帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:施睿哲
作者(英文):SHH, JUI-CHE
論文名稱(中文):磷酸修飾對鈦酸鹽衍生二氧化鈦光催化還原二氧化碳特性探討
論文名稱(英文):Photocatalytic Reduction of CO2 by Phosphated TiO2 Derived from Titanate
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:林彥谷
徐雍鎣
張淑閔
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:環境工程系所
學號:309615022
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:66
中文關鍵詞:磷酸表面酸性TiO2奈米管光催化還原CO2表面改性
外文關鍵詞:Phosphorylationsurface acidityphotocatalytic of CO2TiO2 nanotubesSurface modification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:55
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
表面特性在光催化還原CO2過程中扮演重要角色,以磷酸修飾形成的表面酸性位址及其對光催化還原CO2的特性並不完全了解清楚。本實驗利用不同濃度的磷酸修飾鈦酸鹽奈米管(titanate nanotubes, TNTs)並在不同溫度下鍛燒以形成磷酸化TiO2觸媒,並探討其在氣相光催化還原CO2的活性及選擇性。TNT衍生的TiO2主要將CO2催化還原成CO與CH4,磷酸修飾可提高TiO2催化還原活性,最佳合成P/Ti莫爾比為0.06-0.13,儘管高溫燒結大幅降低比表面積,然而觸媒活性隨鍛燒溫度提高卻增加,於900℃鍛燒下,CO比表面積產率可高達12.13 mol/m2,13-PT900 (P/Ti=0.13)有高AQE(0.052 %)。XRD及TEM觀察到磷酸抑制TiO2型態與晶相轉變,並使TiO2維持較高比表面積,同時也增加觸媒吸附CO2的量以提高觸媒克重還原活性。Pyridine-FTIR、NH3-TPD與CO2-TPD結果顯示磷酸修飾於觸媒表面導入布朗斯特酸,同時提高觸媒表面弱酸位址比例,因此利於CO2吸附,進而提高反應活性。
Surface properties play an important role in the photocatalytic CO2 reduction process, and the surface acid sites formed by phosphoric acid modification and their properties for photocatalytic CO2 reduction are not fully understood. In this experiment, titanate nanotubes (TNTs) were modified with different concentrations of phosphoric acid and calcined at different temperatures to form phosphated titania, and the activity and selectivity of photocatalytic CO2 reduction in gas phase were investigated. TNT-derived titania converted CO2 into CO and CH4. Phosphation effectively enhanced the reduction activity. The optimal P/Ti molar ratio was 0.06-0.13. Although calcination greatly decreased the specific surface area, the activity of the catalysts increased due to formation of reduced Ti3+ species. After 900℃ calcination, the specific surface CO2 production yield reached 12.13 mol/m2. The 13-PT900 sample exhibited the highest apparent quantum efficiency (AQE) of 0.052%. TEM and XRD results revelated that the phosphate species retarded structural transformation and crystallization of titania to maintain high surface areas. Moreover, phosphation increased CO2 adsorption of the catalysts. Pyridine-FTIR, NH3-TPD, and CO2-TPD analysis indicated that the phosphate species introduced Bronsted acid sites onto the surface and increased the fractions of weak acids. The increased amounts of the weak acid sites facilitated CO2 adsorption and favored CO2-to-CO converstion.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 前言 1
1.1 研究動機與背景 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 TiO2光催化還原CO2 3
2.2 TiO2奈米管 (TNT) 6
2.3 磷酸化修飾 13
2.4 磷酸鹽修飾TiO2光催化反應機制 18
第三章 研究方法 21
3.1 實驗架構 21
3.2 實驗藥品 22
3.3 觸媒製備方法 23
3.3.1 質子化鈦酸鹽奈米管 23
3.3.2 磷酸化TiO2奈米管 23
3.4 光催化 CO2 還原氣相系統 24
3.5 材料鑑定分析 25
3.5.1 穿透式電子顯微鏡(Transmission Electron Microscopy-Energy Dispersive spectrum,TEM) 25
3.5.2 紫外光可見光分光光譜儀(UV-Vis Spectrophotometer) 25
3.5.3 等溫氮氣吸脫附分析儀(Nitrogen adsorption-desorption Isothermal analyzer) 26
3.5.4 X光粉末繞射儀(X-ray Powder Diffraction Spectrum, XRD) 26
3.5.5 化學分析電子儀(Electron Spectroscopy for Chemical Analysis , ESCA) 27
3.5.6 轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 27
3.5.7 溫度程控脫附儀(Temperature programmed desorption, TPD) 29
3.5.8 氣相層析儀(Gas Chromatography, GC) 30
3.5.9 電子順磁共振儀(Electron paramagnetic resonance, EPR) 31
第四章 結果與討論 32
4.1 光催化還原活性 32
4.2 基本特性 36
4.2.1 TEM微結構特性 36
4.2.1 XRD與BET結果 40
4.2.2 光學特性 42
4.3 表面特性 44
4.3.1 XPS 44
4.3.2 FTIR 48
4.4 酸性位址 50
4.4.1 pyridine-FTIR 50
4.4.2 NH3-TPD 52
4.5 CO2 吸附能力 54
第五章 結論 56
參考文獻 57
附錄 64
1. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H., Photocatalytic CO 2 reduction by TiO 2 and related titanium containing solids. Energy & Environmental Science 2012, 5 (11), 9217-9233.
2. Kreft, S.; Wei, D.; Junge, H.; Beller, M., Recent advances on TiO2-based photocatalytic CO2 reduction. EnergyChem 2020, 2 (6), 100044.
3. Xu, F.; Zhang, J.; Zhu, B.; Yu, J.; Xu, J., CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2018, 230, 194-202.
4. Fu, J.; Cao, S.; Yu, J.; Low, J.; Lei, Y., Enhanced photocatalytic CO 2-reduction activity of electrospun mesoporous TiO 2 nanofibers by solvothermal treatment. Dalton Transactions 2014, 43 (24), 9158-9165.
5. Pipornpong, W.; Wanbayor, R.; Ruangpornvisuti, V., Adsorption CO2 on the perfect and oxygen vacancy defect surfaces of anatase TiO2 and its photocatalytic mechanism of conversion to CO. Applied Surface Science 2011, 257 (24), 10322-10328.
6. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. Acs Catalysis 2012, 2 (8), 1817-1828.
7. Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z., Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS applied materials & interfaces 2012, 4 (7), 3372-3377.
8. Di Monte, R.; Kašpar, J., Nanostructured CeO 2–ZrO 2 mixed oxides. Journal of Materials Chemistry 2005, 15 (6), 633-648.
9. Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E., Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. Journal of the American Chemical Society 2017, 139 (21), 7217-7223.
10. Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M.; Palgrave, R. G.; Parkin, I. P., Band alignment of rutile and anatase TiO2. Nature materials 2013, 12 (9), 798-801.
11. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M., Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Scientific reports 2014, 4 (1), 1-8.
12. Low, J.; Cheng, B.; Yu, J., Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686.
13. Nah, Y. C.; Paramasivam, I.; Schmuki, P., Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 2010, 11 (13), 2698-2713.
14. Lingampalli, S.; Ayyub, M. M.; Rao, C., Recent progress in the photocatalytic reduction of carbon dioxide. ACS omega 2017, 2 (6), 2740-2748.
15. Mino, L.; Spoto, G.; Ferrari, A. M., CO2 capture by TiO2 anatase surfaces: a combined DFT and FTIR study. The Journal of Physical Chemistry C 2014, 118 (43), 25016-25026.
16. Li, L.; Zeng, W.; Song, M.; Wu, X.; Li, G.; Hu, C., Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts 2022, 12 (2), 244.
17. Liang, S.; Huang, L.; Gao, Y.; Wang, Q.; Liu, B., Electrochemical Reduction of CO2 to CO over Transition Metal/N‐Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Advanced Science 2021, 8 (24), 2102886.
18. Liu, L.; Li, Y., Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review. Aerosol and air quality research 2014, 14 (2), 453-469.
19. Razzaq, A.; In, S.-I., TiO2 based nanostructures for photocatalytic CO2 conversion to valuable chemicals. Micromachines 2019, 10 (5), 326.
20. Nakata, K.; Fujishima, A., TiO2 photocatalysis: Design and applications. Journal of photochemistry and photobiology C: Photochemistry Reviews 2012, 13 (3), 169-189.
21. Lee, K.; Mazare, A.; Schmuki, P., One-dimensional titanium dioxide nanomaterials: nanotubes. Chemical reviews 2014, 114 (19), 9385-9454.
22. Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.; Hamilton, J. W.; Byrne, J. A.; O'shea, K., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 2012, 125, 331-349.
23. Xiong, J.; Song, P.; Di, J.; Li, H., Ultrathin structured photocatalysts: A versatile platform for CO2 reduction. Applied Catalysis B: Environmental 2019, 256, 117788.
24. Liu, N.; Chen, X.; Zhang, J.; Schwank, J. W., A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today 2014, 225, 34-51.
25. Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R. I.; Liu, H., Recent progress in design, synthesis, and applications of one-dimensional TiO 2 nanostructured surface heterostructures: a review. Chemical Society Reviews 2014, 43 (20), 6920-6937.
26. Lu, Q.; Lu, Z.; Lu, Y.; Lv, L.; Ning, Y.; Yu, H.; Hou, Y.; Yin, Y., Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. Nano letters 2013, 13 (11), 5698-5702.
27. Yasuda, K.; Schmuki, P., Electrochemical formation of self-organized zirconium titanate nanotube multilayers. Electrochemistry communications 2007, 9 (4), 615-619.
28. Chong, R.; Su, C.; Du, Y.; Fan, Y.; Ling, Z.; Chang, Z.; Li, D., Insights into the role of MgAl layered double oxides interlayer in Pt/TiO2 toward photocatalytic CO2 reduction. Journal of Catalysis 2018, 363, 92-101.
29. Li, Q.; Zong, L.; Li, C.; Yang, J., Reprint of “Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films”. Applied surface science 2014, 319, 16-20.
30. Xie, S.; Wang, Y.; Zhang, Q.; Fan, W.; Deng, W.; Wang, Y., Photocatalytic reduction of CO 2 with H2O: significant enhancement of the activity of Pt–TiO 2 in CH 4 formation by addition of MgO. Chemical communications 2013, 49 (24), 2451-2453.
31. Crake, A.; Christoforidis, K. C.; Gregg, A.; Moss, B.; Kafizas, A.; Petit, C., The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer. Small 2019, 15 (11), 1805473.
32. Zhou, X.; Liu, N.; Schmuki, P., Photocatalysis with TiO2 nanotubes:“colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catalysis 2017, 7 (5), 3210-3235.
33. Huang, C.-y.; Guo, R.-t.; Pan, W.-g.; Tang, J.-y.; Zhou, W.-g.; Liu, X.-y.; Qin, H.; Jia, P.-y., One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction. Applied Surface Science 2019, 464, 534-543.
34. Vijayan, B.; Dimitrijevic, N. M.; Rajh, T.; Gray, K., Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. The Journal of Physical Chemistry C 2010, 114 (30), 12994-13002.
35. Jiang, Z.; Miao, W.; Zhu, X.; Yang, G.; Yuan, Z.; Chen, J.; Ji, X.; Kong, F.; Huang, B., Modifying lewis base on TiO2 nanosheets for enhancing CO2 adsorption and the separation of photogenerated charge carriers. Applied Catalysis B: Environmental 2019, 256, 117881.
36. He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S., Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Applied Surface Science 2016, 364, 416-427.
37. Tang, Q.; Sun, Z.; Wang, P.; Li, Q.; Wang, H.; Wu, Z., Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Applied Surface Science 2019, 463, 456-462.
38. Xiao, S.-T.; Wu, S.-M.; Dong, Y.; Liu, J.-W.; Wang, L.-Y.; Wu, L.; Zhang, Y.-X.; Tian, G.; Janiak, C.; Shalom, M., Rich surface hydroxyl design for nanostructured TiO2 and its hole-trapping effect. Chemical Engineering Journal 2020, 400, 125909.
39. Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J., Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. The Journal of Physical Chemistry C 2008, 112 (14), 5275-5300.
40. Zhao, H.; Pan, F.; Li, Y., A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics 2017, 3 (1), 17-32.
41. Manzanares, M.; Fàbrega, C.; Ossó, J. O.; Vega, L. F.; Andreu, T.; Morante, J. R., Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction. Applied Catalysis B: Environmental 2014, 150, 57-62.
42. Yang, J.; Wen, Z.; Shen, X.; Dai, J.; Li, Y.; Li, Y., A comparative study on the photocatalytic behavior of graphene-TiO2 nanostructures: Effect of TiO2 dimensionality on interfacial charge transfer. Chemical Engineering Journal 2018, 334, 907-921.
43. Elghniji, K.; Soro, J.; Rossignol, S.; Ksibi, M., A simple route for the preparation of P-modified TiO2: Effect of phosphorus on thermal stability and photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers 2012, 43 (1), 132-139.
44. Zheng, R.; Lin, L.; Xie, J.; Zhu, Y.; Xie, Y., State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. The Journal of Physical Chemistry C 2008, 112 (39), 15502-15509.
45. Wang, Z.; Mahmood, A.; Xie, X.; Wang, X.; Qiu, H.; Sun, J., Surface adsorption configurations of H3PO4 modified TiO2 and its influence on the photodegradation intermediates of gaseous o-xylene. Chemical Engineering Journal 2020, 393, 124723.
46. Mendiola-Alvarez, S. Y.; Hernández-Ramírez, M.; Guzmán-Mar, J. L.; Garza-Tovar, L. L.; Hinojosa-Reyes, L., Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation. Environmental Science and Pollution Research 2019, 26 (5), 4180-4191.
47. Kim, S.; Kim, M.; Hwang, S.-H.; Lim, S. K., Enhancement of photocatalytic activity of titania–titanate nanotubes by surface modification. Applied Catalysis B: Environmental 2012, 123, 391-397.
48. Long, M.; Brame, J.; Qin, F.; Bao, J.; Li, Q.; Alvarez, P. J., Phosphate changes effect of humic acids on TiO2 photocatalysis: from inhibition to mitigation of electron–hole recombination. Environmental science & technology 2017, 51 (1), 514-521.
49. Mendiola-Alvarez, S. Y.; Hernández-Ramírez, M. A.; Guzmán-Mar, J. L.; Garza-Tovar, L. L.; Hinojosa-Reyes, L., Phosphorous-doped TiO 2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation. Environmental Science and Pollution Research 2019, 26, 4180-4191.
50. Jing, L.; Qin, X.; Luan, Y.; Qu, Y.; Xie, M., Synthesis of efficient TiO2-based photocatalysts by phosphate surface modification and the activity-enhanced mechanisms. Applied surface science 2012, 258 (8), 3340-3349.
51. Chaudhary, M.; Shen, P.-f.; Chang, S.-m., The roles of phosphate and tungstate species in surface acidities of TiO2-ZrO2 binary oxides–A comparison study. Applied Surface Science 2018, 440, 369-377.
52. Körösi, L.; Papp, S.; Bertóti, I.; Dékány, I., Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chemistry of Materials 2007, 19 (19), 4811-4819.
53. Li, Z.; Xin, Y.; Wu, W.; Fu, B.; Zhang, Z., Phosphorus cation doping: a new strategy for boosting photoelectrochemical performance on TiO2 nanotube photonic crystals. ACS applied materials & interfaces 2016, 8 (45), 30972-30979.
54. Zhao, D.; Chen, C.; Wang, Y.; Ji, H.; Ma, W.; Zang, L.; Zhao, J., Surface modification of TiO2 by phosphate: effect on photocatalytic activity and mechanism implication. The Journal of Physical Chemistry C 2008, 112 (15), 5993-6001.
55. Wang, K.; Yu, J.; Liu, L.; Hou, L.; Jin, F., Hierarchical P-doped TiO2 nanotubes array@ Ti plate: Towards advanced CO2 photocatalytic reduction catalysts. Ceramics International 2016, 42 (14), 16405-16411.
56. Ye, L.; Wu, D.; Chu, K. H.; Wang, B.; Xie, H.; Yip, H. Y.; Wong, P. K., Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal 2016, 304, 376-383.
57. Li, W.; Jin, L.; Gao, F.; Wan, H.; Pu, Y.; Wei, X.; Chen, C.; Zou, W.; Zhu, C.; Dong, L., Advantageous roles of phosphate decorated octahedral CeO2 {111}/g-C3N4 in boosting photocatalytic CO2 reduction: Charge transfer bridge and Lewis basic site. Applied Catalysis B: Environmental 2021, 294, 120257.
58. Bi, Q.; Hu, K.; Chen, J.; Zhang, Y.; Riaz, M. S.; Xu, J.; Han, Y.; Huang, F., Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2021, 295, 120211.
59. Pu, Y.; Luo, Y.; Wei, X.; Sun, J.; Li, L.; Zou, W.; Dong, L., Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface Lewis acid/base and oxygen defect. Applied Catalysis B: Environmental 2019, 254, 580-586.
60. Chong, R.; Fan, Y.; Du, Y.; Liu, L.; Chang, Z.; Li, D., Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. International Journal of Hydrogen Energy 2018, 43 (49), 22329-22339.
61. Bhattacharyya, K.; Danon, A.; K. Vijayan, B.; Gray, K. A.; Stair, P. C.; Weitz, E., Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FT-IR study. The Journal of Physical Chemistry C 2013, 117 (24), 12661-12678.
62. Mao, Y.; Kanungo, M.; Hemraj-Benny, T.; Wong, S. S., Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. The Journal of Physical Chemistry B 2006, 110 (2), 702-710.
63. Holzwarth, U.; Gibson, N., The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology 2011, 6 (9), 534-534.
64. Kharade, A. K.; Chang, S.-m., Contributions of abundant hydroxyl groups to extraordinarily high photocatalytic activity of amorphous titania for CO2 reduction. The Journal of Physical Chemistry C 2020, 124 (20), 10981-10992.
65. Li, K.; Wang, H.; Yan, H., Hydrothermal preparation and photocatalytic properties of Y2Sn2O7 nanocrystals. Journal of Molecular Catalysis A: Chemical 2006, 249 (1-2), 65-70.
66. Xiao, N.; Li, Z.; Liu, J.; Gao, Y., Effects of calcination temperature on the morphology, structure and photocatalytic activity of titanate nanotube thin films. Thin Solid Films 2010, 519 (1), 541-548.
67. Ahmed, I.; Ren, H.; Booth, J., Developing unique geometries of phosphate-based glasses and their prospective biomedical applications. Johnson Matthey Technology Review 2018, 63 (1).
68. Bortun, A. I.; Khainakov, S. A.; Bortun, L. N.; Poojary, D. M.; Rodriguez, J.; Garcia, J. R.; Clearfield, A., Synthesis and Characterization of Two Novel Fibrous Titanium Phosphates Ti2O (PO4) 2⊙ 2H2O. Chemistry of materials 1997, 9 (8), 1805-1811.
69. Huang, X.; Wang, P.; Yin, G.; Zhang, S.; Zhao, W.; Wang, D.; Bi, Q.; Huang, F., Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide. 无机材料学报 2020, 35 (4).
70. Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J., Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 2003, 15 (11), 2280-2286.
71. Proaño, L.; Tello, E.; Arellano-Trevino, M. A.; Wang, S.; Farrauto, R. J.; Cobo, M., In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru,“Na2O”/Al2O3 Dual Functional Material. Applied Surface Science 2019, 479, 25-30.
72. Lee, J.; Liu, X.; Kumar, A.; Hwang, Y.; Lee, E.; Yu, J.; Kim, Y. D.; Lee, H., Phase-selective active sites on ordered/disordered titanium dioxide enable exceptional photocatalytic ammonia synthesis. Chemical Science 2021, 12 (28), 9619-9629.
73. Howe, R. F.; Gratzel, M., EPR study of hydrated anatase under UV irradiation. Journal of Physical Chemistry 1987, 91 (14), 3906-3909.
74. Nakaoka, Y.; Nosaka, Y., ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A: Chemistry 1997, 110 (3), 299-305.
75. Aziz, N. A. A.; Palaniandy, P.; Aziz, H. A.; Dahlan, I., Review of the mechanism and operational factors influencing the degradation process of contaminants in heterogenous photocatalysis. Journal of Chemical Research 2016, 40 (11), 704-712.
76. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J., EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 2001, 17 (17), 5368-5374.
77. Chang, S.-m.; Hou, C.-y.; Lo, P.-h.; Chang, C.-t., Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Applied Catalysis B: Environmental 2009, 90 (1-2), 233-241.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *