|
1. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H., Photocatalytic CO 2 reduction by TiO 2 and related titanium containing solids. Energy & Environmental Science 2012, 5 (11), 9217-9233. 2. Kreft, S.; Wei, D.; Junge, H.; Beller, M., Recent advances on TiO2-based photocatalytic CO2 reduction. EnergyChem 2020, 2 (6), 100044. 3. Xu, F.; Zhang, J.; Zhu, B.; Yu, J.; Xu, J., CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2018, 230, 194-202. 4. Fu, J.; Cao, S.; Yu, J.; Low, J.; Lei, Y., Enhanced photocatalytic CO 2-reduction activity of electrospun mesoporous TiO 2 nanofibers by solvothermal treatment. Dalton Transactions 2014, 43 (24), 9158-9165. 5. Pipornpong, W.; Wanbayor, R.; Ruangpornvisuti, V., Adsorption CO2 on the perfect and oxygen vacancy defect surfaces of anatase TiO2 and its photocatalytic mechanism of conversion to CO. Applied Surface Science 2011, 257 (24), 10322-10328. 6. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. Acs Catalysis 2012, 2 (8), 1817-1828. 7. Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z., Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS applied materials & interfaces 2012, 4 (7), 3372-3377. 8. Di Monte, R.; Kašpar, J., Nanostructured CeO 2–ZrO 2 mixed oxides. Journal of Materials Chemistry 2005, 15 (6), 633-648. 9. Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E., Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. Journal of the American Chemical Society 2017, 139 (21), 7217-7223. 10. Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M.; Palgrave, R. G.; Parkin, I. P., Band alignment of rutile and anatase TiO2. Nature materials 2013, 12 (9), 798-801. 11. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M., Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Scientific reports 2014, 4 (1), 1-8. 12. Low, J.; Cheng, B.; Yu, J., Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686. 13. Nah, Y. C.; Paramasivam, I.; Schmuki, P., Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 2010, 11 (13), 2698-2713. 14. Lingampalli, S.; Ayyub, M. M.; Rao, C., Recent progress in the photocatalytic reduction of carbon dioxide. ACS omega 2017, 2 (6), 2740-2748. 15. Mino, L.; Spoto, G.; Ferrari, A. M., CO2 capture by TiO2 anatase surfaces: a combined DFT and FTIR study. The Journal of Physical Chemistry C 2014, 118 (43), 25016-25026. 16. Li, L.; Zeng, W.; Song, M.; Wu, X.; Li, G.; Hu, C., Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts 2022, 12 (2), 244. 17. Liang, S.; Huang, L.; Gao, Y.; Wang, Q.; Liu, B., Electrochemical Reduction of CO2 to CO over Transition Metal/N‐Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Advanced Science 2021, 8 (24), 2102886. 18. Liu, L.; Li, Y., Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review. Aerosol and air quality research 2014, 14 (2), 453-469. 19. Razzaq, A.; In, S.-I., TiO2 based nanostructures for photocatalytic CO2 conversion to valuable chemicals. Micromachines 2019, 10 (5), 326. 20. Nakata, K.; Fujishima, A., TiO2 photocatalysis: Design and applications. Journal of photochemistry and photobiology C: Photochemistry Reviews 2012, 13 (3), 169-189. 21. Lee, K.; Mazare, A.; Schmuki, P., One-dimensional titanium dioxide nanomaterials: nanotubes. Chemical reviews 2014, 114 (19), 9385-9454. 22. Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.; Hamilton, J. W.; Byrne, J. A.; O'shea, K., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 2012, 125, 331-349. 23. Xiong, J.; Song, P.; Di, J.; Li, H., Ultrathin structured photocatalysts: A versatile platform for CO2 reduction. Applied Catalysis B: Environmental 2019, 256, 117788. 24. Liu, N.; Chen, X.; Zhang, J.; Schwank, J. W., A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today 2014, 225, 34-51. 25. Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R. I.; Liu, H., Recent progress in design, synthesis, and applications of one-dimensional TiO 2 nanostructured surface heterostructures: a review. Chemical Society Reviews 2014, 43 (20), 6920-6937. 26. Lu, Q.; Lu, Z.; Lu, Y.; Lv, L.; Ning, Y.; Yu, H.; Hou, Y.; Yin, Y., Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. Nano letters 2013, 13 (11), 5698-5702. 27. Yasuda, K.; Schmuki, P., Electrochemical formation of self-organized zirconium titanate nanotube multilayers. Electrochemistry communications 2007, 9 (4), 615-619. 28. Chong, R.; Su, C.; Du, Y.; Fan, Y.; Ling, Z.; Chang, Z.; Li, D., Insights into the role of MgAl layered double oxides interlayer in Pt/TiO2 toward photocatalytic CO2 reduction. Journal of Catalysis 2018, 363, 92-101. 29. Li, Q.; Zong, L.; Li, C.; Yang, J., Reprint of “Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films”. Applied surface science 2014, 319, 16-20. 30. Xie, S.; Wang, Y.; Zhang, Q.; Fan, W.; Deng, W.; Wang, Y., Photocatalytic reduction of CO 2 with H2O: significant enhancement of the activity of Pt–TiO 2 in CH 4 formation by addition of MgO. Chemical communications 2013, 49 (24), 2451-2453. 31. Crake, A.; Christoforidis, K. C.; Gregg, A.; Moss, B.; Kafizas, A.; Petit, C., The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer. Small 2019, 15 (11), 1805473. 32. Zhou, X.; Liu, N.; Schmuki, P., Photocatalysis with TiO2 nanotubes:“colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catalysis 2017, 7 (5), 3210-3235. 33. Huang, C.-y.; Guo, R.-t.; Pan, W.-g.; Tang, J.-y.; Zhou, W.-g.; Liu, X.-y.; Qin, H.; Jia, P.-y., One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction. Applied Surface Science 2019, 464, 534-543. 34. Vijayan, B.; Dimitrijevic, N. M.; Rajh, T.; Gray, K., Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. The Journal of Physical Chemistry C 2010, 114 (30), 12994-13002. 35. Jiang, Z.; Miao, W.; Zhu, X.; Yang, G.; Yuan, Z.; Chen, J.; Ji, X.; Kong, F.; Huang, B., Modifying lewis base on TiO2 nanosheets for enhancing CO2 adsorption and the separation of photogenerated charge carriers. Applied Catalysis B: Environmental 2019, 256, 117881. 36. He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S., Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Applied Surface Science 2016, 364, 416-427. 37. Tang, Q.; Sun, Z.; Wang, P.; Li, Q.; Wang, H.; Wu, Z., Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Applied Surface Science 2019, 463, 456-462. 38. Xiao, S.-T.; Wu, S.-M.; Dong, Y.; Liu, J.-W.; Wang, L.-Y.; Wu, L.; Zhang, Y.-X.; Tian, G.; Janiak, C.; Shalom, M., Rich surface hydroxyl design for nanostructured TiO2 and its hole-trapping effect. Chemical Engineering Journal 2020, 400, 125909. 39. Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J., Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. The Journal of Physical Chemistry C 2008, 112 (14), 5275-5300. 40. Zhao, H.; Pan, F.; Li, Y., A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics 2017, 3 (1), 17-32. 41. Manzanares, M.; Fàbrega, C.; Ossó, J. O.; Vega, L. F.; Andreu, T.; Morante, J. R., Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction. Applied Catalysis B: Environmental 2014, 150, 57-62. 42. Yang, J.; Wen, Z.; Shen, X.; Dai, J.; Li, Y.; Li, Y., A comparative study on the photocatalytic behavior of graphene-TiO2 nanostructures: Effect of TiO2 dimensionality on interfacial charge transfer. Chemical Engineering Journal 2018, 334, 907-921. 43. Elghniji, K.; Soro, J.; Rossignol, S.; Ksibi, M., A simple route for the preparation of P-modified TiO2: Effect of phosphorus on thermal stability and photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers 2012, 43 (1), 132-139. 44. Zheng, R.; Lin, L.; Xie, J.; Zhu, Y.; Xie, Y., State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. The Journal of Physical Chemistry C 2008, 112 (39), 15502-15509. 45. Wang, Z.; Mahmood, A.; Xie, X.; Wang, X.; Qiu, H.; Sun, J., Surface adsorption configurations of H3PO4 modified TiO2 and its influence on the photodegradation intermediates of gaseous o-xylene. Chemical Engineering Journal 2020, 393, 124723. 46. Mendiola-Alvarez, S. Y.; Hernández-Ramírez, M.; Guzmán-Mar, J. L.; Garza-Tovar, L. L.; Hinojosa-Reyes, L., Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation. Environmental Science and Pollution Research 2019, 26 (5), 4180-4191. 47. Kim, S.; Kim, M.; Hwang, S.-H.; Lim, S. K., Enhancement of photocatalytic activity of titania–titanate nanotubes by surface modification. Applied Catalysis B: Environmental 2012, 123, 391-397. 48. Long, M.; Brame, J.; Qin, F.; Bao, J.; Li, Q.; Alvarez, P. J., Phosphate changes effect of humic acids on TiO2 photocatalysis: from inhibition to mitigation of electron–hole recombination. Environmental science & technology 2017, 51 (1), 514-521. 49. Mendiola-Alvarez, S. Y.; Hernández-Ramírez, M. A.; Guzmán-Mar, J. L.; Garza-Tovar, L. L.; Hinojosa-Reyes, L., Phosphorous-doped TiO 2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation. Environmental Science and Pollution Research 2019, 26, 4180-4191. 50. Jing, L.; Qin, X.; Luan, Y.; Qu, Y.; Xie, M., Synthesis of efficient TiO2-based photocatalysts by phosphate surface modification and the activity-enhanced mechanisms. Applied surface science 2012, 258 (8), 3340-3349. 51. Chaudhary, M.; Shen, P.-f.; Chang, S.-m., The roles of phosphate and tungstate species in surface acidities of TiO2-ZrO2 binary oxides–A comparison study. Applied Surface Science 2018, 440, 369-377. 52. Körösi, L.; Papp, S.; Bertóti, I.; Dékány, I., Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chemistry of Materials 2007, 19 (19), 4811-4819. 53. Li, Z.; Xin, Y.; Wu, W.; Fu, B.; Zhang, Z., Phosphorus cation doping: a new strategy for boosting photoelectrochemical performance on TiO2 nanotube photonic crystals. ACS applied materials & interfaces 2016, 8 (45), 30972-30979. 54. Zhao, D.; Chen, C.; Wang, Y.; Ji, H.; Ma, W.; Zang, L.; Zhao, J., Surface modification of TiO2 by phosphate: effect on photocatalytic activity and mechanism implication. The Journal of Physical Chemistry C 2008, 112 (15), 5993-6001. 55. Wang, K.; Yu, J.; Liu, L.; Hou, L.; Jin, F., Hierarchical P-doped TiO2 nanotubes array@ Ti plate: Towards advanced CO2 photocatalytic reduction catalysts. Ceramics International 2016, 42 (14), 16405-16411. 56. Ye, L.; Wu, D.; Chu, K. H.; Wang, B.; Xie, H.; Yip, H. Y.; Wong, P. K., Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal 2016, 304, 376-383. 57. Li, W.; Jin, L.; Gao, F.; Wan, H.; Pu, Y.; Wei, X.; Chen, C.; Zou, W.; Zhu, C.; Dong, L., Advantageous roles of phosphate decorated octahedral CeO2 {111}/g-C3N4 in boosting photocatalytic CO2 reduction: Charge transfer bridge and Lewis basic site. Applied Catalysis B: Environmental 2021, 294, 120257. 58. Bi, Q.; Hu, K.; Chen, J.; Zhang, Y.; Riaz, M. S.; Xu, J.; Han, Y.; Huang, F., Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2021, 295, 120211. 59. Pu, Y.; Luo, Y.; Wei, X.; Sun, J.; Li, L.; Zou, W.; Dong, L., Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface Lewis acid/base and oxygen defect. Applied Catalysis B: Environmental 2019, 254, 580-586. 60. Chong, R.; Fan, Y.; Du, Y.; Liu, L.; Chang, Z.; Li, D., Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. International Journal of Hydrogen Energy 2018, 43 (49), 22329-22339. 61. Bhattacharyya, K.; Danon, A.; K. Vijayan, B.; Gray, K. A.; Stair, P. C.; Weitz, E., Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FT-IR study. The Journal of Physical Chemistry C 2013, 117 (24), 12661-12678. 62. Mao, Y.; Kanungo, M.; Hemraj-Benny, T.; Wong, S. S., Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. The Journal of Physical Chemistry B 2006, 110 (2), 702-710. 63. Holzwarth, U.; Gibson, N., The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology 2011, 6 (9), 534-534. 64. Kharade, A. K.; Chang, S.-m., Contributions of abundant hydroxyl groups to extraordinarily high photocatalytic activity of amorphous titania for CO2 reduction. The Journal of Physical Chemistry C 2020, 124 (20), 10981-10992. 65. Li, K.; Wang, H.; Yan, H., Hydrothermal preparation and photocatalytic properties of Y2Sn2O7 nanocrystals. Journal of Molecular Catalysis A: Chemical 2006, 249 (1-2), 65-70. 66. Xiao, N.; Li, Z.; Liu, J.; Gao, Y., Effects of calcination temperature on the morphology, structure and photocatalytic activity of titanate nanotube thin films. Thin Solid Films 2010, 519 (1), 541-548. 67. Ahmed, I.; Ren, H.; Booth, J., Developing unique geometries of phosphate-based glasses and their prospective biomedical applications. Johnson Matthey Technology Review 2018, 63 (1). 68. Bortun, A. I.; Khainakov, S. A.; Bortun, L. N.; Poojary, D. M.; Rodriguez, J.; Garcia, J. R.; Clearfield, A., Synthesis and Characterization of Two Novel Fibrous Titanium Phosphates Ti2O (PO4) 2⊙ 2H2O. Chemistry of materials 1997, 9 (8), 1805-1811. 69. Huang, X.; Wang, P.; Yin, G.; Zhang, S.; Zhao, W.; Wang, D.; Bi, Q.; Huang, F., Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide. 无机材料学报 2020, 35 (4). 70. Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J., Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 2003, 15 (11), 2280-2286. 71. Proaño, L.; Tello, E.; Arellano-Trevino, M. A.; Wang, S.; Farrauto, R. J.; Cobo, M., In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru,“Na2O”/Al2O3 Dual Functional Material. Applied Surface Science 2019, 479, 25-30. 72. Lee, J.; Liu, X.; Kumar, A.; Hwang, Y.; Lee, E.; Yu, J.; Kim, Y. D.; Lee, H., Phase-selective active sites on ordered/disordered titanium dioxide enable exceptional photocatalytic ammonia synthesis. Chemical Science 2021, 12 (28), 9619-9629. 73. Howe, R. F.; Gratzel, M., EPR study of hydrated anatase under UV irradiation. Journal of Physical Chemistry 1987, 91 (14), 3906-3909. 74. Nakaoka, Y.; Nosaka, Y., ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A: Chemistry 1997, 110 (3), 299-305. 75. Aziz, N. A. A.; Palaniandy, P.; Aziz, H. A.; Dahlan, I., Review of the mechanism and operational factors influencing the degradation process of contaminants in heterogenous photocatalysis. Journal of Chemical Research 2016, 40 (11), 704-712. 76. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J., EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 2001, 17 (17), 5368-5374. 77. Chang, S.-m.; Hou, C.-y.; Lo, P.-h.; Chang, C.-t., Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Applied Catalysis B: Environmental 2009, 90 (1-2), 233-241.
|