobiology A-Chemistry 2004, 163, 419-24.
(90) Kang, J. H.; Kondo, F. Archives of Environmental Contamination and Toxicology 2002, 43, 265-69.
(91) Xuan, Y. J.; Endo, Y.; Fujimoto, K. Journal of Agricultural and Food Chemistry 2002, 50, 6575-78.
(92) Sajiki, J. Environment International 2001, 27, 315-20.
(93) Belfroid, A.; van Velzen, M.; van der Horst, B.; Vethaak, D. Chemosphere 2002, 49, 97-103.
(94) Boscoletto, A. B.; Gottardi, F.; Milan, L.; Pannocchia, P.; Tartari, V.; Tavan, M.; Amadelli, R.; Debattisti, A.; Barbieri, A.; Patracchini, D.; Battaglin, G. Journal of Applied Electrochemistry 1994, 24, 1052-58.
(95) Ioan, I.; Wilson, S.; Lundanes, E.; Neculai, A. Journal of Hazardous Materials 2007, 142, 559-63.
(96) Watanabe, N.; Horikoshi, S.; Kawabe, H.; Sugie, Y.; Zhao, J. C.; Hidaka, H. Chemosphere 2003, 52, 851-59.
(97) Fukahori, S.; Ichiura, H.; Kitaoka, T.; Tanaka, H. Environmental Science & Technology 2003, 37, 1048-51.
(98) Chin, Y. P.; Miller, P. L.; Zeng, L. K.; Cawley, K.; Weavers, L. K. Environmental Science & Technology 2004, 38, 5888-94.
(99) Wang, R. C.; Ren, D. J.; Xia, S. Q.; Zhang, Y. L.; Zhao, J. F. Journal of Hazardous Materials 2009, 169, 926-32.
(100) Gao, B. F.; Lim, T. M.; Subagio, D. P.; Lim, T. T. Applied Catalysis A-General 2010, 375, 107-15.
(101) Guo, C. S.; Ge, M.; Liu, L.; Gao, G. D.; Feng, Y. C.; Wang, Y. Q. Environmental Science & Technology 2010, 44, 41 9-25.
(102) Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.; Harris, L. R. Chemosphere 1998, 36, 2149-73.
(103) Uvarov, V.; Popov, I. Materials Characterization 2007, 58, 883-91.
(104) Lacombe, S.; Cardy, H.; Soggiu, N.; Blanc, S.; Habib-Jiwan, J. L.; Soumillion, J. P. Microporous and Mesoporous Materials 2001, 46, 311-25.
(105) Wilson, R. G.; Stevie, F. A.; Magee, C. W. Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, 1989.
(106) Chen, X.; Mao, S. S. Chemical Reviews 2007, 107, 2891-959.
(107) Korosi, L.; Papp, S.; Bertoti, I.; Dekany, I. Chemistry of Materials 2007, 19, 4811-19.
(108) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure and Applied Chemistry 1985, 57, 603-19.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *