|
1. Nakata, K.; Fujishima, A., TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012, 13 (3), 169-189. 2. Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O'Shea, K.; Entezari, M. H.; Dionysiou, D. D., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 2012, 125, 331-349. 3. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H., Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science 2012, 5 (11), 9217-9233. 4. Xiao, S.-T.; Wu, S.-M.; Dong, Y.; Liu, J.-W.; Wang, L.-Y.; Wu, L.; Zhang, Y.-X.; Tian, G.; Janiak, C.; Shalom, M.; Wang, Y.-T.; Li, Y.-Z.; Jia, R.-K.; Bahnemann, D. W.; Yang, X.-Y., Rich surface hydroxyl design for nanostructured TiO2 and its hole-trapping effect. Chemical Engineering Journal 2020, 400, 125909. 5. Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W., A Hierarchical Z-Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small 2015, 11 (39), 5262-5271. 6. Park, H.; Park, Y.; Kim, W.; Choi, W., Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 15, 1-20. 7. Singhal, N.; Kumar, U., Noble metal modified TiO2: selective photoreduction of CO2 to hydrocarbons. Molecular Catalysis 2017, 439, 91-99. 8. Kongsuebchart, W.; Praserthdam, P.; Panpranot, J.; Sirisuk, A.; Supphasrirongjaroen, P.; Satayaprasert, C., Effect of crystallite size on the surface defect of nano-TiO2 prepared via solvothermal synthesis. Journal of Crystal Growth 2006, 297 (1), 234-238. 9. Henrich, V. E.; Kurtz, R. L., Surface electronic structure of TiO2: Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen. Physical Review B 1981, 23 (12), 6280-6287. 10. Zhao, H.; Pan, F.; Li, Y., A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics 2017, 3 (1), 17-32. 11. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S., Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331 (6018), 746-750. 12. Li, J.; Zhang, M.; Guan, Z.; Li, Q.; He, C.; Yang, J., Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2017, 206. 13. Yang, X.; Salzmann, C.; Shi, H.; Wang, H.; Green, M. L. H.; Xiao, T., The Role of Photoinduced Defects in TiO2 and Its Effects on Hydrogen Evolution from Aqueous Methanol solution. The Journal of Physical Chemistry A 2008, 112 (43), 10784-10789. 14. Gopal, N. O.; Lo, H.-H.; Sheu, S.-C.; Ke, S.-C., A Potential Site for Trapping Photogenerated Holes on Rutile TiO2 Surface as Revealed by EPR Spectroscopy: An Avenue for Enhancing Photocatalytic Activity. J. Am. Chem. Soc. 2010, 132 (32), 10982-10983. 15. Boehm, H. P., Acidic and basic properties of hydroxylated metal oxide surfaces. Discussions of the Faraday Society 1971, 52, 264-275. 16. Yu, H.; Yan, S.; Zhou, P.; Zou, Z., CO2 photoreduction on hydroxyl-group-rich mesoporous single crystal TiO2. Applied Surface Science 2018, 427, 603-607. 17. Wu, J. C. S.; Lin, H.-M., Photo reduction of CO2 to methanol via TiO2 photocatalyst. International Journal of Photoenergy 2005, 7, 324760. 18. Kapica-Kozar, J.; Piróg, E.; Wrobel, R. J.; Mozia, S.; Kusiak-Nejman, E.; Morawski, A. W.; Narkiewicz, U.; Michalkiewicz, B., TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Microporous Mesoporous Mat. 2016, 231, 117-127. 19. Hussain, H.; Tocci, G.; Woolcot, T.; Torrelles, X.; Pang, C. L.; Humphrey, D. S.; Yim, C. M.; Grinter, D. C.; Cabailh, G.; Bikondoa, O.; Lindsay, R.; Zegenhagen, J.; Michaelides, A.; Thornton, G., Structure of a model TiO2 photocatalytic interface. Nature Materials 2017, 16 (4), 461-466. 20. Kharade, A. K.; Chang, S.-m., Contributions of Abundant Hydroxyl Groups to Extraordinarily High Photocatalytic Activity of Amorphous Titania for CO2 Reduction. The Journal of Physical Chemistry C 2020, 124 (20), 10981-10992. 21. Di Paola, A.; Bellardita, M.; Palmisano, L.; Barbieriková, Z.; Brezová, V., Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry 2014, 273, 59-67. 22. Wu, C.-Y.; Tu, K.-J.; Deng, J.-P.; Lo, Y.-S.; Wu, C.-H., Markedly Enhanced Surface Hydroxyl Groups of TiO₂ Nanoparticles with Superior Water-Dispersibility for Photocatalysis. Materials (Basel) 2017, 10 (5), 566. 23. Eskandarloo, H.; Badiei, A.; Behnajady, M. A.; Mohammadi Ziarani, G., Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts. Photochem Photobiol 2015, 91 (4), 797-806. 24. Fu, J.; Cao, S.; Yu, J.; Low, J.; Lei, Y., Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment. Dalton Trans. 2014, 43 (24), 9158-9165. 25. Ye, M.; Wang, X.; Liu, E.; Ye, J.; Wang, D., Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction by using a Surface‐Alkalinized Titanium Carbide MXene as Cocatalyst. ChemSusChem 2018, 11 (10), 1606-1611. 26. Litke, A.; Su, Y.; Tranca, I.; Weber, T.; Hensen, E. J. M.; Hofmann, J. P., Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO2. The Journal of Physical Chemistry C 2017, 121 (13), 7514-7524. 27. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis 2012, 2 (8), 1817-1828. 28. Lin, H.; Long, J.; Gu, Q.; Zhang, W.; Ruan, R.; Li, Z.; Wang, X., In situ IR study of surface hydroxyl species of dehydrated TiO2: towards understanding pivotal surface processes of TiO2 photocatalytic oxidation of toluene. Physical Chemistry Chemical Physics 2012, 14 (26), 9468-9474. 29. Kumar, S.; Isaacs, M. A.; Trofimovaite, R.; Durndell, L.; Parlett, C. M. A.; Douthwaite, R. E.; Coulson, B.; Cockett, M. C. R.; Wilson, K.; Lee, A. F., P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Applied Catalysis B: Environmental 2017, 209, 394-404. 30. Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells 2007, 91 (19), 1765-1774. 31. Miseki, Y.; Kusama, H.; Sugihara, H.; Sayama, K., Cs-Modified WO 3 Photocatalyst Showing Efficient Solar Energy Conversion for O 2 Production and Fe (III) Ion Reduction under Visible Light. Journal of Physical Chemistry Letters - J PHYS CHEM LETT 2010, 1, 1196-1200. 32. Mahmodi, G.; Sharifnia, S.; Rahimpour, F.; Hosseini, S. N., Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization. Solar Energy Materials and Solar Cells 2013, 111, 31-40. 33. Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M., A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. 2014, 2 (10), 3407-3416. 34. Dalton, J. S.; Janes, P. A.; Jones, N. G.; Nicholson, J. A.; Hallam, K. R.; Allen, G. C., Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environmental Pollution 2002, 120 (2), 415-422. 35. Grätzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344. 36. Janisch, R.; Gopal, P.; Spaldin, N. A., Transition metal-doped TiO2and ZnO—present status of the field. Journal of Physics: Condensed Matter 2005, 17 (27), R657-R689. 37. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M., Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Scientific Reports 2014, 4 (1), 4043. 38. Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2011, 46 (4), 855-874. 39. Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J., Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials 2014, 57 (1), 70-100. 40. Chang, S.-m.; Liu, W.-s., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B: Environmental 2011, 101 (3), 333-342. 41. Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y., Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light. ACS Catalysis 2016, 6 (2), 1097-1108. 42. He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S., Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Applied Surface Science 2016, 364, 416-427. 43. Xu, F.; Meng, K.; Cheng, B.; Yu, J.; Ho, W., Enhanced Photocatalytic Activity and Selectivity for CO2 Reduction over a TiO2 Nanofibre Mat Using Ag and MgO as Bi-Cocatalyst. ChemCatChem 2019, 11 (1), 465-472. 44. Xu, F.; Zhang, J.; Zhu, B.; Yu, J.; Xu, J., CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2018, 230, 194-202. 45. Gao, J.; Shen, Q.; Guan, R.; Xue, J.; Liu, X.; Jia, H.; Li, Q.; Wu, Y., Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. Journal of CO2 Utilization 2020, 35, 205-215. 46. Phongamwong, T.; Chareonpanich, M.; Limtrakul, J., Role of chlorophyll in Spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalysts. Applied Catalysis B: Environmental 2015, 168-169, 114-124. 47. He, H.; Zapol, P.; Curtiss, L. A., Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase (101) surfaces. Energy & Environmental Science 2012, 5 (3), 6196-6205. 48. Chang, X.; Wang, T.; Gong, J., CO2 Photo-reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environ. Sci. 2016, 9. 49. Xie, S.; Wang, Y.; Zhang, Q.; Deng, W.; Wang, Y., MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis 2014, 4 (10), 3644-3653. 50. Ji, Y.; Luo, Y., New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. J. Am. Chem. Soc. 2016, 138 (49), 15896-15902. 51. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P., Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania. J. Am. Chem. Soc. 2011, 133 (11), 3964-3971. 52. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126 (15), 4943-4950. 53. Mao, J.; Ye, L.; Li, K.; Zhang, X.; Liu, J.; Peng, T.; Zan, L., Pt-loading reverses the photocatalytic activity order of anatase TiO2 {001} and {010} facets for photoreduction of CO2 to CH4. Applied Catalysis B Environmental 2014, 144, 855-862. 54. Koirala, A. R.; Docao, S.; Lee, S. B.; Yoon, K. B., Fate of methanol under one-pot artificial photosynthesis condition with metal-loaded TiO2 as photocatalysts. Catalysis Today 2015, 243, 235-250. 55. Dong, C.; Xing, M.; Zhang, J., Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2–SiO2. The Journal of Physical Chemistry Letters 2016, 7 (15), 2962-2966. 56. Zhang, J.; Hu, Y.; Jiang, X.; Chen, S.; Meng, S.; Fu, X., Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. Journal of Hazardous Materials 2014, 280, 713-722. 57. Gui, M. M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A. R., Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Solar Energy Materials and Solar Cells 2014, 122, 183-189. 58. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M., A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122. 59. Meng, X.; Ouyang, S.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J., Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chemical Communications 2014, 50 (78), 11517-11519. 60. Lee, S. C.; Choi, B. Y.; Lee, T. J.; Ryu, C. K.; Ahn, Y. S.; Kim, J. C., CO2 absorption and regeneration of alkali metal-based solid sorbents. Catalysis Today 2006, 111 (3), 385-390. 61. Nie, L.; Yu, J.; Li, X.; Cheng, B.; Liu, G.; Jaroniec, M., Enhanced Performance of NaOH-Modified Pt/TiO2 toward Room Temperature Selective Oxidation of Formaldehyde. Environmental Science & Technology 2013, 47 (6), 2777-2783. 62. Liu, L.; Zhao, C.; Zhao, H.; Pitts, D.; Li, Y., Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability. Chemical Communications 2013, 49 (35), 3664-3666. 63. Li, W.; Li, D.; Lin, Y.; Wang, P.; Chen, W.; Fu, X.; Shao, Y., Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. The Journal of Physical Chemistry C 2012, 116 (5), 3552-3560. 64. Chong, R.; Fan, Y.; Du, Y.; Liu, L.; Chang, Z.; Li, D., Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. International Journal of Hydrogen Energy 2018, 43 (49), 22329-22339. 65. Nakamura, M.; Kato, S.; Aoki, T.; Sirghi, L.; Hatanaka, Y., Role of terminal OH groups on the electrical and hydrophilic properties of hydro-oxygenated amorphous TiOx:OH thin films. Journal of Applied Physics 2001, 90 (7), 3391-3395. 66. Henderson, M. A.; Epling, W. S.; Peden, C. H. F.; Perkins, C. L., Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2(110). The Journal of Physical Chemistry B 2003, 107 (2), 534-545. 67. Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y., In Situ FTIR Studies of Primary Intermediates of Photocatalytic Reactions on Nanocrystalline TiO2 Films in Contact with Aqueous Solutions. J. Am. Chem. Soc. 2003, 125 (24), 7443-7450. 68. Kasuga, T.; Kondo, H.; Nogami, M., Apatite formation on TiO2 in simulated body fluid. Journal of Crystal Growth 2002, 235 (1), 235-240. 69. Loyalka, S.; Riggs, C., Inverse problem in diffuse reflectance spectroscopy: Accuracy of the Kubelka-Munk equations. Applied spectroscopy 1995, 49 (8), 1107-1110. 70. Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E., OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19 (1), 160-165. 71. Coenen, K.; Gallucci, F.; Mezari, B.; Hensen, E.; Annaland, M., An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. Journal of CO2 Utilization 2018, 24, 228-239. 72. Herburger, A.; Ončák, M.; Siu, C.-K.; Demissie, E. G.; Heller, J.; Tang, W. K.; Beyer, M. K., Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO2.−(H2O)n (n=2–61) in the C−O Stretch Region. Chemistry – A European Journal 2019, 25 (43), 10165-10171. 73. Haneda, M.; Joubert, E.; Menezo, J.; Duprez, D.; Barbier, J.; Bion, N.; Daturi, M.; Saussey, J.; Lavalley, J.-C.; Hamada, H., Surface characterization of alumina-supported catalysts prepared by sol-gel method. Part II. Surface reactivity with CO. Physical Chemistry Chemical Physics 2001, 3, 1371-1375. 74. Rawool, S. A.; Yadav, K. K.; Polshettiwar, V., Defective TiO 2 for photocatalytic CO 2 conversion to fuels and chemicals. Chemical Science 2021, 12 (12), 4267-4299. 75. Elsalamony, R.; Mahmoud, S., Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light. Arabian Journal of Chemistry 2012, 46. 76. Li, H.; Liu, B.; Yin, S.; Sato, T.; Wang, Y., Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution. Nanoscale research letters 2015, 10 (1), 415. 77. Guo, G.; Shi, Q.; Luo, Y.; Fan, R.; Zhou, L.; Qian, Z.; Yu, J., Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives. Nanoscale research letters 2014, 9, 215. 78. Liao, L.-F.; Lien, C.-F.; Lin, J.-L., FTIR study of adsorption and photoreactions of acetic acid on TiO2. Physical Chemistry Chemical Physics 2001, 3 (17), 3831-3837. 79. Murphy, W. F.; Bernstein, H. J., Raman spectra and an assignment of the vibrational stretching region of water. The Journal of Physical Chemistry 1972, 76 (8), 1147-1152. 80. Maira, A. J.; Coronado, J. M.; Augugliaro, V.; Yeung, K. L.; Conesa, J. C.; Soria, J., Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene. Journal of Catalysis 2001, 202 (2), 413-420. 81. Finnie, K. S.; Cassidy, D. J.; Bartlett, J. R.; Woolfrey, J. L., IR Spectroscopy of Surface Water and Hydroxyl Species on Nanocrystalline TiO2 Films. Langmuir 2001, 17 (3), 816-820. 82. Simonsen, M. E.; Li, Z.; Søgaard, E. G., Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film. Applied Surface Science 2009, 255 (18), 8054-8062. 83. Wasielewski, R.; Domaradzki, J.; Wojcieszak, D.; Kaczmarek, D.; Borkowska, A.; Prociow, E. L.; Ciszewski, A., Surface characterization of TiO2 thin films obtained by high-energy reactive magnetron sputtering. Applied Surface Science 2008, 254 (14), 4396-4400. 84. Oku, M.; Matsuta, H.; Wagatsuma, K.; Waseda, Y.; Kohiki, S., Removal of inelastic scattering part from Ti2p XPS spectrum of TiO2 by deconvolution method using O1s as response function. Journal of Electron Spectroscopy and Related Phenomena 1999, 105 (2), 211-218. 85. Arruda, L. B.; Santos, C. M.; Orlandi, M. O.; Schreiner, W. H.; Lisboa-Filho, P. N., Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceramics International 2015, 41 (2), 2884-2891. 86. Atashbar, M. Z.; Sun, H. T.; Gong, B.; Wlodarski, W.; Lamb, R., XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method. Thin Solid Films 1998, 326 (1), 238-244. 87. Wang, X.; Shen, M.; Song, L.; Su, Y.; Wang, J., Surface basicity on bulk modified phosphorus alumina through different synthesis methods. Physical Chemistry Chemical Physics 2011, 13 (34), 15589-15596. 88. Nguyen Thanh, D.; Kikhtyanin, O.; Ramos, R.; Kothari, M.; Ulbrich, P.; Munshi, T.; Kubička, D., Nanosized TiO2—A promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading. Catalysis Today 2016, 277, 97-107. 89. Duvernay, F.; Rimola, A.; Theule, P.; Danger, G.; Sanchez, T.; Chiavassa, T., Formaldehyde chemistry in cometary ices: the case of HOCH 2 OH formation. Physical Chemistry Chemical Physics 2014, 16 (44), 24200-24208. 90. Chernyshova, I. V.; Ponnurangam, S.; Somasundaran, P., Linking interfacial chemistry of CO 2 to surface structures of hydrated metal oxide nanoparticles: Hematite. Physical Chemistry Chemical Physics 2013, 15 (18), 6953-6964. 91. Lucks, C.; Rossberg, A.; Tsushima, S.; Foerstendorf, H.; Fahmy, K.; Bernhard, G., Formic acid interaction with the uranyl (VI) ion: structural and photochemical characterization. Dalton Trans. 2013, 42 (37), 13584-13589. 92. Sutton, C. C.; da Silva, G.; Franks, G. V., Modeling the IR spectra of aqueous metal carboxylate complexes: Correlation between bonding geometry and stretching mode wavenumber shifts. Chemistry–A European Journal 2015, 21 (18), 6801-6805. 93. Huang, Z.; Liu, B.; Liu, J., Mn2+-Assisted DNA Oligonucleotide Adsorption on Ti2C MXene Nanosheets. Langmuir 2019, 35 (30), 9858-9866. 94. Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R., Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137 (50), 15703-15711. 95. Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C., Recombination Pathways in the Degussa P25 Formulation of TiO2: Surface versus Lattice Mechanisms. The Journal of Physical Chemistry B 2005, 109 (11), 5388-5388. 96. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J., EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 2001, 17 (17), 5368-5374. 97. Nakaoka, Y.; Nosaka, Y., ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A: Chemistry 1997, 110 (3), 299-305. 98. Kumar, C. P.; Gopal, N. O.; Wang, T. C.; Wong, M.-S.; Ke, S. C., EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. The Journal of Physical Chemistry B 2006, 110 (11), 5223-5229. 99. Masakazu, A.; Takahito, S.; Yutaka, K., ESR AND PHOTOLUMINESCENCE EVIDENCE FOR THE PHOTOCATALYTIC FORMATION OF HYDROXYL RADICALS ON SMALL TiO2 PARTICLES. Chemistry Letters 1985, 14 (12), 1799-1802. 100. Howe, R. F.; Gratzel, M., EPR study of hydrated anatase under UV irradiation. Journal of Physical Chemistry 1987, 91 (14), 3906-3909. 101. Tan, J. Z. Y.; Gavrielides, S.; Xu, H. R.; Thompson, W. A.; Maroto-Valer, M. M., Alkali modified P25 with enhanced CO2 adsorption for CO2 photoreduction. RSC Advances 2020, 10 (47), 27989-27994. |