帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:翁崇惠
作者(英文):Weng, Chung-Hui
論文名稱(中文):雙酚A分子拓印固相萃取流程優化與檢測應用
論文名稱(英文):Optimization and Application of Molecularly-Imprinted-Hybrid Solid Phase Extraction for Bisphenol A Detection
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:黃鈺芳
林宏洲
張淑閔
口試委員(英文):Huang, Yu-Fang
Lin, Hong-Cheu
Chang, Sue-Min
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:環境工程系所
學號:0851728
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:54
中文關鍵詞:雙酚ASPE優化分子拓印複合聚合物固相萃取環境樣品
外文關鍵詞:bisphenol Aenvironmental samplesmolecularly imprinted hybridssolid phase extractionSPE optimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以雙酚A (bisphenol A, BPA)分子拓印複合聚合物(molecularly imprinted hybrids, MIH)為固相萃取材料,並最佳化針對水體中BPA的固相萃取(solid phase extraction, SPE)流程,並結合高效液相層析二極體陣列偵檢器(high performance liquid chromatography-photodiode array detector, HPLC-PDA)應用於環境水樣中的BPA分析。研究結果顯示MIH可在30分鐘達吸附平衡,最大吸附量為37.9 mg/g,顯示此材料對BPA具有快速吸附的能力且擁有高吸附量。當500 ng/mL BPA水溶液載入分子拓印固相萃取(molecularly-imprinted-hybrid solid phase extraction, MISPE)匣後(將50 mg MIH以0.1 cm的填充高度,裝載於直徑1.8 cm的針筒型萃取匣),以3 mL的甲醇-醋酸(90:10, v/v)混和溶液在0.25 m/s的速度沖提下,回收率可達96%,相對標準偏差(relative standard deviations, RSD%, n=3)為3.25%,固相萃取匣在重複利用4次下,回收率仍有89.5%。MISPE-HPLC-PDA對水溶液中的BPA偵測極限可低至2.62 ng/mL,遠低於HPLC的97.3 ng/mL,應用於湖水與河水等環境樣品中時,回收率在92.1-104%範圍內,RSD都在7.6%以下。以上結果顯示水樣透過MISPE濃縮並純化後,能降低HPLC分析BPA的偵測極限,同時MIH也展現出具有檢測低濃度BPA環境樣品的應用潛力。
In this study, BPA molecularly imprinted hybrids (MIH) was used as a solid phase extraction (SPE) material and combined high performance liquid chromatography-photodiode array detector (HPLC-PDA) for bisphenol A (BPA) analysis. The MIH could quickly reach an adsorption equilibrium in 30 min with a maximum adsorption capacity of 37.9 mg/g. A molecularly-imprinted-hybrid solid phase extraction (MISPE) cartridge was prepared by loading 50 mg of the MIH powder in a 1.8-diametered syringe cartridge to reach a height of 0.1 cm. This cartridge exhibited an average recovery of 96% with a low relative standard deviation (RSD) of 3.25% for BPA from a 500 ng/mL BPA water sample. During the MISPE procedure, 3.0 mL of the BPA solution was loaded into the cartridge, followed by elution with 3 mL of a methanol/acetic acid (90:10, v/v) solution at an elution rate of 0.25 m/s, resulting in a successful recovery of 96% of BPA. Furthermore, the MISPE cartridge demonstrated excellent reusability, maintaining 89.5% recovery even after undergoing 4 cycles of adsorption-desorption. The MISPE significantly lowered the limit of detection (LOD) of HPLC from 97.3 ng/mL by 37 times to 2.62 ng/mL in DI water. Moreover, the BPA-MISPE performed outstanding performance in extracting BPA from lake and river waters, with a recovery ranging from 92.1% to 104% and an RSD% below 7.6. These results underscore the excellent enrichment ability of MISPE, which effectively lowers the LOD of the HPLC method, making it highly effective for detecting trace amounts of BPA in environmental samples.
摘要 i
Abstract ii
誌謝 iii
主目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 研究背景與動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 固相萃取 3
2.2 分子拓印材料 4
2.3 MISPE 6
2.3.1 MISPE參數優化 9
2.3.2 吸附材重量 10
2.3.3 沖提液種類與體積 11
2.3.4 沖提流速與脫附時間 13
2.3.5 可重複利用率 14
第三章 研究方法 15
3.1 研究架構 15
3.2 實驗材料 16
3.3 MIH製備 17
3.4 分析溶液配置 20
3.4.1 儲備液 20
3.4.2 混合溶液 20
3.4.3 酸鹼溶液 20
3.5 吸附特性實驗 20
3.5.1 動力吸附 21
3.5.2 等溫吸附 22
3.6 SPE流程 23
3.6.1 回收率 24
3.6.2 MIH重量影響 25
3.6.3 沖提液種類與體積影響 25
3.6.4 沖提流速影響 25
3.6.5 可重複利用率 25
3.7 MISPE選擇性 25
3.8 分析方法建立 26
3.9 環境水樣分析 27
第四章 結果與討論 29
4.1 MIH與NIH吸附特性 29
4.1.1 動力吸附 29
4.1.2 等溫吸附 30
4.2 MISPE條件優化 33
4.2.1 MIH重量影響 33
4.2.2 沖提溶劑與體積影響 34
4.2.3 沖提流速影響 37
4.2.4 MISPE固相萃取匣之可重複利用率 38
4.3 MISPE選擇性 39
4.4 MISPE-HPLC-PDA 分析方法之建立 42
4.5 環境水樣分析 43
第五章 結論與建議 45
5.1 結論 45
5.2 建議 45
參考文獻 46
附錄 53
1. Rozaini, M. N. H.; Yahaya, N.; Saad, B.; Kamaruzaman, S.; Hanapi, N. S. M., Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta 2017, 171, 242-249.
2. Huang, R.-p.; Liu, Z.-h.; Yuan, S.-f.; Yin, H.; Dang, Z.; Wu, P.-x., Worldwide human daily intakes of bisphenol A (BPA) estimated from global urinary concentration data (2000–2016) and its risk analysis. Environmental Pollution 2017, 230, 143-152.
3. Maragou, N. C.; Thomaidis, N. S.; Theodoridis, G. A.; Lampi, E. N.; Koupparis, M. A., Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography B 2020, 1137, 121938.
4. Baggiani, C.; Baravalle, P.; Giovannoli, C.; Anfossi, L.; Giraudi, G., Molecularly imprinted polymer/cryogel composites for solid-phase extraction of bisphenol A from river water and wine. Analytical and Bioanalytical Chemistry 2010, 397 (2), 815-822.
5. Lane, R. F.; Adams, C. D.; Randtke, S. J.; Carter, R. E., Chlorination and chloramination of bisphenol A, bisphenol F, and bisphenol A diglycidyl ether in drinking water. Water Research 2015, 79, 68-78.
6. Wang, Q.; Zhu, L.; Chen, M.; Ma, X.; Wang, X.; Xia, J., Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS. Chemosphere 2017, 169, 709-715.
7. Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J., Miniaturized solid-phase extraction techniques. TrAC Trends in Analytical Chemistry 2015, 73, 19-38.
8. Chisvert, A.; Cárdenas, S.; Lucena, R., Dispersive micro-solid phase extraction. TrAC Trends in Analytical Chemistry 2019, 112, 226-233.
9. Deng, Z.; Zhang, W.; Zheng, S.; Xu, Z., Metal-organic framework-101 grafted with amino groups as solid-phase extraction adsorbent coupled with liquid chromatography for the determination of phenoxycarboxylic acids in environmental samples. Journal of Chromatography A 2021, 1657, 462569.
10. Wu, S. G.; Lai, E. P. C.; Mayer, P. M., Molecularly imprinted solid phase extraction–pulsed elution–mass spectrometry for determination of cephalexin and α-aminocephalosporin antibiotics in human serum. Journal of Pharmaceutical and Biomedical Analysis 2004, 36 (3), 483-490.
11. Jiang, M.; Zhang, J.-h.; Mei, S.-r.; Shi, Y.; Zou, L.-j.; Zhu, Y.-x.; Dai, K.; Lu, B., Direct enrichment and high performance liquid chromatography analysis of ultra-trace Bisphenol A in water samples with narrowly dispersible Bisphenol A imprinted polymeric microspheres column. Journal of Chromatography A 2006, 1110 (1), 27-34.
12. Han, D.-M.; Fang, G.-Z.; Yan, X.-P., Preparation and evaluation of a molecularly imprinted sol–gel material for on-line solid-phase extraction coupled with high performance liquid chromatography for the determination of trace pentachlorophenol in water samples. Journal of Chromatography A 2005, 1100 (2), 131-136.
13. Chen, W.; Xue, M.; Xue, F.; Mu, X.; Xu, Z.; Meng, Z.; Zhu, G.; Shea, K. J., Molecularly imprinted hollow spheres for the solid phase extraction of estrogens. Talanta 2015, 140, 68-72.
14. Wang, Y.; Wang, E.; Wu, Z.; Li, H.; Zhu, Z.; Zhu, X.; Dong, Y., Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone. Carbohydrate Polymers 2014, 101, 517-523.
15. Poole, C. F., New trends in solid-phase extraction. TrAC Trends in Analytical Chemistry 2003, 22 (6), 362-373.
16. Seidi, S.; Tajik, M.; Baharfar, M.; Rezazadeh, M., Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis. TrAC Trends in Analytical Chemistry 2019, 118, 810-827.
17. Li, W.-k.; Shi, Y.-p., Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. TrAC Trends in Analytical Chemistry 2019, 118, 652-665.
18. Arabi, M.; Ostovan, A.; Bagheri, A. R.; Guo, X.; Wang, L.; Li, J.; Wang, X.; Li, B.; Chen, L., Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends in Analytical Chemistry 2020, 128, 115923.
19. Khezeli, T.; Daneshfar, A., Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC Trends in Analytical Chemistry 2017, 89, 99-118.
20. Hao, L.; Wang, C.; Wu, Q.; Li, Z.; Zang, X.; Wang, Z., Metal–Organic Framework Derived Magnetic Nanoporous Carbon: Novel Adsorbent for Magnetic Solid-Phase Extraction. Analytical Chemistry 2014, 86 (24), 12199-12205.
21. Li, Y.; Zhu, N.; Chen, T.; Ma, Y.; Li, Q., A green cyclodextrin metal-organic framework as solid-phase extraction medium for enrichment of sulfonamides before their HPLC determination. Microchemical Journal 2018, 138, 401-407.
22. Mahpishanian, S.; Sereshti, H., Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination. Journal of Chromatography A 2016, 1443, 43-53.
23. Nasir, A. N. M.; Yahaya, N.; Zain, N. N. M.; Lim, V.; Kamaruzaman, S.; Saad, B.; Nishiyama, N.; Yoshida, N.; Hirota, Y., Thiol-functionalized magnetic carbon nanotubes for magnetic micro-solid phase extraction of sulfonamide antibiotics from milks and commercial chicken meat products. Food Chemistry 2019, 276, 458-466.
24. Maduraiveeran, G.; Sasidharan, M.; Ganesan, V., Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics 2018, 103, 113-129.
25. BelBruno, J. J., Molecularly Imprinted Polymers. Chemical Reviews 2019, 119 (1), 94-119.
26. Bahrani, S.; Ghaedi, M.; Hashemi, S. A.; Mousavi, S. M., Chapter 11 - Applications of molecularly imprinted polymers. In Interface Science and Technology, Ghaedi, M., Ed. Elsevier: 2021; Vol. 33, pp 655-699.
27. Zhang, Z.; Cao, X.; Zhang, Z.; Yin, J.; Wang, D.; Xu, Y.; Zheng, W.; Li, X.; Zhang, Q.; Liu, L., Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta 2020, 208, 120385.
28. Chin, K.-Z.; Chang, S.-m., SiO2-Coated Molecularly Imprinted Copolymer Nanostructures for the Adsorption of Bisphenol A. ACS Applied Nano Materials 2019, 2 (1), 89-99.
29. Hu, S.; Li, L.; He, X., Molecularly imprinted polymers: A new kind of sorbent with high selectivity in solid phase extraction. Progress in Chemistry 2005, 17 (03), 531.
30. Vasapollo, G.; Sole, R. D.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano, S.; Mele, G., Molecularly Imprinted Polymers: Present and Future Prospective. International Journal of Molecular Sciences 2011, 12 (9), 5908-5945.
31. Song, X.; Zhou, T.; Li, J.; Su, Y.; Xie, J.; He, L., Determination of macrolide antibiotics residues in pork using molecularly imprinted dispersive solid‐phase extraction coupled with LC–MS/MS. Journal of separation science 2018, 41 (5), 1138-1148.
32. Zhu, X.; Su, Q.; Cai, J.; Yang, J.; Gao, Y., Molecularly imprinted polymer membranes for substance‐selective solid‐phase extraction from aqueous solutions. Journal of Applied Polymer Science 2006, 101 (6), 4468-4473.
33. Madikizela, L. M.; Chimuka, L., Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction. Journal of Pharmaceutical and Biomedical Analysis 2016, 128, 210-215.
34. Chen, C.; Zhang, X.; Long, Z.; Zhang, J.; Zheng, C., Molecularly imprinted dispersive solid-phase microextraction for determination of sulfamethazine by capillary electrophoresis. Microchimica Acta 2012, 178 (3), 293-299.
35. Tarley, C. R. T.; Kubota, L. T., Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry. Analytica Chimica Acta 2005, 548 (1), 11-19.
36. Zhu, G.; Cheng, G.; Wang, P.; Li, W.; Wang, Y.; Fan, J., Water compatible imprinted polymer prepared in water for selective solid phase extraction and determination of ciprofloxacin in real samples. Talanta 2019, 200, 307-315.
37. 陳秉宜. 環境因子對有機無機複合拓印高分子吸附與固相萃取雙酚A能力之影響. 國立交通大學, 新竹市, 2020.
38. Wu, X.; Li, Y.; Zhu, X.; He, C.; Wang, Q.; Liu, S., Dummy molecularly imprinted magnetic nanoparticles for dispersive solid-phase extraction and determination of bisphenol A in water samples and orange juice. Talanta 2017, 162, 57-64.
39. Dong, R.; Li, J.; Xiong, H.; Lu, W.; Peng, H.; Chen, L., Thermosensitive molecularly imprinted polymers on porous carriers: Preparation, characterization and properties as novel adsorbents for bisphenol A. Talanta 2014, 130, 182-191.
40. Wu, X.; Wang, X.; Lu, W.; Wang, X.; Li, J.; You, H.; Xiong, H.; Chen, L., Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A. Journal of Chromatography A 2016, 1435, 30-38.
41. Yang, J.; Li, Y.; Wang, J.; Sun, X.; Cao, R.; Sun, H.; Huang, C.; Chen, J., Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Analytica Chimica Acta 2015, 872, 35-45.
42. Li, J.; Zhou, H.; Liu, Y.-X.; Yan, X.-Y.; Xu, Y.-P.; Liu, S.-M., Solid-phase extraction for selective determination of bisphenol A in drinks and fruits by dummy surface molecularly imprinted polymer with direct synthetic method. Food Additives & Contaminants: Part A 2014, 31 (6), 1139-1146.
43. Yang, J.; Li, Y.; Wang, J.; Sun, X.; Shah, S. M.; Cao, R.; Chen, J., Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts. Analytica Chimica Acta 2015, 853, 311-319.
44. Arabi, M.; Ostovan, A.; Ghaedi, M.; Purkait, M. K., Novel strategy for synthesis of magnetic dummy molecularly imprinted nanoparticles based on functionalized silica as an efficient sorbent for the determination of acrylamide in potato chips: Optimization by experimental design methodology. Talanta 2016, 154, 526-532.
45. Öter, Ç.; Zorer, Ö. S., Synthesis and characterization of a molecularly ımprinted polymer adsorbent for selective solid-phase extraction from wastewater of propineb. Polymer Bulletin 2022, 79 (10), 8503-8516.
46. Ma, W.; Row, K. H., Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent. Journal of Chromatography A 2018, 1559, 78-85.
47. Karrat, A.; Amine, A., Solid-phase extraction combined with a spectrophotometric method for determination of Bisphenol-A in water samples using magnetic molecularly imprinted polymer. Microchemical Journal 2021, 168, 106496.
48. Su, X.; Li, X.; Li, J.; Liu, M.; Lei, F.; Tan, X.; Li, P.; Luo, W., Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chemistry 2015, 171, 292-297.
49. Sanagi, M. M.; Salleh, S.; Ibrahim, W. A. W.; Naim, A. A.; Hermawan, D.; Miskam, M.; Hussain, I.; Aboul-Enein, H. Y., Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. Journal of Food Composition and Analysis 2013, 32 (2), 155-161.
50. Lu, W.; Liu, J.; Li, J.; Wang, X.; Lv, M.; Cui, R.; Chen, L., Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst 2019, 144 (4), 1292-1302.
51. Andrade Teixeira, R.; Fonseca Dinali, L. A.; Leijoto de Oliveira, H.; da Silva, A. T. M.; Bastos Borges, K., Efficient and selective extraction of azamethiphos and chlorpyrifos residues from mineral water and grape samples using magnetic mesoporous molecularly imprinted polymer. Food Chemistry 2021, 361, 130116.
52. Arabi, M.; Ostovan, A.; Bagheri, A. R.; Guo, X.; Li, J.; Ma, J.; Chen, L., Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: A green approach and hazardous waste elimination. Talanta 2020, 215, 120933.
53. Sadeghi, S.; Jahani, M., Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of Florfenicol in food samples. Food Chemistry 2013, 141 (2), 1242-1251.
54. Urraca, J. L.; Castellari, M.; Barrios, C. A.; Moreno-Bondi, M. C., Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by molecularly imprinted solid-phase extraction and high performance liquid chromatography. Journal of Chromatography A 2014, 1343, 1-9.
55. Zhou, Q.; Lei, M.; Wu, Y.; Zhou, X.; Wang, H.; Sun, Y.; Sheng, X.; Tong, Y., Magnetic solid phase extraction of bisphenol A, phenol and hydroquinone from water samples by magnetic and thermo dual-responsive core-shell nanomaterial. Chemosphere 2020, 238, 124621.
56. Dil, E. A.; Asfaram, A.; Sadeghfar, F., Magnetic dispersive micro-solid phase extraction with the CuO/ZnO@ Fe 3 O 4-CNTs nanocomposite sorbent for the rapid pre-concentration of chlorogenic acid in the medical extract of plants, food, and water samples. Analyst 2019, 144 (8), 2684-2695.
57. Liu, X.; Wang, X.; Tan, F.; Zhao, H.; Quan, X.; Chen, J.; Li, L., An electrochemically enhanced solid-phase microextraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples. Analytica Chimica Acta 2012, 727, 26-33.
58. Liu, X.; Yin, J.; Zhu, L.; Zhao, G.; Zhang, H., Evaluation of a magnetic polysulfone microcapsule containing organic modified montmorillonite as a novel solid-phase extraction sorbent with chlorophenols as model compounds. Talanta 2011, 85 (5), 2451-2457.
59. Li, C.; Ma, X.; Zhang, X.; Wang, R.; Chen, Y.; Li, Z., Magnetic molecularly imprinted polymer nanoparticles-based solid-phase extraction coupled with gas chromatography–mass spectrometry for selective determination of trace di-(2-ethylhexyl) phthalate in water samples. Analytical and Bioanalytical Chemistry 2016, 408 (27), 7857-7864.
60. Chang, T.; Yan, X.; Liu, S.; Liu, Y., Magnetic Dummy Template Silica Sol–Gel Molecularly Imprinted Polymer Nanospheres as Magnetic Solid-Phase Extraction Material for the Selective and Sensitive Determination of Bisphenol A in Plastic Bottled Beverages. Food Analytical Methods 2017, 10 (12), 3980-3990.
61. Song, M.; Sheng, X.; Ye, G.; Xu, Z.; Li, X.; Xie, T.; Deng, H.; Kang, A., Selective enrichment of microbiota-derived tryptophan metabolites in mouse faeces based on molecularly imprinted solid-phase extraction for HPLC analysis. Journal of Pharmaceutical and Biomedical Analysis 2022, 212, 114641.
62. Xie, L.; Guo, J.; Zhang, Y.; Shi, S., Efficient Determination of Protocatechuic Acid in Fruit Juices by Selective and Rapid Magnetic Molecular Imprinted Solid Phase Extraction Coupled with HPLC. Journal of Agricultural and Food Chemistry 2014, 62 (32), 8221-8228.
63. Huang, H.; Wang, X.; Ge, H.; Xu, M., Multifunctional Magnetic Cellulose Surface-Imprinted Microspheres for Highly Selective Adsorption of Artesunate. ACS Sustainable Chemistry & Engineering 2016, 4 (6), 3334-3343.
64. Chen, D.; Deng, J.; Liang, J.; Xie, J.; Huang, K.; Hu, C., Core–shell magnetic nanoparticles with surface-imprinted polymer coating as a new adsorbent for solid phase extraction of metronidazole. Analytical Methods 2013, 5 (3), 722-728.
65. Huang, Y.-D.; Gao, X.-D.; Gu, Z.-Y.; Li, X.-M., Amino-terminated SiO2 aerogel towards highly-effective lead (II) adsorbent via the ambient drying process. Journal of Non-Crystalline Solids 2016, 443, 39-46.
66. Zhang, Z.; Li, L.; Wang, H.; Guo, L.; Zhai, Y.; Zhang, J.; Yang, Y.; Wang, H.; Yin, Z.; Lu, Y., Preparation of molecularly imprinted ordered mesoporous silica for rapid and selective separation of trace bisphenol A from water samples. Applied Surface Science 2018, 448, 380-388.
67. Ren, Y.; Ma, W.; Ma, J.; Wen, Q.; Wang, J.; Zhao, F., Synthesis and properties of bisphenol A molecular imprinted particle for selective recognition of BPA from water. Journal of Colloid and Interface Science 2012, 367 (1), 355-361.
68. Duan, F.; Chen, C.; Chen, L.; Sun, Y.; Wang, Y.; Yang, Y.; Liu, X.; Qin, Y., Preparation and Evaluation of Water-Compatible Surface Molecularly Imprinted Polymers for Selective Adsorption of Bisphenol A from Aqueous Solution. Industrial & Engineering Chemistry Research 2014, 53 (37), 14291-14300.
69. Groshart, C.; Okkeman, P.; Pijnenburg, A., Chemical study on bisphenol A. Rapportnr.: 2001.027 2001.
70. Davies, J. E. Solid-phase extraction of bisphenol A in water using carbon nanotube envelopes. Carleton University, 2011.
71. Tabandeh, M.; Ghassamipour, S.; Aqababa, H.; Tabatabaei, M.; Hasheminejad, M., Computational design and synthesis of molecular imprinted polymers for selective extraction of allopurinol from human plasma. Journal of Chromatography B 2012, 898, 24-31.

(此全文20260807後開放外部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *