帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:裴忠一
作者(英文):Pei, Zhongyi
論文名稱(中文):以兩步浸漬法製備雙金屬摻雜TiO2觸媒及其NH3-SCR進行脫硝反應之研究
論文名稱(英文):Preparation of a Dual-Metal-Doped-TiO2 Catalyst via a Two-Step Impregnation Method and its NH3-SCR Performance for NOx Conversion
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:張宗良
林亮毅
張淑閔
口試委員(英文):Chang, Chung-Liang
Lin, Liang-Yi
Chang, Sue-Min
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:環境工程系所
學號:0851726
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:84
中文關鍵詞:兩步浸漬法氧空缺雙金屬低溫NH3-SCR氮氧化物
外文關鍵詞:Two-step impregnationOxygen vacanciesOxygen vacanciesLow temperature NH3-SCRNitrogen oxides
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章、前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章、文獻回顧 4
2.1 NOX危害、各國法制法規及處理方法 4
2.1.1 NOX對環境之危害 4
2.1.2 各國家或地區對於NOX之空氣污染指標 5
2.1.3 NOX之處理方法 6
2.2 SCR簡介 7
2.2.1 SCR原理 7
2.2.2 SCR反應機制 7
2.2.3 SCR反應床之影響因素 8
2.3 低溫SCR常用觸媒單體 12
2.3.1以三氧化二鋁(Al2O3)為觸媒單體 12
2.3.2 以ZSM-5沸石為觸媒單體 12
2.3.3 以二氧化鈦(TiO2)為觸媒單體 13
2.4 不同活性金屬對於TiO2觸媒在SCR反應之影響 17
2.4.1 五氧化二釩(V2O5)-三氧化鎢(WO3)/三氧化鉬(MoO3) 17
2.4.2 二氧化鈰(CeO2) 18
2.4.3 錳氧化物(MnOx) 19
2.5 觸媒特性因數的影響 20
2.5.1 轉化活性 20
2.5.2 氮氣(N2)選擇性 25
第三章、實驗方法與步驟 28
3.1 實驗架構 28
3.2 實驗藥品與儀器 30
3.2.1 實驗藥品與氣體 30
3.2.2 實驗儀器設備 30
3.3實驗方法 31
3.3.1觸媒製備 31
3.3.2 SCR活性測試 34
3.3.3 觸媒表面特性分析 37
第四章、結果與討論 40
4.1 觸媒最佳製備條件之確定 40
4.1.1 觸媒最佳負載方式的確定 40
4.1.2 Mn最佳摩爾比的確定 41
4.1.3 最佳負載次元金屬的確定 42
4.1.4 Co最佳摩爾比的確定 43
4.2 最佳條件製備之觸媒之相關SCR測試 45
4.2.1 最佳條件製備之觸媒之溫度窗測試 45
4.2.2 最佳條件製備之觸媒之長效性及循環次數測試 47
4.3 觸媒之表徵分析 49
4.3.1 BET比表面積分析 49
4.3.2 SEM之EDS及Mapping分析 51
4.3.3 NH3-TPD觸媒表面酸性分析 53
4.3.4 H2-TPR觸媒還原能力分析 57
4.3.5 ESCA觸媒化學結構分析 60
4.3.6 EPR觸媒未成對電子物質分析 65
第五章、結論 71
參考文獻 72
附錄 84
1. Koebel, M.; Elsener, M.; Kleemann, M., Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catalysis today 2000, 59 (3-4), 335-345.
2. Wang, J.; Miao, J.; Yu, W.; Chen, Y.; Chen, J., Study on the local difference of monolithic honeycomb V2O5-WO3/TiO2 denitration catalyst. Materials Chemistry and Physics 2017, 198, 193-199.
3. Lin, X.; Li, S.; He, H.; Wu, Z.; Wu, J.; Chen, L.; Ye, D.; Fu, M., Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Applied Catalysis B: Environmental 2018, 223, 91-102.
4. Yan, D.-j.; Tong, G.; Ya, Y.; CHEN, Z.-h., Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NOx at low temperature. Journal of Fuel Chemistry and Technology 2021, 49 (1), 113-120.
5. Li, W.; Zhang, C.; Li, X.; Tan, P.; Zhou, A.; Fang, Q.; Chen, G., Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3: Evaluation and characterization. Chinese Journal of Catalysis 2018, 39 (10), 1653-1663.
6. Jiang, B.; Lin, B.; Li, Z.; Zhao, S.; Chen, Z., Mn/TiO2 catalysts prepared by ultrasonic spray pyrolysis method for NOx removal in low-temperature SCR reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 586, 124210.
7. Liu, L.; Xu, K.; Su, S.; He, L.; Qing, M.; Chi, H.; Liu, T.; Hu, S.; Wang, Y.; Xiang, J., Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature. Applied Catalysis A: General 2020, 592, 117413.
8. Gao, F.; Tang, X.; Yi, H.; Li, J.; Zhao, S.; Wang, J.; Chu, C.; Li, C., Promotional mechanisms of activity and SO2 tolerance of Co-or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chemical Engineering Journal 2017, 317, 20-31.
9. Meng, D.; Xu, Q.; Jiao, Y.; Guo, Y.; Guo, Y.; Wang, L.; Lu, G.; Zhan, W., Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental 2018, 221, 652-663.
10. Yu, J.; Guo, F.; Wang, Y.; Zhu, J.; Liu, Y.; Su, F.; Gao, S.; Xu, G., Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental 2010, 95 (1-2), 160-168.
11. France, L. J.; Yang, Q.; Li, W.; Chen, Z.; Guang, J.; Guo, D.; Wang, L.; Li, X., Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Applied Catalysis B: Environmental 2017, 206, 203-215.
12. Fang, D.; He, F.; Liu, X.; Qi, K.; Xie, J.; Li, F.; Yu, C., Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping. Applied Surface Science 2018, 427, 45-55.
13. Du, Y.; Liu, J.; Li, X.; Liu, L.; Wu, X., SCR performance enhancement of NiMnTi mixed oxides catalysts by regulating assembling methods of LDHs‐Based precursor. Applied Organometallic Chemistry 2020, 34 (4), e5510.
14. Wang, M.; Guo, R.-t.; Ren, S.; Sun, S.; Chen, Z.; Yang, J.; Chen, L.; Li, X., Revealing M (M= Cu, Co and Zr) oxides doping effects on anti-PbCl2 poisoning over Mn-Ce/AC catalysts in low-temperature NH3-SCR reaction. Applied Catalysis A: General 2022, 643, 118749.
15. Rong, J.; Zhao, W.; Luo, W.; Kang, K.; Long, L.; Chen, Y.; Yao, X., Doping effect of rare earth metal ions Sm3+, Nd3+ and Ce4+ on denitration performance of MnOx catalyst in low temperature NH3-SCR reaction. Journal of Rare Earths 2022.
16. Wang, M.; Ren, S.; Jiang, Y.; Su, B.; Chen, Z.; Liu, W.; Yang, J.; Chen, L., Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3. Fuel 2022, 319, 123763.
17. Wang, B.; Wang, Z.; Yang, Z.; Li, H.; Sheng, H.; Liu, W.; Li, Q.; Wang, L., Highly active MnOx supported on the MgAlOx oxides derived from LDHs for low temperature NH3-SCR. Fuel 2022, 329, 125519.
18. Chen, Z.; Ren, S.; Wang, M.; Yang, J.; Chen, L.; Liu, W.; Liu, Q.; Su, B., Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeOx catalyst for low-temperature NH3-SCR reaction. Fuel 2022, 321, 124113.
19. Chen, L.; Weng, D.; Wang, J.; Weng, D.; Cao, L., Low-temperature activity and mechanism of WO3-modified CeO2-TiO2 catalyst under NH3-NO/NO2 SCR conditions. Chinese Journal of Catalysis 2018, 39 (11), 1804-1813.
20. Chen, L.; Ren, S.; Jiang, Y.; Liu, L.; Wang, M.; Yang, J.; Chen, Z.; Liu, W.; Liu, Q., Effect of Mn and Ce oxides on low-temperature NH3-SCR performance over blast furnace slag-derived zeolite X supported catalysts. Fuel 2022, 320, 123969.
21. Zhou, Y.; Ren, S.; Yang, J.; Liu, W.; Su, Z.; Chen, Z.; Wang, M.; Chen, L., NH3 treatment of CeO2 nanorods catalyst for improving NH3-SCR of NO. Journal of the Energy Institute 2021, 98, 199-205.
22. 行政院环境保护署, 空氣品質指標. 2020.
23. 中国环境监测总站, 环境空气质量标准. 国家环境保护局;国家技术监督局: 2012; Vol. GB 3095-2012, p 12 %W CNKI.
24. 香港環境保護署, 空气污染管制条例. 2014, 147.
25. Peña, D. A.; Uphade, B. S.; Reddy, E. P.; Smirniotis, P. G., Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. The Journal of Physical Chemistry B 2004, 108 (28), 9927-9936.
26. Qiu, L.; Pang, D.; Zhang, C.; Meng, J.; Zhu, R.; Ouyang, F., In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. Applied Surface Science 2015, 357, 189-196.
27. Wu, Z.; Jiang, B.; Liu, Y.; Wang, H.; Jin, R., DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environmental science & technology 2007, 41 (16), 5812-5817.
28. Liu, S.; Wang, H.; Wei, Y.; Zhang, R., Core-shell structure effect on CeO2 and TiO2 supported WO3 for the NH3-SCR process. Molecular Catalysis 2020, 485, 110822.
29. Xu, J.; Zou, X.; Chen, G.; Zhang, Y.; Zhang, Q.; Guo, F., Tailored activity of Ce–Ni bimetallic modified V2O5/TiO2 catalyst for NH3-SCR with promising wide temperature window. Vacuum 2021, 110384.
30. Zhao, W.; Dou, S.; Zhang, K.; Wu, L.; Wang, Q.; Shang, D.; Zhong, Q., Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOX. Chemical Engineering Journal 2019, 364, 401-409.
31. Fogler, H. S., Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi. Pearson Education: 2010.
32. Nahavandi, M., Selective catalytic reduction (SCR) of no by ammonia over V 2 O 5/TiO 2 catalyst in a catalytic filter medium and honeycomb reactor: a kinetic modeling study. Brazilian Journal of Chemical Engineering 2015, 32, 875-893.
33. Niu, Y.; Zhang, X.; Zhang, H.; Liang, Y.; Li, S.; Yao, Q.; Wang, D.; Hui, S. e., Performance of Low‐temperature SCR of NO with NH3 over MnOx/Ti‐based catalysts. The Canadian Journal of Chemical Engineering 2019, 97, 1407-1417.
34. Zhang, Z.; Li, Y.; Yang, P.; Li, Y.; Zhao, C.; Li, R.; Zhu, Y., Improved NH3-SCR deNOx activity and tolerance to H2O & SO2 at low temperature over the NbmCu0. 1-mCe0. 9Ox catalysts: Role of acidity by niobium doping. Fuel 2021, 303, 121239.
35. Fu, Z.; Zhang, G.; Han, W.; Tang, Z., The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating. Chemical Engineering Journal 2021, 131334.
36. ZHUANG, K.; ZHANG, Y.-p.; HUANG, T.-j.; Bin, L.; Kai, S., Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR. Journal of Fuel Chemistry and Technology 2017, 45 (11), 1356-1364.
37. Han, L.; Gao, M.; Hasegawa, J.-y.; Li, S.; Shen, Y.; Li, H.; Shi, L.; Zhang, D., SO2-Tolerant Selective Catalytic Reduction of NO x over Meso-TiO2@ Fe2O3@ Al2O3 Metal-Based Monolith Catalysts. Environmental science & technology 2019, 53 (11), 6462-6473.
38. Li, G.; Mao, D.; Chao, M.; Li, G.; Yu, J.; Guo, X., Low-temperature NH3-SCR of NOx over MnCeOx/TiO2 catalyst: Enhanced activity and SO2 tolerance by modifying TiO2 with Al2O3. Journal of Rare Earths 2021, 39 (7), 805-816.
39. Wang, F.; Shen, B.; Zhu, S.; Wang, Z., Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel 2019, 249, 54-60.
40. Li, L.; Li, P.; Tan, W.; Ma, K.; Zou, W.; Tang, C.; Dong, L., Enhanced low-temperature NH3-SCR performance of CeTiOx catalyst via surface Mo modification. Chinese Journal of Catalysis 2020, 41 (2), 364-373.
41. Wang, X.; Wu, S.; Zou, W.; Yu, S.; Gui, K.; Dong, L., Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3. Chinese Journal of Catalysis 2016, 37 (8), 1314-1323.
42. Pourkhalil, M.; Izadi, N.; Rashidi, A.; Mohammad-Taheri, M., Synthesis of CeOx/γ-Al2O3 catalyst for the NH3-SCR of NOx. Materials Research Bulletin 2018, 97, 1-5.
43. Wang, F.; Ma, J.; He, G.; Chen, M.; Zhang, C.; He, H., Nanosize effect of Al2O3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia. ACS Catalysis 2018, 8 (4), 2670-2682.
44. Yang, G.; Zhao, H.; Luo, X.; Shi, K.; Zhao, H.; Wang, W.; Chen, Q.; Fan, H.; Wu, T., Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts. Applied Catalysis B: Environmental 2019, 245, 743-752.
45. Cao, F.; Su, S.; Xiang, J.; Wang, P.; Hu, S.; Sun, L.; Zhang, A., The activity and mechanism study of Fe–Mn–Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3. Fuel 2015, 139, 232-239.
46. Peng, C.; Yan, R.; Peng, H.; Mi, Y.; Liang, J.; Liu, W.; Wang, X.; Song, G.; Wu, P.; Liu, F., One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures. Journal of hazardous materials 2020, 385, 121593.
47. Yue, Y.; Liu, B.; Lv, N.; Wang, T.; Bi, X.; Zhu, H.; Yuan, P.; Bai, Z.; Cui, Q.; Bao, X., Direct Synthesis of Hierarchical FeCu‐ZSM‐5 Zeolite with Wide Temperature Window in Selective Catalytic Reduction of NO by NH3. ChemCatChem 2019, 11 (19), 4744-4754.
48. Pang, L.; Fan, C.; Shao, L.; Song, K.; Yi, J.; Cai, X.; Wang, J.; Kang, M.; Li, T., The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust. Chemical Engineering Journal 2014, 253, 394-401.
49. Zhang, S.; Zhong, Q., Surface characterization studies on the interaction of V2O5–WO3/TiO2 catalyst for low temperature SCR of NO with NH3. Journal of Solid State Chemistry 2015, 221, 49-56.
50. Zhang, D.; Ma, Z.; Wang, B.; Zhu, T.; Weng, D.; Wu, X.; Chen, J.; Wang, H.; Li, G.; Zhou, J., Effect of manganese and/or ceria loading on V2O5–MoO3/TiO2 NH3 selective catalytic reduction catalyst. Journal of Rare Earths 2020, 38 (7), 725-734.
51. Wu, Z.; Jiang, B.; Liu, Y.; Zhao, W.; Guan, B., Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol–gel method. Journal of hazardous materials 2007, 145 (3), 488-494.
52. Liu, J.; Guo, R.-t.; Li, M.-y.; Sun, P.; Liu, S.-m.; Pan, W.-g.; Liu, S.-w.; Sun, X., Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study. Fuel 2018, 223, 385-393.
53. An, Z.; Zhuo, Y.; Xu, C.; Chen, C., Influence of the TiO2 crystalline phase of MnOx/TiO2 catalysts for NO oxidation. Chinese Journal of Catalysis 2014, 35 (1), 120-126.
54. Jing, C.; Huacun, H.; Wenhua, D.; Xuewen, A., Influence of F-doping modification and preparation method optimization of V2O5-WO3/TiO2 catalyst on its NO reduction at low temperature. Chinese Journal of Environmental Engineering 2018, 12 (11), 3139-3152.
55. Marberger, A.; Ferri, D.; Elsener, M.; Kröcher, O., The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium‐Based Catalysts. Angewandte Chemie International Edition 2016, 55 (39), 11989-11994.
56. Dong, G.-j.; Bai, Y.; Zhang, Y.-f.; Zhao, Y., Effect of the V 4+(3+)/V 5+ ratio on the denitration activity for V 2 O 5–WO 3/TiO 2 catalysts. New Journal of Chemistry 2015, 39 (5), 3588-3596.
57. 王献忠; 吴彦霞; 梁海龙; 陈鑫; 陈琛; 晏根平; 戴长友; 陈玉峰, V2O5-MoO3/TiO2 催化剂脱硝性能的研究. 石油炼制与化工 2021, 52 (1), 79.
58. 于飞; 赖慧龙; 郭律; 李顺红; 杨冬霞; 常仕英, 钒基催化剂NH_3-SCR低温反应特性研究. 内燃机学报 2021, 39 (01), 74-80.
59. 周惠; 黄华存; 董文华; 崔晶, V_2O_5-WO_3/TiO_2脱硝催化剂的制备及抗硫性能. 现代化工 2017, 37 (09), 114-118.
60. Zhang, W.; Liu, G.; Jiang, J.; Tan, Y.; Wang, Q.; Gong, C.; Shen, D.; Wu, C., Temperature sensitivity of the selective catalytic reduction (SCR) performance of Ce–TiO2 in the presence of SO2. Chemosphere 2020, 243, 125419.
61. Xiao, X.; Xiong, S.; Shi, Y.; Shan, W.; Yang, S., Effect of H2O and SO2 on the selective catalytic reduction of NO with NH3 over Ce/TiO2 catalyst: Mechanism and kinetic study. The Journal of Physical Chemistry C 2016, 120 (2), 1066-1076.
62. Zhang, H.; Ding, L.; Long, H.; Li, J.; Tan, W.; Ji, J.; Sun, J.; Tang, C.; Dong, L., Influence of CeO2 loading on structure and catalytic activity for NH3-SCR over TiO2-supported CeO2. Journal of Rare Earths 2020, 38 (8), 883-890.
63. Kwon, D. W.; Hong, S. C., Promotional effect of tungsten-doped CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Applied Surface Science 2015, 356, 181-190.
64. Wei, L.; Cui, S.; Guo, H.; Ma, X., Study on the role of Mn species in low temperature SCR on MnOx/TiO2 through experiment and DFT calculation. Molecular Catalysis 2018, 445, 102-110.
65. Wei, L.; Cui, S.; Guo, H.; Zhang, L., The effect of alkali metal over Mn/TiO2 for low-temperature SCR of NO with NH3 through DRIFT and DFT. Computational Materials Science 2018, 144, 216-222.
66. Wei, L.; Cui, S.; Guo, H.; Ma, X.; Wan, Y.; Yu, S., The mechanism of the deactivation of MnOx/TiO2 catalyst for low-temperature SCR of NO. Applied Surface Science 2019, 483, 391-398.
67. Fang, D.; Xie, J.; Hu, H.; Yang, H.; He, F.; Fu, Z., Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chemical Engineering Journal 2015, 271, 23-30.
68. Topsoe, N.; Dumesic, J.; Topsoe, H., Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia: II Studies of active sites and formulation of catalytic cycles. Journal of Catalysis 1995, 151 (1), 241-252.
69. Xie, S.; Li, L.; Jin, L.; Wu, Y.; Liu, H.; Qin, Q.; Wei, X.; Liu, J.; Dong, L.; Li, B., Low temperature high activity of M (M= Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Applied Surface Science 2020, 515, 146014.
70. Sun, P.; Huang, S.-x.; Guo, R.-t.; Li, M.-y.; Liu, S.-m.; Pan, W.-g.; Fu, Z.-g.; Liu, S.-w.; Sun, X.; Liu, J., The enhanced SCR performance and SO2 resistance of Mn/TiO2 catalyst by the modification with Nb: A mechanistic study. Applied Surface Science 2018, 447, 479-488.
71. Chen, L.; Li, R.; Li, Z.; Yuan, F.; Niu, X.; Zhu, Y., Effect of Ni doping in Ni x Mn 1− x Ti 10 (x= 0.1–0.5) on activity and SO 2 resistance for NH 3-SCR of NO studied with in situ DRIFTS. Catalysis Science & Technology 2017, 7 (15), 3243-3257.
72. Jiang, Y.; Gao, X.; Zhang, Y.; Wu, W.; Song, H.; Luo, Z.; Cen, K., Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. Journal of hazardous materials 2014, 274, 270-278.
73. 徐程峙; 辜敏, V2O5/AC 中温 SCR 催化剂的制备及其脱硝性能研究. 炭素技术 2015, 34 (4), 37-41.
74. 王涛. 天然锰矿及其负载金属氧化物的 NH_3-SCR 性能研究. 合肥工业大学, 2017.
75. Tan, W.; Wang, C.; Yu, S.; Li, Y.; Xie, S.; Gao, F.; Dong, L.; Liu, F., Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NOx removal by NH3-SCR. Journal of Hazardous Materials 2021, 416, 125826.
76. Chen, J.; Zhao, W.; Wu, Q.; Mi, J.; Wang, X.; Ma, L.; Jiang, L.; Au, C.; Li, J., Effects of anaerobic SO2 treatment on nano-CeO2 of different morphologies for selective catalytic reduction of NOx with NH3. Chemical Engineering Journal 2020, 382, 122910.
77. Sun, C.; Liu, H.; Chen, W.; Chen, D.; Yu, S.; Liu, A.; Dong, L.; Feng, S., Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chemical Engineering Journal 2018, 347, 27-40.
78. Zeng, Y.; Wu, Z.; Guo, L.; Wang, Y.; Zhang, S.; Zhong, Q., Insight into the effect of carrier on N2O formation over MnO2/MOx (M= Al, Si and Ti) catalysts for selective catalytic reduction (SCR) of NOx with NH3. Molecular Catalysis 2020, 488, 110916.
79. Nguyen, T. P. T.; Kim, M. H.; Yang, K. H., Formation and depression of N2O in selective reduction of NO by NH3 over Fe2O3-promoted V2O5-WO3/TiO2 catalysts: Roles of each constituent and strongly-adsorbed NH3 species. Catalysis Today 2021, 375, 565-575.
80. Zhang, D.; Yang, R. T., N2O formation pathways over zeolite-supported Cu and Fe catalysts in NH3-SCR. Energy & fuels 2018, 32 (2), 2170-2182.
81. Wang, X.; Du, X.; Xue, J.; Yang, G.; Chen, Y.; Zhang, L., New insights into the N2O formation mechanism during selective catalytic reduction of NOx with NH3 over V-based catalyst. Catalysis Today 2020, 355, 555-562.
82. Hui, S.; Yao, Q.; Wang, D.; Niu, Y., Effect of oxygen on N2O and NO formation from NH3 oxidation over MnOx/TiO2 catalysts. Energy Procedia 2019, 158, 1497-1501.
83. Wang, D.; Yao, Q.; Hui, S.; Niu, Y., Source of N and O in N2O formation during selective catalytic reduction of NO with NH3 over MnOx/TiO2. Fuel 2019, 251, 23-29.
84. Chen, S.; Vasiliades, M. A.; Yan, Q.; Yang, G.; Du, X.; Zhang, C.; Li, Y.; Zhu, T.; Wang, Q.; Efstathiou, A. M., Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0. 5Mn1Fe0. 25Al0. 75Ox-LDO: the role of Co investigated by transient kinetic and DFT mechanistic studies. Applied Catalysis B: Environmental 2020, 277, 119186.
85. Wang, D.; Yao, Q.; Hui, S.; Niu, Y., N2O and NO formation from NH3 oxidation over MnOx/TiO2 catalysts. Fuel 2018, 234, 650-655.
86. Oviedo, J.; Sanz, J., N2O decomposition on TiO2 (110) from dynamic first-principles calculations. The Journal of Physical Chemistry B 2005, 109 (34), 16223-16226.
87. Liu, Z.; Li, Y.; Gao, Q.; Sui, Z.; Xu, X., Promotional role of Ceria in N2O assisted selective oxidative dehydrogenation of ethylbenzene over Ce–Co2AlO4 spinel catalysts. Journal of Environmental Chemical Engineering 2021, 9 (4), 105512.
88. Alves, L.; Holz, L. I.; Fernandes, C.; Ribeirinha, P.; Mendes, D.; Fagg, D. P.; Mendes, A., A comprehensive review of NOx and N2O mitigation from industrial streams. Renewable and Sustainable Energy Reviews 2021, 111916.
89. Yan, T.; Bing, W.; Xu, M.; Li, Y.; Yang, Y.; Cui, G.; Yang, L.; Wei, M., Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate. RSC advances 2018, 8 (9), 4695-4702.
90. Sun, X.; Liu, Q.; Liu, S.; Zhang, X.; Liu, S., Improvement of low-temperature NH 3-SCR catalytic performance over nitrogen-doped MO x–Cr 2 O 3–La 2 O 3/TiO 2–N (M= Cu, Fe, Ce) catalysts. RSC advances 2021, 11 (37), 22780-22788.
91. Li, S.; Huang, W.; Xu, H.; Chen, T.; Ke, Y.; Qu, Z.; Yan, N., Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas. Applied Catalysis B: Environmental 2020, 270, 118872.
92. Meng, B.; Zhao, Z.; Wang, X.; Liang, J.; Qiu, J., Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes. Applied Catalysis B: Environmental 2013, 129, 491-500.
93. Chen, Q.-l.; Guo, R.-t.; Wang, Q.-s.; Pan, W.-g.; Yang, N.-z.; Lu, C.-z.; Wang, S.-x., The promotion effect of Co doping on the K resistance of Mn/TiO2 catalyst for NH3-SCR of NO. Journal of the Taiwan Institute of Chemical Engineers 2016, 64, 116-123.
94. Yan, Q.; Chen, S.; Zhang, C.; O'Hare, D.; Wang, Q., Synthesis of Cu0. 5Mg1. 5Mn0. 5Al0. 5Ox mixed oxide from layered double hydroxide precursor as highly efficient catalyst for low-temperature selective catalytic reduction of NOx with NH3. Journal of colloid and interface science 2018, 526, 63-74.
95. Yang, C.; Fu, L.; Zhu, R.; Liu, Z., Influence of cobalt species on the catalytic performance of Co-NC/SiO 2 for ethylbenzene oxidation. Physical Chemistry Chemical Physics 2016, 18 (6), 4635-4642.
96. Gao, J.; Han, Y.; Mu, J.; Wu, S.; Tan, F.; Shi, Y.; Li, X., 2D, 3D mesostructured silicas templated mesoporous manganese dioxide for selective catalytic reduction of NOx with NH3. Journal of colloid and interface science 2018, 516, 254-262.
97. Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Wang, J.; Shi, Y.; Meng, X., Novel Co–or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3–SCR of NOx at low temperature. Applied Surface Science 2018, 443, 103-113.
98. Shi, Y.; Chu, Q.; Xiong, W.; Gao, J.; Huang, L.; Zhang, Y.; Ding, Y., A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO. Chemical Engineering and Processing-Process Intensification 2021, 159, 108232.
99. Zhao, Q.; Chen, B.; Li, J.; Wang, X.; Crocker, M.; Shi, C., Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx. Applied Catalysis B: Environmental 2020, 277, 119215.
100. Chen, Z.; Wang, F.; Li, H.; Yang, Q.; Wang, L.; Li, X., Low-temperature selective catalytic reduction of NO x with NH3 over Fe–Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Industrial & engineering chemistry research 2012, 51 (1), 202-212.
101. Chen, C.; Xie, H.; He, P.; Liu, X.; Yang, C.; Wang, N.; Ge, C., Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method. Applied Surface Science 2022, 571, 151285.
102. Wang, C.; Yu, F.; Zhu, M.; Wang, X.; Dan, J.; Zhang, J.; Cao, P.; Dai, B., Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50–150° C. Chemical Engineering Journal 2018, 346, 182-192.
103. Gao, Y.; Luan, T.; Zhang, S.; Jiang, W.; Feng, W.; Jiang, H., Comprehensive comparison between nanocatalysts of Mn− Co/TiO2 and Mn− Fe/TiO2 for NO catalytic conversion: An insight from nanostructure, performance, kinetics, and thermodynamics. Catalysts 2019, 9 (2), 175.
104. Jiang, L.; Liu, Q.; Ran, G.; Kong, M.; Ren, S.; Yang, J.; Li, J., V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chemical Engineering Journal 2019, 370, 810-821.
105. Ren, S.; Yang, J.; Zhang, T.; Jiang, L.; Long, H.; Guo, F.; Kong, M., Role of cerium in improving NO reduction with NH3 over Mn–Ce/ASC catalyst in low-temperature flue gas. Chemical Engineering Research and Design 2018, 133, 1-10.
106. Chen, J.; Fu, P.; Lv, D.; Chen, Y.; Fan, M.; Wu, J.; Meshram, A.; Mu, B.; Li, X.; Xia, Q., Unusual positive effect of SO2 on Mn-Ce mixed-oxide catalyst for the SCR reaction of NOx with NH3. Chemical Engineering Journal 2021, 407, 127071.
107. Lian, Z.; Liu, F.; He, H.; Shi, X.; Mo, J.; Wu, Z., Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chemical engineering journal 2014, 250, 390-398.
108. Zhou, Y.; Su, B.; Ren, S.; Chen, Z.; Su, Z.; Yang, J.; Chen, L.; Wang, M., Nb2O5-modified Mn-Ce/AC catalyst with high ZnCl2 and SO2 tolerance for low-temperature NH3-SCR of NO. Journal of Environmental Chemical Engineering 2021, 9 (5), 106323.
109. Liu, J.; Zang, P.; Liu, X.; Mi, J.; Wang, Y.; Zhang, G.; Chen, J.; Zhang, Y.; Li, J., A novel highly active catalyst form CuFeMg layered double oxides for the selective catalytic reduction of NO by CO. Fuel 2022, 317, 123469.
110. Guan, B.; Lin, H.; Zhu, L.; Tian, B.; Huang, Z., Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NOx with NH3 over Ti0. 9Ce0. 05V0. 05O2− δ nanocomposites catalysts prepared by solution combustion route. Chemical Engineering Journal 2012, 181, 307-322.
111. Su, L.; Chen, X.; Wang, H.; Wang, Y.; Lu, Z., Oxygen vacancies promoted heterogeneous catalytic ozonation of atrazine by defective 4A zeolite. Journal of Cleaner Production 2022, 336, 130376.
112. Zhu, M.; Zhang, C., Laser-synthesized ultrafine NiO nanoparticles with abundant oxygen vacancies for highly efficient oxygen evolution. Materials Letters 2022, 321, 132409.
113. Wang, Y.; Zhang, Y.; Liu, Y.; Wu, Z., Fluorine-induced oxygen vacancies on TiO2 nanosheets for photocatalytic indoor VOCs degradation. Applied Catalysis B: Environmental 2022, 121610.
114. Zhu, L.; Zeng, Y.; Zhang, S.; Deng, J.; Zhong, Q., Effects of synthesis methods on catalytic activities of CoOx–TiO2 for low-temperature NH3-SCR of NO. Journal of Environmental Sciences 2017, 54, 277-287.
115. Jiang, D.; Zhang, S.; Zeng, Y.; Wang, P.; Zhong, Q., Active site of O2 and its improvement mechanism over Ce-Ti catalyst for NH3-SCR reaction. Catalysts 2018, 8 (8), 336.
116. Zhou, Y.; Ren, S.; Yang, J.; Liu, W.; Su, Z.; Chen, Z.; Wang, M.; Chen, L., Effect of oxygen vacancies on improving NO oxidation over CeO2 {111} and {100} facets for fast SCR reaction. Journal of Environmental Chemical Engineering 2021, 9 (5), 106218.
117. Brustolon, M.; Giamello, E., Electron Paramagnetic Resonance: A Practitioners Toolkit. John Wiley & Sons: 2009.
(此全文限內部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *