|
1. Koebel, M.; Elsener, M.; Kleemann, M., Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catalysis today 2000, 59 (3-4), 335-345. 2. Wang, J.; Miao, J.; Yu, W.; Chen, Y.; Chen, J., Study on the local difference of monolithic honeycomb V2O5-WO3/TiO2 denitration catalyst. Materials Chemistry and Physics 2017, 198, 193-199. 3. Lin, X.; Li, S.; He, H.; Wu, Z.; Wu, J.; Chen, L.; Ye, D.; Fu, M., Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Applied Catalysis B: Environmental 2018, 223, 91-102. 4. Yan, D.-j.; Tong, G.; Ya, Y.; CHEN, Z.-h., Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NOx at low temperature. Journal of Fuel Chemistry and Technology 2021, 49 (1), 113-120. 5. Li, W.; Zhang, C.; Li, X.; Tan, P.; Zhou, A.; Fang, Q.; Chen, G., Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3: Evaluation and characterization. Chinese Journal of Catalysis 2018, 39 (10), 1653-1663. 6. Jiang, B.; Lin, B.; Li, Z.; Zhao, S.; Chen, Z., Mn/TiO2 catalysts prepared by ultrasonic spray pyrolysis method for NOx removal in low-temperature SCR reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 586, 124210. 7. Liu, L.; Xu, K.; Su, S.; He, L.; Qing, M.; Chi, H.; Liu, T.; Hu, S.; Wang, Y.; Xiang, J., Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature. Applied Catalysis A: General 2020, 592, 117413. 8. Gao, F.; Tang, X.; Yi, H.; Li, J.; Zhao, S.; Wang, J.; Chu, C.; Li, C., Promotional mechanisms of activity and SO2 tolerance of Co-or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chemical Engineering Journal 2017, 317, 20-31. 9. Meng, D.; Xu, Q.; Jiao, Y.; Guo, Y.; Guo, Y.; Wang, L.; Lu, G.; Zhan, W., Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental 2018, 221, 652-663. 10. Yu, J.; Guo, F.; Wang, Y.; Zhu, J.; Liu, Y.; Su, F.; Gao, S.; Xu, G., Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental 2010, 95 (1-2), 160-168. 11. France, L. J.; Yang, Q.; Li, W.; Chen, Z.; Guang, J.; Guo, D.; Wang, L.; Li, X., Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Applied Catalysis B: Environmental 2017, 206, 203-215. 12. Fang, D.; He, F.; Liu, X.; Qi, K.; Xie, J.; Li, F.; Yu, C., Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping. Applied Surface Science 2018, 427, 45-55. 13. Du, Y.; Liu, J.; Li, X.; Liu, L.; Wu, X., SCR performance enhancement of NiMnTi mixed oxides catalysts by regulating assembling methods of LDHs‐Based precursor. Applied Organometallic Chemistry 2020, 34 (4), e5510. 14. Wang, M.; Guo, R.-t.; Ren, S.; Sun, S.; Chen, Z.; Yang, J.; Chen, L.; Li, X., Revealing M (M= Cu, Co and Zr) oxides doping effects on anti-PbCl2 poisoning over Mn-Ce/AC catalysts in low-temperature NH3-SCR reaction. Applied Catalysis A: General 2022, 643, 118749. 15. Rong, J.; Zhao, W.; Luo, W.; Kang, K.; Long, L.; Chen, Y.; Yao, X., Doping effect of rare earth metal ions Sm3+, Nd3+ and Ce4+ on denitration performance of MnOx catalyst in low temperature NH3-SCR reaction. Journal of Rare Earths 2022. 16. Wang, M.; Ren, S.; Jiang, Y.; Su, B.; Chen, Z.; Liu, W.; Yang, J.; Chen, L., Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3. Fuel 2022, 319, 123763. 17. Wang, B.; Wang, Z.; Yang, Z.; Li, H.; Sheng, H.; Liu, W.; Li, Q.; Wang, L., Highly active MnOx supported on the MgAlOx oxides derived from LDHs for low temperature NH3-SCR. Fuel 2022, 329, 125519. 18. Chen, Z.; Ren, S.; Wang, M.; Yang, J.; Chen, L.; Liu, W.; Liu, Q.; Su, B., Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeOx catalyst for low-temperature NH3-SCR reaction. Fuel 2022, 321, 124113. 19. Chen, L.; Weng, D.; Wang, J.; Weng, D.; Cao, L., Low-temperature activity and mechanism of WO3-modified CeO2-TiO2 catalyst under NH3-NO/NO2 SCR conditions. Chinese Journal of Catalysis 2018, 39 (11), 1804-1813. 20. Chen, L.; Ren, S.; Jiang, Y.; Liu, L.; Wang, M.; Yang, J.; Chen, Z.; Liu, W.; Liu, Q., Effect of Mn and Ce oxides on low-temperature NH3-SCR performance over blast furnace slag-derived zeolite X supported catalysts. Fuel 2022, 320, 123969. 21. Zhou, Y.; Ren, S.; Yang, J.; Liu, W.; Su, Z.; Chen, Z.; Wang, M.; Chen, L., NH3 treatment of CeO2 nanorods catalyst for improving NH3-SCR of NO. Journal of the Energy Institute 2021, 98, 199-205. 22. 行政院环境保护署, 空氣品質指標. 2020. 23. 中国环境监测总站, 环境空气质量标准. 国家环境保护局;国家技术监督局: 2012; Vol. GB 3095-2012, p 12 %W CNKI. 24. 香港環境保護署, 空气污染管制条例. 2014, 147. 25. Peña, D. A.; Uphade, B. S.; Reddy, E. P.; Smirniotis, P. G., Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. The Journal of Physical Chemistry B 2004, 108 (28), 9927-9936. 26. Qiu, L.; Pang, D.; Zhang, C.; Meng, J.; Zhu, R.; Ouyang, F., In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. Applied Surface Science 2015, 357, 189-196. 27. Wu, Z.; Jiang, B.; Liu, Y.; Wang, H.; Jin, R., DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environmental science & technology 2007, 41 (16), 5812-5817. 28. Liu, S.; Wang, H.; Wei, Y.; Zhang, R., Core-shell structure effect on CeO2 and TiO2 supported WO3 for the NH3-SCR process. Molecular Catalysis 2020, 485, 110822. 29. Xu, J.; Zou, X.; Chen, G.; Zhang, Y.; Zhang, Q.; Guo, F., Tailored activity of Ce–Ni bimetallic modified V2O5/TiO2 catalyst for NH3-SCR with promising wide temperature window. Vacuum 2021, 110384. 30. Zhao, W.; Dou, S.; Zhang, K.; Wu, L.; Wang, Q.; Shang, D.; Zhong, Q., Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOX. Chemical Engineering Journal 2019, 364, 401-409. 31. Fogler, H. S., Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi. Pearson Education: 2010. 32. Nahavandi, M., Selective catalytic reduction (SCR) of no by ammonia over V 2 O 5/TiO 2 catalyst in a catalytic filter medium and honeycomb reactor: a kinetic modeling study. Brazilian Journal of Chemical Engineering 2015, 32, 875-893. 33. Niu, Y.; Zhang, X.; Zhang, H.; Liang, Y.; Li, S.; Yao, Q.; Wang, D.; Hui, S. e., Performance of Low‐temperature SCR of NO with NH3 over MnOx/Ti‐based catalysts. The Canadian Journal of Chemical Engineering 2019, 97, 1407-1417. 34. Zhang, Z.; Li, Y.; Yang, P.; Li, Y.; Zhao, C.; Li, R.; Zhu, Y., Improved NH3-SCR deNOx activity and tolerance to H2O & SO2 at low temperature over the NbmCu0. 1-mCe0. 9Ox catalysts: Role of acidity by niobium doping. Fuel 2021, 303, 121239. 35. Fu, Z.; Zhang, G.; Han, W.; Tang, Z., The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating. Chemical Engineering Journal 2021, 131334. 36. ZHUANG, K.; ZHANG, Y.-p.; HUANG, T.-j.; Bin, L.; Kai, S., Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR. Journal of Fuel Chemistry and Technology 2017, 45 (11), 1356-1364. 37. Han, L.; Gao, M.; Hasegawa, J.-y.; Li, S.; Shen, Y.; Li, H.; Shi, L.; Zhang, D., SO2-Tolerant Selective Catalytic Reduction of NO x over Meso-TiO2@ Fe2O3@ Al2O3 Metal-Based Monolith Catalysts. Environmental science & technology 2019, 53 (11), 6462-6473. 38. Li, G.; Mao, D.; Chao, M.; Li, G.; Yu, J.; Guo, X., Low-temperature NH3-SCR of NOx over MnCeOx/TiO2 catalyst: Enhanced activity and SO2 tolerance by modifying TiO2 with Al2O3. Journal of Rare Earths 2021, 39 (7), 805-816. 39. Wang, F.; Shen, B.; Zhu, S.; Wang, Z., Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel 2019, 249, 54-60. 40. Li, L.; Li, P.; Tan, W.; Ma, K.; Zou, W.; Tang, C.; Dong, L., Enhanced low-temperature NH3-SCR performance of CeTiOx catalyst via surface Mo modification. Chinese Journal of Catalysis 2020, 41 (2), 364-373. 41. Wang, X.; Wu, S.; Zou, W.; Yu, S.; Gui, K.; Dong, L., Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3. Chinese Journal of Catalysis 2016, 37 (8), 1314-1323. 42. Pourkhalil, M.; Izadi, N.; Rashidi, A.; Mohammad-Taheri, M., Synthesis of CeOx/γ-Al2O3 catalyst for the NH3-SCR of NOx. Materials Research Bulletin 2018, 97, 1-5. 43. Wang, F.; Ma, J.; He, G.; Chen, M.; Zhang, C.; He, H., Nanosize effect of Al2O3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia. ACS Catalysis 2018, 8 (4), 2670-2682. 44. Yang, G.; Zhao, H.; Luo, X.; Shi, K.; Zhao, H.; Wang, W.; Chen, Q.; Fan, H.; Wu, T., Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts. Applied Catalysis B: Environmental 2019, 245, 743-752. 45. Cao, F.; Su, S.; Xiang, J.; Wang, P.; Hu, S.; Sun, L.; Zhang, A., The activity and mechanism study of Fe–Mn–Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3. Fuel 2015, 139, 232-239. 46. Peng, C.; Yan, R.; Peng, H.; Mi, Y.; Liang, J.; Liu, W.; Wang, X.; Song, G.; Wu, P.; Liu, F., One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures. Journal of hazardous materials 2020, 385, 121593. 47. Yue, Y.; Liu, B.; Lv, N.; Wang, T.; Bi, X.; Zhu, H.; Yuan, P.; Bai, Z.; Cui, Q.; Bao, X., Direct Synthesis of Hierarchical FeCu‐ZSM‐5 Zeolite with Wide Temperature Window in Selective Catalytic Reduction of NO by NH3. ChemCatChem 2019, 11 (19), 4744-4754. 48. Pang, L.; Fan, C.; Shao, L.; Song, K.; Yi, J.; Cai, X.; Wang, J.; Kang, M.; Li, T., The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust. Chemical Engineering Journal 2014, 253, 394-401. 49. Zhang, S.; Zhong, Q., Surface characterization studies on the interaction of V2O5–WO3/TiO2 catalyst for low temperature SCR of NO with NH3. Journal of Solid State Chemistry 2015, 221, 49-56. 50. Zhang, D.; Ma, Z.; Wang, B.; Zhu, T.; Weng, D.; Wu, X.; Chen, J.; Wang, H.; Li, G.; Zhou, J., Effect of manganese and/or ceria loading on V2O5–MoO3/TiO2 NH3 selective catalytic reduction catalyst. Journal of Rare Earths 2020, 38 (7), 725-734. 51. Wu, Z.; Jiang, B.; Liu, Y.; Zhao, W.; Guan, B., Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol–gel method. Journal of hazardous materials 2007, 145 (3), 488-494. 52. Liu, J.; Guo, R.-t.; Li, M.-y.; Sun, P.; Liu, S.-m.; Pan, W.-g.; Liu, S.-w.; Sun, X., Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study. Fuel 2018, 223, 385-393. 53. An, Z.; Zhuo, Y.; Xu, C.; Chen, C., Influence of the TiO2 crystalline phase of MnOx/TiO2 catalysts for NO oxidation. Chinese Journal of Catalysis 2014, 35 (1), 120-126. 54. Jing, C.; Huacun, H.; Wenhua, D.; Xuewen, A., Influence of F-doping modification and preparation method optimization of V2O5-WO3/TiO2 catalyst on its NO reduction at low temperature. Chinese Journal of Environmental Engineering 2018, 12 (11), 3139-3152. 55. Marberger, A.; Ferri, D.; Elsener, M.; Kröcher, O., The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium‐Based Catalysts. Angewandte Chemie International Edition 2016, 55 (39), 11989-11994. 56. Dong, G.-j.; Bai, Y.; Zhang, Y.-f.; Zhao, Y., Effect of the V 4+(3+)/V 5+ ratio on the denitration activity for V 2 O 5–WO 3/TiO 2 catalysts. New Journal of Chemistry 2015, 39 (5), 3588-3596. 57. 王献忠; 吴彦霞; 梁海龙; 陈鑫; 陈琛; 晏根平; 戴长友; 陈玉峰, V2O5-MoO3/TiO2 催化剂脱硝性能的研究. 石油炼制与化工 2021, 52 (1), 79. 58. 于飞; 赖慧龙; 郭律; 李顺红; 杨冬霞; 常仕英, 钒基催化剂NH_3-SCR低温反应特性研究. 内燃机学报 2021, 39 (01), 74-80. 59. 周惠; 黄华存; 董文华; 崔晶, V_2O_5-WO_3/TiO_2脱硝催化剂的制备及抗硫性能. 现代化工 2017, 37 (09), 114-118. 60. Zhang, W.; Liu, G.; Jiang, J.; Tan, Y.; Wang, Q.; Gong, C.; Shen, D.; Wu, C., Temperature sensitivity of the selective catalytic reduction (SCR) performance of Ce–TiO2 in the presence of SO2. Chemosphere 2020, 243, 125419. 61. Xiao, X.; Xiong, S.; Shi, Y.; Shan, W.; Yang, S., Effect of H2O and SO2 on the selective catalytic reduction of NO with NH3 over Ce/TiO2 catalyst: Mechanism and kinetic study. The Journal of Physical Chemistry C 2016, 120 (2), 1066-1076. 62. Zhang, H.; Ding, L.; Long, H.; Li, J.; Tan, W.; Ji, J.; Sun, J.; Tang, C.; Dong, L., Influence of CeO2 loading on structure and catalytic activity for NH3-SCR over TiO2-supported CeO2. Journal of Rare Earths 2020, 38 (8), 883-890. 63. Kwon, D. W.; Hong, S. C., Promotional effect of tungsten-doped CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Applied Surface Science 2015, 356, 181-190. 64. Wei, L.; Cui, S.; Guo, H.; Ma, X., Study on the role of Mn species in low temperature SCR on MnOx/TiO2 through experiment and DFT calculation. Molecular Catalysis 2018, 445, 102-110. 65. Wei, L.; Cui, S.; Guo, H.; Zhang, L., The effect of alkali metal over Mn/TiO2 for low-temperature SCR of NO with NH3 through DRIFT and DFT. Computational Materials Science 2018, 144, 216-222. 66. Wei, L.; Cui, S.; Guo, H.; Ma, X.; Wan, Y.; Yu, S., The mechanism of the deactivation of MnOx/TiO2 catalyst for low-temperature SCR of NO. Applied Surface Science 2019, 483, 391-398. 67. Fang, D.; Xie, J.; Hu, H.; Yang, H.; He, F.; Fu, Z., Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chemical Engineering Journal 2015, 271, 23-30. 68. Topsoe, N.; Dumesic, J.; Topsoe, H., Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia: II Studies of active sites and formulation of catalytic cycles. Journal of Catalysis 1995, 151 (1), 241-252. 69. Xie, S.; Li, L.; Jin, L.; Wu, Y.; Liu, H.; Qin, Q.; Wei, X.; Liu, J.; Dong, L.; Li, B., Low temperature high activity of M (M= Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Applied Surface Science 2020, 515, 146014. 70. Sun, P.; Huang, S.-x.; Guo, R.-t.; Li, M.-y.; Liu, S.-m.; Pan, W.-g.; Fu, Z.-g.; Liu, S.-w.; Sun, X.; Liu, J., The enhanced SCR performance and SO2 resistance of Mn/TiO2 catalyst by the modification with Nb: A mechanistic study. Applied Surface Science 2018, 447, 479-488. 71. Chen, L.; Li, R.; Li, Z.; Yuan, F.; Niu, X.; Zhu, Y., Effect of Ni doping in Ni x Mn 1− x Ti 10 (x= 0.1–0.5) on activity and SO 2 resistance for NH 3-SCR of NO studied with in situ DRIFTS. Catalysis Science & Technology 2017, 7 (15), 3243-3257. 72. Jiang, Y.; Gao, X.; Zhang, Y.; Wu, W.; Song, H.; Luo, Z.; Cen, K., Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. Journal of hazardous materials 2014, 274, 270-278. 73. 徐程峙; 辜敏, V2O5/AC 中温 SCR 催化剂的制备及其脱硝性能研究. 炭素技术 2015, 34 (4), 37-41. 74. 王涛. 天然锰矿及其负载金属氧化物的 NH_3-SCR 性能研究. 合肥工业大学, 2017. 75. Tan, W.; Wang, C.; Yu, S.; Li, Y.; Xie, S.; Gao, F.; Dong, L.; Liu, F., Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NOx removal by NH3-SCR. Journal of Hazardous Materials 2021, 416, 125826. 76. Chen, J.; Zhao, W.; Wu, Q.; Mi, J.; Wang, X.; Ma, L.; Jiang, L.; Au, C.; Li, J., Effects of anaerobic SO2 treatment on nano-CeO2 of different morphologies for selective catalytic reduction of NOx with NH3. Chemical Engineering Journal 2020, 382, 122910. 77. Sun, C.; Liu, H.; Chen, W.; Chen, D.; Yu, S.; Liu, A.; Dong, L.; Feng, S., Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chemical Engineering Journal 2018, 347, 27-40. 78. Zeng, Y.; Wu, Z.; Guo, L.; Wang, Y.; Zhang, S.; Zhong, Q., Insight into the effect of carrier on N2O formation over MnO2/MOx (M= Al, Si and Ti) catalysts for selective catalytic reduction (SCR) of NOx with NH3. Molecular Catalysis 2020, 488, 110916. 79. Nguyen, T. P. T.; Kim, M. H.; Yang, K. H., Formation and depression of N2O in selective reduction of NO by NH3 over Fe2O3-promoted V2O5-WO3/TiO2 catalysts: Roles of each constituent and strongly-adsorbed NH3 species. Catalysis Today 2021, 375, 565-575. 80. Zhang, D.; Yang, R. T., N2O formation pathways over zeolite-supported Cu and Fe catalysts in NH3-SCR. Energy & fuels 2018, 32 (2), 2170-2182. 81. Wang, X.; Du, X.; Xue, J.; Yang, G.; Chen, Y.; Zhang, L., New insights into the N2O formation mechanism during selective catalytic reduction of NOx with NH3 over V-based catalyst. Catalysis Today 2020, 355, 555-562. 82. Hui, S.; Yao, Q.; Wang, D.; Niu, Y., Effect of oxygen on N2O and NO formation from NH3 oxidation over MnOx/TiO2 catalysts. Energy Procedia 2019, 158, 1497-1501. 83. Wang, D.; Yao, Q.; Hui, S.; Niu, Y., Source of N and O in N2O formation during selective catalytic reduction of NO with NH3 over MnOx/TiO2. Fuel 2019, 251, 23-29. 84. Chen, S.; Vasiliades, M. A.; Yan, Q.; Yang, G.; Du, X.; Zhang, C.; Li, Y.; Zhu, T.; Wang, Q.; Efstathiou, A. M., Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0. 5Mn1Fe0. 25Al0. 75Ox-LDO: the role of Co investigated by transient kinetic and DFT mechanistic studies. Applied Catalysis B: Environmental 2020, 277, 119186. 85. Wang, D.; Yao, Q.; Hui, S.; Niu, Y., N2O and NO formation from NH3 oxidation over MnOx/TiO2 catalysts. Fuel 2018, 234, 650-655. 86. Oviedo, J.; Sanz, J., N2O decomposition on TiO2 (110) from dynamic first-principles calculations. The Journal of Physical Chemistry B 2005, 109 (34), 16223-16226. 87. Liu, Z.; Li, Y.; Gao, Q.; Sui, Z.; Xu, X., Promotional role of Ceria in N2O assisted selective oxidative dehydrogenation of ethylbenzene over Ce–Co2AlO4 spinel catalysts. Journal of Environmental Chemical Engineering 2021, 9 (4), 105512. 88. Alves, L.; Holz, L. I.; Fernandes, C.; Ribeirinha, P.; Mendes, D.; Fagg, D. P.; Mendes, A., A comprehensive review of NOx and N2O mitigation from industrial streams. Renewable and Sustainable Energy Reviews 2021, 111916. 89. Yan, T.; Bing, W.; Xu, M.; Li, Y.; Yang, Y.; Cui, G.; Yang, L.; Wei, M., Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate. RSC advances 2018, 8 (9), 4695-4702. 90. Sun, X.; Liu, Q.; Liu, S.; Zhang, X.; Liu, S., Improvement of low-temperature NH 3-SCR catalytic performance over nitrogen-doped MO x–Cr 2 O 3–La 2 O 3/TiO 2–N (M= Cu, Fe, Ce) catalysts. RSC advances 2021, 11 (37), 22780-22788. 91. Li, S.; Huang, W.; Xu, H.; Chen, T.; Ke, Y.; Qu, Z.; Yan, N., Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas. Applied Catalysis B: Environmental 2020, 270, 118872. 92. Meng, B.; Zhao, Z.; Wang, X.; Liang, J.; Qiu, J., Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes. Applied Catalysis B: Environmental 2013, 129, 491-500. 93. Chen, Q.-l.; Guo, R.-t.; Wang, Q.-s.; Pan, W.-g.; Yang, N.-z.; Lu, C.-z.; Wang, S.-x., The promotion effect of Co doping on the K resistance of Mn/TiO2 catalyst for NH3-SCR of NO. Journal of the Taiwan Institute of Chemical Engineers 2016, 64, 116-123. 94. Yan, Q.; Chen, S.; Zhang, C.; O'Hare, D.; Wang, Q., Synthesis of Cu0. 5Mg1. 5Mn0. 5Al0. 5Ox mixed oxide from layered double hydroxide precursor as highly efficient catalyst for low-temperature selective catalytic reduction of NOx with NH3. Journal of colloid and interface science 2018, 526, 63-74. 95. Yang, C.; Fu, L.; Zhu, R.; Liu, Z., Influence of cobalt species on the catalytic performance of Co-NC/SiO 2 for ethylbenzene oxidation. Physical Chemistry Chemical Physics 2016, 18 (6), 4635-4642. 96. Gao, J.; Han, Y.; Mu, J.; Wu, S.; Tan, F.; Shi, Y.; Li, X., 2D, 3D mesostructured silicas templated mesoporous manganese dioxide for selective catalytic reduction of NOx with NH3. Journal of colloid and interface science 2018, 516, 254-262. 97. Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Wang, J.; Shi, Y.; Meng, X., Novel Co–or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3–SCR of NOx at low temperature. Applied Surface Science 2018, 443, 103-113. 98. Shi, Y.; Chu, Q.; Xiong, W.; Gao, J.; Huang, L.; Zhang, Y.; Ding, Y., A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO. Chemical Engineering and Processing-Process Intensification 2021, 159, 108232. 99. Zhao, Q.; Chen, B.; Li, J.; Wang, X.; Crocker, M.; Shi, C., Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx. Applied Catalysis B: Environmental 2020, 277, 119215. 100. Chen, Z.; Wang, F.; Li, H.; Yang, Q.; Wang, L.; Li, X., Low-temperature selective catalytic reduction of NO x with NH3 over Fe–Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Industrial & engineering chemistry research 2012, 51 (1), 202-212. 101. Chen, C.; Xie, H.; He, P.; Liu, X.; Yang, C.; Wang, N.; Ge, C., Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method. Applied Surface Science 2022, 571, 151285. 102. Wang, C.; Yu, F.; Zhu, M.; Wang, X.; Dan, J.; Zhang, J.; Cao, P.; Dai, B., Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50–150° C. Chemical Engineering Journal 2018, 346, 182-192. 103. Gao, Y.; Luan, T.; Zhang, S.; Jiang, W.; Feng, W.; Jiang, H., Comprehensive comparison between nanocatalysts of Mn− Co/TiO2 and Mn− Fe/TiO2 for NO catalytic conversion: An insight from nanostructure, performance, kinetics, and thermodynamics. Catalysts 2019, 9 (2), 175. 104. Jiang, L.; Liu, Q.; Ran, G.; Kong, M.; Ren, S.; Yang, J.; Li, J., V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chemical Engineering Journal 2019, 370, 810-821. 105. Ren, S.; Yang, J.; Zhang, T.; Jiang, L.; Long, H.; Guo, F.; Kong, M., Role of cerium in improving NO reduction with NH3 over Mn–Ce/ASC catalyst in low-temperature flue gas. Chemical Engineering Research and Design 2018, 133, 1-10. 106. Chen, J.; Fu, P.; Lv, D.; Chen, Y.; Fan, M.; Wu, J.; Meshram, A.; Mu, B.; Li, X.; Xia, Q., Unusual positive effect of SO2 on Mn-Ce mixed-oxide catalyst for the SCR reaction of NOx with NH3. Chemical Engineering Journal 2021, 407, 127071. 107. Lian, Z.; Liu, F.; He, H.; Shi, X.; Mo, J.; Wu, Z., Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chemical engineering journal 2014, 250, 390-398. 108. Zhou, Y.; Su, B.; Ren, S.; Chen, Z.; Su, Z.; Yang, J.; Chen, L.; Wang, M., Nb2O5-modified Mn-Ce/AC catalyst with high ZnCl2 and SO2 tolerance for low-temperature NH3-SCR of NO. Journal of Environmental Chemical Engineering 2021, 9 (5), 106323. 109. Liu, J.; Zang, P.; Liu, X.; Mi, J.; Wang, Y.; Zhang, G.; Chen, J.; Zhang, Y.; Li, J., A novel highly active catalyst form CuFeMg layered double oxides for the selective catalytic reduction of NO by CO. Fuel 2022, 317, 123469. 110. Guan, B.; Lin, H.; Zhu, L.; Tian, B.; Huang, Z., Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NOx with NH3 over Ti0. 9Ce0. 05V0. 05O2− δ nanocomposites catalysts prepared by solution combustion route. Chemical Engineering Journal 2012, 181, 307-322. 111. Su, L.; Chen, X.; Wang, H.; Wang, Y.; Lu, Z., Oxygen vacancies promoted heterogeneous catalytic ozonation of atrazine by defective 4A zeolite. Journal of Cleaner Production 2022, 336, 130376. 112. Zhu, M.; Zhang, C., Laser-synthesized ultrafine NiO nanoparticles with abundant oxygen vacancies for highly efficient oxygen evolution. Materials Letters 2022, 321, 132409. 113. Wang, Y.; Zhang, Y.; Liu, Y.; Wu, Z., Fluorine-induced oxygen vacancies on TiO2 nanosheets for photocatalytic indoor VOCs degradation. Applied Catalysis B: Environmental 2022, 121610. 114. Zhu, L.; Zeng, Y.; Zhang, S.; Deng, J.; Zhong, Q., Effects of synthesis methods on catalytic activities of CoOx–TiO2 for low-temperature NH3-SCR of NO. Journal of Environmental Sciences 2017, 54, 277-287. 115. Jiang, D.; Zhang, S.; Zeng, Y.; Wang, P.; Zhong, Q., Active site of O2 and its improvement mechanism over Ce-Ti catalyst for NH3-SCR reaction. Catalysts 2018, 8 (8), 336. 116. Zhou, Y.; Ren, S.; Yang, J.; Liu, W.; Su, Z.; Chen, Z.; Wang, M.; Chen, L., Effect of oxygen vacancies on improving NO oxidation over CeO2 {111} and {100} facets for fast SCR reaction. Journal of Environmental Chemical Engineering 2021, 9 (5), 106218. 117. Brustolon, M.; Giamello, E., Electron Paramagnetic Resonance: A Practitioners Toolkit. John Wiley & Sons: 2009. |