帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:陳姿吟
作者(英文):Chen, Tzu-Yin
論文名稱(中文):分子拓印暨光子晶體感測器開發與酚甲烷分析之應用
論文名稱(英文):Fabrication of molecularly imprinted photonic crystals for detection of bisphenol A
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9619509
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:91
中文關鍵詞:光子晶體分子拓印
外文關鍵詞:photonic crystalmolecularly imprinted polymer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
酚甲烷(BPA)已被認定為環境荷爾蒙且會存在環境中而影響人體荷爾蒙,本研究針對BPA開發新穎性分子拓印暨光子晶體型元件,並藉由元件與目標化合物結合所引起的折射率與光子能隙變化產生的繞射波長位移量,對標的物進行定量分析。分子拓印利用模板分子-BPA以π-π作用力與官能基單體-苯基三甲氧基矽氧烷(PTMOS)鍵結,並與交連劑-正丙醇鋯(ZPO)聚合形成無機高分子材料。當BPA/PTMOS莫耳比為1時,分子拓印材料對BPA具有良好的吸附能力(4.62 mg/g)以及拓印因子(20.8)。另外,無機分子拓印光子晶體利用模版溶膠凝膠法製備,聚苯乙烯小球(163 nm)先以重力沉降法,於溫度50oC下在玻片上自組裝形成六角最密堆積的蛋白石結構,隨後添加體積為2.5 □L之拓印溶膠溶液充填聚苯乙烯模板間隙,待固化後以溶劑移除模板,便可得到BPA分子拓印暨光子晶體型感測元件,此二氧化鋯反蛋白石結構具有高規則性三維孔洞以及光子能隙4.8 eV(波長 = 257 nm)。當拓印溶膠溶液之ZPO/PTMOS/BPA/乙醇莫耳比為30/1/1/80時,有最佳化微結構,可使分子拓印暨光子晶體元件在偵測50 mg/L BPA過程中於4分鐘內達到吸附平衡,且產生最大波長位移3.2 nm,此元件擁有良好的重複使用性與高線性偵測範圍(1-60 mg/L),而方法偵測極限為0.41 mg/L。另外,由類似分子酚(phenol)、丁基苯酚(4-tert-butylphenol)以及1-奈酚(1-naphthol)近乎零的波長位移結果可證明感測元件對於目標分子BPA具有高度的選擇性。本研究最後利用寶山水庫原水添加BPA來模擬實際偵測情況,發現感測元件於真實樣品中的線性分析範圍為1至100 mg/L。綜合上述實驗結果,證明本研究製備之分子拓印光子晶體感測器兼具高選擇性及反應快速的特性,為未來極具發展潛力的新型態先進感測器。
Bisphenol A (BPA) is an endocrine disruptor which could cause hormone-related cancers. In this study, a novel imprinted photonic crystal (IPC) was developed for the detection of bisphenol A (BPA). The shifts in the wavelength of the diffraction peaks, resulting from the changed refractive index (n) of the IPC after rebinding of BPA, were adapted for the quantification of the target compound. The molecularly imprinted polymer (MIP) was prepared using a sol-gel method in which zirconium propoxide (ZPO) was used as the cross-linker and phenyltrimethoxysilane (PTMOS) was used as the functional monomer which bound BPA via π-π stacking interaction. The MIP with the PTMOS/BPA molar ratio of 1 had the high adsorption capacity of 4.62 mg/g and imprinted factor of 20.8. Inverse opal photonic crystal was prepared using polystyrene (PS) microspheres (163 nm) as the template. Hexagonal PS colloid crystals was formed through a heat-assisted self-assembly method at 50oC. After infiltration of the colloidal crystals with 2.5 □L imprinted sol solution, the PS microspheres were subsequently removed using solvent extraction. The obtained inverse opal ZrO2 exhibited a photonic bandgap of 4.8 eV (l = 257 nm). The IPC prepared with the ZPO/PTMOS/BPA/EtOH molar ratio of 30/1/1/80 exhibited the optimal microstructures for the largest wavelength shift of 3.2 nm at 50 mg/L BPA. The detection can be completed within 4 min. In addition, a small variation of 4.6% was obtained in 5 detection cycles. The linear detection range in pure water and the raw water from Pao-Shan reservoir was 1-60 and 1-100 mg/L, respectively. The IPC performed insignificant response for BPA analogues including phenol, 1-naphthol and 4-tert-butylphenol (BP), indicating its high selectivity. These results clearly demonstrated that the IPC is an advanced sensing device which can be applied for in-situ and on-site analysis in the future.
中文摘要 I
Abstract II
誌謝 III
Contents IV
Table Index VIII
Figure Index IX
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Objectives 3
Chapter 2 Background and Theory 5
2-1 Endocrine disruption chemicals 5
2-1-1 Introduction 5
2-1-2 Environmental monitoring for Bisphenol A 7
2-2 Sensor devices 9
2-2-1 Sensing materials 10
2-2-2 Transducers 10
2-3 Molecularly imprinted polymer (MIP) 12
2-3-1 Strategy of molecularly imprinted polymer 13
2-3-2 Imprinted methods 14
2-4 Photonic crystal 17
2-4-1 Principle of photonic crystal 17
2-4-2 Preparation of photonic crystal 19
2-5 Sensing applications 21
2-5-1 Photonic crystal sensor 21
2-5-2 Molecular imprinted polymer 22
2-5-3 Imprinted photonic crystal sensing devices 23
Chapter 3 Materials and Methods 25
3-1 Chemicals 25
3-2 Photonic crystal 30
3-2-1 Synthesis of monodisperse PS microspheres 30
3-2-2 Fabrication of the opal structure 32
3-2-3 Fabrication of the inverse opal structure 32
3-3 Preparation of molecularly imprinted polymer 34
3-4 Fabrication of imprinted photonic crystal (IPC) 36
3-5 Characterization 38
3-5-1 Scanning Electron Microscopy (SEM) 38
3-5-2 Transmission Electron Microscopy (TEM) 38
3-5-3 UV-visible Spectrometry (UV-visible) 38
3-5-4 Dynamic Light Scattering (DLS) 39
3-5-5 Fourier Transform Infrared Spectrometer (FTIR) 39
3-5-6 Specific Surface Area (BET) 39
3-5-7 X-ray photoelectron Spectroscopy (XPS) 40
3-5-8 Adsorption 41
3-5-9 Selectivity 42
3-6 Sensing capability of imprinted photonic crystal (IPC) 44
Chapter 4 Results and Discussion 46
4-1 Molecularly imprinted polymer 46
4-1-1 Adsorption 46
4-1-2 Characterizations 51
4-2 Photonic crystal 54
4-2-1 Opal structure 54
4-2-2 Inverse opal structure 58
4-3 Optimization of imprinted photonic crystal (IPC) 63
4-3-1 Cross-linker 63
4-3-2 Solvent 65
4-3-3 Functional monomer 70
4-4 Sensing capability of imprinted photonic crystal (IPC) 72
4-4-1 Molecularly imprinted affinity 72
4-4-2 Response time 73
4-4-3 Selectivity 74
4-4-4 Sensitivity 76
4-4-5 Applications 79
Chapter 5 Conclusions 82
References 83
Appendix 90
(1) Sajiki, J. Journal of Chromatography B 2001, 755, 9-15.
(2) Watabe, Y.; Hosoya, K.; Tanaka, N.; Kubo, T.; Kondo, T.; Morita, M. Journal of Chromatography A 2005, 1073, 363-70.
(3) Ou, J. J.; Hu, L. H.; Hu, L. G.; Li, X.; Zou, H. F. Talanta 2006, 69, 1001-06.
(4) Watabe, Y.; Kondo, T.; Morita, M.; Tanaka, N.; Haginaka, J.; Hosoya, K. Journal of Chromatography A 2004, 1032, 45-49.
(5) Kawaguchi, M.; Hayatsu, Y.; Nakata, H.; Ishii, Y.; Ito, R.; Saito, K.; Nakazawa, H. Analytica Chimica Acta 2005, 539, 83-89.
(6) Sanbe, H.; Hosoya, K.; Haginaka, J. Analytical Sciences 2003, 19, 715-19.
(7) San Vicente, B.; Villoslada, F. N.; Moreno-Bondi, M. C. Analytical and Bioanalytical Chemistry 2004, 380, 115-22.
(8) Nerin, C.; Philo, M. R.; Salafranca, J.; Castle, L. Journal of Chromatography A 2002, 963, 375-80.
(9) Inoue, K.; Wada, M.; Higuchi, T.; Oshio, S.; Umeda, T.; Yoshimura, Y.; Nakazawa, H. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2002, 773, 97-102.
(10) Watanabe, T.; Yamamoto, H.; Inoue, K.; Yamaguchi, A.; Yoshimura, Y.; Kato, K.; Nakazawa, H.; Kuroda, N.; Nakashima, K. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2001, 762, 1-7.
(11) delOlmo, M.; GonzalezCasado, A.; Navas, N. A.; Vilchez, J. L. Analytica Chimica Acta 1997, 346, 87-92.
(12) Salafranca, J.; Batlle, R.; Nerin, C. Journal of Chromatography A 1999, 864, 137-44.
(13) Vilchez, J. L.; Zafra, A.; Gonzalez-Casado, A.; Hontorio, E.; del Olmo, M. Analytica Chimica Acta 2001, 431, 31-40.
(14) Walker, J. P.; Kimble, K. W.; Asher, S. A. Analytical and Bioanalytical Chemistry 2007, 389, 2115-24.
(15) Lee, K.; Asher, S. A. Journal of the American Chemical Society 2000, 122, 9534-37.
(16) Lin, C. Y.; Tai, D. F.; Wu, T. Z. Chemistry-a European Journal 2003, 9, 5107-10.
(17) Joshi, V. P.; Karmalkar, R. N.; Kulkarni, M. G.; Mashelkar, R. A. Industrial & Engineering Chemistry Research 1999, 38, 4417-23.
(18) Le Noir, M.; Plieva, F.; Hey, T.; Guieysse, B.; Mattiasson, B. Journal of Chromatography A 2007, 1154, 158-64.
(19) Esplugas, S.; Bila, D. M.; Krause, L. G. T.; Dezotti, M. Journal of Hazardous Materials 2007, 149, 631-42.
(20) Haginaka, J.; Sanbe, H. Chemistry Letters 1999, 757-58.
(21) Yang, K. G.; Liu, Z. B.; Mao, M.; Zhang, X. H.; Zhao, C. S.; Nishi, N. Analytica Chimica Acta 2005, 546, 30-36.
(22) Nishimura, S.; Abrams, N.; Lewis, B. A.; Halaoui, L. I.; Mallouk, T. E.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J. Journal of the American Chemical Society 2003, 125, 6306-10.
(23) Blanford, C. F.; Schroden, R. C.; Al-Daous, M.; Stein, A. Advanced Materials 2001, 13, 26-+.
(24) Newton, M. R.; Bohaty, A. K.; Zhang, Y. H.; White, H. S.; Zharov, I. Langmuir 2006, 22, 4429-32.
(25) Qian, W. P.; Gu, Z. Z.; Fujishima, A.; Sato, O. Langmuir 2002, 18, 4526-29.
(26) Holtz, J. H.; Asher, S. A. Nature 1997, 389, 829-32.
(27) Hu, X. B.; Li, G. T.; Huang, J.; Zhang, D.; Qiu, Y. Advanced Materials 2007, 19, 4327-+.
(28) Wu, Z.; Tao, C. A.; Lin, C. X.; Shen, D. Z.; Li, G. T. Chemistry-a European Journal 2008, 14, 11358-68.
(29) Mataki, H.; Yamaki, S.; Fukui, T. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2004, 43, 5819-23.
(30) Rodriguez-Mozaz, S.; de Alda, M. J. L.; Barcelo, D. Journal of Chromatography A 2007, 1152, 97-115.
(31) Regan, F.; Moran, A.; Fogarty, B.; Dempsey, E. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2002, 770, 243-53.
(32) Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H. Water Research 2007, 41, 4373-82.
(33) Choi, K. J.; Kim, S. G.; Kim, C. W.; Kim, S. H. Chemosphere 2005, 58, 1535-45.
(34) Lee, W. S.; Takeuchi, T. Analytical Sciences 2005, 21, 1125-28.
(35) Tsuru, N.; Kikuchi, M.; Kawaguchi, H.; Shiratori, S. Thin Solid Films 2006, 499, 380-85.
(36) Potyrailo, R. A.; Mirsky, V. M. Chemical Reviews 2008, 108, 770-813.
(37) Jakusch, M.; Janotta, M.; Mizaikoff, B.; Mosbach, K.; Haupt, K. Analytical Chemistry 1999, 71, 4786-91.
(38) Greene, N. T.; Shimizu, K. D. Journal of the American Chemical Society 2005, 127, 5695-700.
(39) Ling, T. R.; Syu, Y. Z.; Tasi, Y. C.; Chou, T. C.; Liu, C. C. Biosensors & Bioelectronics 2005, 21, 901-07.
(40) Piletsky, S. A.; Piletskaya, E. V.; Elskaya, A. V.; Levi, R.; Yano, K.; Karube, I. Analytical Letters 1997, 30, 445-55.
(41) Gupta, R.; Kumar, A. Biotechnology Advances 2008, 26, 533-47.
(42) Jiang, X. M.; Jiang, N.; Zhang, H. X.; Liu, M. C. Analytical and Bioanalytical Chemistry 2007, 389, 355-68.
(43) Haupt, K. Analytical Chemistry 2003, 75, 376a-83a.
(44) Blanco-Lopez, M. C.; Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.; Tunon-Blanco, P. Trac-Trends in Analytical Chemistry 2004, 23, 36-48.
(45) Haupt, K.; Mosbach, K. Chemical Reviews 2000, 100, 2495-504.
(46) Mayes, A. G.; Whitcombe, M. J. Advanced Drug Delivery Reviews 2005, 57, 1742-78.
(47) Waterhouse, G. I. N.; Waterland, M. R. Polyhedron 2007, 26, 356-68.
(48) Yablonovitch, E. Journal of Modern Optics 1994, 41, 173-94.
(49) Notomi, M. Physical Review B 2000, 62, 10696-705.
(50) Lange, B.; Fleischhaker, F.; Zentel, R. Macromolecular Rapid Communications 2007, 28, 1291-311.
(51) Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Solid State Communications 1997, 102, 165-73.
(52) Velev, O. D.; Lenhoff, A. M. Current Opinion in Colloid & Interface Science 2000, 5, 56-63.
(53) Aksnes, A. “Photonic sensors for health and environmental monitoring”; Sensors for Environment, Health and Security, 2009 of Conference.
(54) Baldini, F.; Giannetti, A. Optical chemical and biochemical sensors: new trends (invited paper). In Proceedings of the SPIE - The International Society for Optical Engineering; SPIE-Int. Soc. Opt. Eng, 2005; Vol. 5826; pp 485-99.
(55) Endo, T.; Yanagida, Y.; Hatsuzawa, T. Sensors and Actuators B-Chemical 2007, 125, 589-95.
(56) Reese, C. E.; Baltusavich, M. E.; Keim, J. P.; Asher, S. A. Analytical Chemistry 2001, 73, 5038-42.
(57) Takeuchi, T.; Mukawa, T.; Shinmori, H. Chemical Record 2005, 5, 263-75.
(58) Marx, S.; Zaltsman, A.; Turyan, I.; Mandler, D. Analytical Chemistry 2004, 76, 120-26.
(59) Vandevelde, F.; Leichle, T.; Ayela, C.; Bergaud, C.; Nicu, L.; Haupt, K. Langmuir 2007, 23, 6490-93.
(60) Jenkins, A. L.; Uy, O. M.; Murray, G. M. Analytical Chemistry 1999, 71, 373-78.
(61) Matsui, J.; Akamatsu, K.; Nishiguchi, S.; Miyoshi, D.; Nawafune, H.; Tamaki, K.; Sugimoto, N. Analytical Chemistry 2004, 76, 1310-15.
(62) Hu, X. B.; Li, G. T.; Li, M. H.; Huang, J.; Li, Y.; Gao, Y. B.; Zhang, Y. H. Advanced Functional Materials 2008, 18, 575-83.
(63) Hu, X. B.; An, Q.; Li, G. T.; Tao, S. Y.; Liu, B. Angewandte Chemie-International Edition 2006, 45, 8145-48.
(64) Wu, Z.; Hu, X. B.; Tao, C. A.; Li, Y.; Liu, J.; Yang, C. D.; Shen, D. Z.; Li, G. T. Journal of Materials Chemistry 2008, 18, 5452-58.
(65) Dongsheng, W.; Qiang, W.; Yijia, Z.; Changsheng, Z. Journal of Applied Polymer Science 2009, 114, 4036-41.
(66) Schalow, T.; Brandt, B.; Starr, D. E.; Laurin, M.; Shaikhutdinov, S. K.; Schauermann, S.; Libuda, J.; Freund, H. J. Physical Chemistry Chemical Physics 2007, 9, 1347-61.
(67) Vesely, D. Polymer 2001, 42, 4417-22.
(68) Yang, L.; Lu, T. C.; Xu, H.; Zhang, W.; Ma, B. Y. Journal of Applied Physics 2010, 107.
(69) Meng, Z. H.; Chen, W.; Mulchandani, A. Environmental Science & Technology 2005, 39, 8958-62.
(70) Zhan, Z. Q.; Zeng, H. C. Journal of Non-Crystalline Solids 1999, 243, 26-38.
(71) Niznansky, D.; Rehspringer, J. L. Journal of Non-Crystalline Solids 1995, 180, 191-96.
(72) Farrington, K.; Regan, F. Talanta 2009, 78, 653-59.
(73) Jin, G. Y.; Tang, Y. W. Microchimica Acta 2009, 165, 143-49.
(74) Wang, L. K.; Zhao, X. S. Journal of Physical Chemistry C 2007, 111, 8538-42.
(75) Hu, X. Y.; Liu, Y. H.; Cheng, B. Y.; Zhang, D. Z.; Meng, Q. B. Chinese Physics Letters 2004, 21, 1289-91.
(76) Ye, Y. H.; LeBlanc, F.; Hache, A.; Truong, V. V. Applied Physics Letters 2001, 78, 52-54.
(77) Denkov N D, V. O. D., Kralchevsky P A, Ivanov I B. Nature 1993, 361, 26.
(78) Pettersson, A.; Marino, G.; Pursiheimo, A.; Rosenholm, J. B. Journal of Colloid and Interface Science 2000, 228, 73-81.
(79) Zhang, Q. Y.; Shen, J.; Wang, J.; Wu, G. M.; Chen, L. Y. International Journal of Inorganic Materials 2000, 2, 319-23.
(80) Wang, J. J.; Li, Q.; Knoll, W.; Jonas, U. Journal of the American Chemical Society 2006, 128, 15606-07.
(81) Liu, Z. F.; Jin, Z. G.; Liu, X. X.; Fu, Y. N.; Liu, G. Q. Journal of Sol-Gel Science and Technology 2006, 38, 73-78.
(82) Athikomrattanakul, U.; Katterle, M.; Gajovic-Eichelmann, N.; Scheller, F. W. Biosensors & Bioelectronics 2009, 25, 82-87.
(83) Fish, W. P.; Ferreira, J.; Sheardy, R. D.; Snow, N. H.; O'Brien, T. P. Journal of Liquid Chromatography & Related Technologies 2005, 28, 1-15.
(84) Honda, M.; Kataoka, K.; Seki, T.; Takeoka, Y. Langmuir 2009, 25, 8349-56.
(85) Dong, B. Z.; Chu, H. Q.; Wang, L.; Xia, S. J.; Gao, N. Y. Desalination 2010, 250, 693-97.
(86) Cao, J. H.; Zhu, B. K.; Xu, Y. Y.; Li, J.; Chen, C. X. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 2008, 45, 449-55.
(87) Gao, B. F.; Lim, T. M.; Subagio, D. P.; Lim, T. T. Applied Catalysis a-General 2010, 375, 107-15.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *