帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:黃琬婷
作者(英文):Huang, Wan-Ting
論文名稱(中文):表面氫氧官能基化 TiO2的 CO2光催化還原特性
論文名稱(英文):CO2 photoreduction characteristics of TiO2 with abundant surface hydroxyl group
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:環境工程系所
學號:0851709
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:78
中文關鍵詞:二氧化鈦氫氧官能基二氧化碳光催化還原橋接氫氧官能基末端氫氧官能基
外文關鍵詞:TiO2hydroxyl groupCO2 photoreductionBridged hydroxyl groupTerminal hydroxyl group
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
觸媒表面氫氧(OH)官能基已被證實能幫助CO2化學吸附而有助於還原效率的提升,然而OH官能基型態對CO2還原特性卻還不清楚。本研究以鹼性水熱法於P25表面導入不同數量與型態的OH官能基,比較其在氣相與液相系統中光催化還原CO2活性,並透過XPS、DRIFT、與TGA分析,釐清表面結構與還原活性與選擇性的關係。結果顯示,P25以1-2 M NaOH處理後,OH密度由4.86提升至5.94-5.99/nm2,型態以橋接(bridged)為主,而經4M以上 NaOH處理後,OH密度大幅增加至8.10 /nm2,且開始出現末端(terminal) OH。光催化還原CO2的產物以CO與CH4為主,2M NaOH處理後的樣品有最高CO產率(37.90 mol/g水溶液相;30.52 mol/g氣相)及量子效率 (0.04-0.29%),為P25的2.42-4.00倍(0.01-0.12%),而1M NaOH處理後的樣品則有相對較高的CH4產率(2.37-3.43 mol/g),反應活性的提升與增加的bridged OH官能基有關。經3M NaOH處理後,表面元素重組雖生成較厚的無晶相層(4-6 nm),但高量的表面OH官能基仍使CO2還原活性高於P25。CO2與OH官能基反應後主要生成monodentate/bidentate HCO3-與bidentate CO32-,當生成為monodentate/bidentate HCO3-時,產物主要為CO,而當反應生成為bidentate CO32-時,產物則主要為CH4。
Hydroxyl functional groups (OH) on the surface of the catalyst have been demonstated to help CO2 chemisorption and contribute to the improvement of reduction efficiency. However, the characteristics of the OH functional groups on the reduction of CO2 are still unclear. In this study, different numbers and types of OH functional groups were introduced on the surface of P25 by alkaline hydrothermal method, and their photocatalytic activity for CO2 reduction in gas and liquid systems were examined. In addition, XPS, DRIFT, and TGA analysis were used to clarify the relationship between the surface structure and reducing activity and selectivity. The results showed that the OH density increased from 4.86 to 5.94-5.99/nm2 after treating with 1-2M NaOH and significantly increased to 8.10/nm2 when the NaOH concentration was up to 4M. Bridged OH groups were dominant at 1-2M NaOH treament and terminal OH began to appear above 3M. The products of photocatalytic reduction of CO2 were mainly CO and CH4. The sample treated with 2M NaOH exhibited the highest CO yield (37.90 μmol/g in the aqueous phase; 30.52 mol/g in the gas phase) with a apparent quantum efficiency of 0.04-0.29%, which was 2.42-4.00 times higher than that of P25 (0.01-0.12%). Besides, the sample treated with 1M NaOH had a relatively high CH4 yield (2.37-3.43 mol/g). The improved acivity resulted from increased biedged OH groups. Eventhough surface reconstruction formed a thicker amorphous latyer (4-6 nm) on the surface after treating 3-4M NaOH, high quantity of OH groups still led the treated TiO2 powders to exhibit a higher activity than P25 for CO2 reduction. The bridged OH groups mainly converted CO2 into monodentate/bidentate HCO3- and bidentate CO32- after irradiation. While the monodentate/bidentate HCO3- led to CO formation, bidentate CO32- mainly produced CH4.
摘要 i
Abstract ii
主目錄 iii
表目錄 v
圖目錄 vi
第一章、前言 1
1.1 研究動機與背景 1
1.2 研究目的 3
第二章、文獻回顧 4
2.1 二氧化鈦光觸媒 4
2.2 光催化還原二氧化碳 6
2.2.1 光催化還原二氧化碳特性 6
2.2.2 二氧化鈦光催化還原二氧化碳反應機制 11
2.3 二氧化鈦改性 12
2.3.1 二氧化鈦改性方法 12
2.3.2 二氧化鈦自身缺陷 14
2.4 表面氫氧官能基 15
2.4.1 表面氫氧官能基對CO2光催化還原的效果 15
2.4.2 表面生成氫氧官能基之方法 16
2.4.2 氫氧官能基吸附二氧化碳 18
2.4.3 氫氧官能基對產物的選擇性 19
2.4.4 OH官能基型態 20
第三章、研究方法 23
3.1 實驗架構 23
3.2 實驗藥品 24
3.3 光觸媒材料合成方法 24
3.4 材料鑑定分析 26
3.4.1 紫外光可見光分光光譜儀(UV-Vis Spectrophotometer) 26
3.4.2 等溫氮氣吸脫附分析儀(Nitrogen adsorption-desorption Isothermal analyzer) 27
3.4.3 X光粉末繞射儀(X-ray Powder Diffraction Spectrum , XRD) 27
3.4.4 漫反射紅外線傅立葉轉換即時監測(Diffuse Reflectance Infrared Fourier Transforms, DRIFT) 27
3.4.5 熱重分析儀(Thermogravimetric analysis, TGA) 29
3.4.6 溫度程控脫附儀(Temperature programmed desorption, TPD) 29
3.4.7 化學分析電子儀(Electron Spectroscopy for Chemical Analysis, ESCA) 29
3.4.8 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 30
3.4.9 電子順磁共振儀(Electron paramagnetic resonance, EPR) 31
3.4.10 氣相層析儀(Gas Chromatography, GC) 31
3.5 光催化二氧化碳還原系統 32
3.5.1 液相系統 32
3.5.2 氣相系統 33
第四章、結果與討論 35
4.1 材料基本特性 35
4.2 表面特性 37
4.2.1 氫氧官能基定量 37
4.2.2 氫氧官能基定性 39
4.2.3 化學組成 41
4.3 二氧化碳吸附能力 45
4.4 液相系統中二氧化鈦光催化能力 47
4.5 氣相系統中二氧化鈦光催化能力 49
4.6 反應機制 52
4.6.1 In situ DRIFT 52
4.6.2 OH基隨反應時間的變化 56
4.6.3 表面電荷轉移(EPR) 58
4.7 材料穩定性 60
第五章、結論 63
參考文獻 64
附錄A. 不同NaOH濃度處理下XPS Na1s圖譜 72
附錄B. CO2反應後的ESCA 73
附錄C. 光量子效率比較 77
附錄D. TEM繞射圖 78
1. Nakata, K.; Fujishima, A., TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012, 13 (3), 169-189.
2. Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O'Shea, K.; Entezari, M. H.; Dionysiou, D. D., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 2012, 125, 331-349.
3. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H., Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science 2012, 5 (11), 9217-9233.
4. Xiao, S.-T.; Wu, S.-M.; Dong, Y.; Liu, J.-W.; Wang, L.-Y.; Wu, L.; Zhang, Y.-X.; Tian, G.; Janiak, C.; Shalom, M.; Wang, Y.-T.; Li, Y.-Z.; Jia, R.-K.; Bahnemann, D. W.; Yang, X.-Y., Rich surface hydroxyl design for nanostructured TiO2 and its hole-trapping effect. Chemical Engineering Journal 2020, 400, 125909.
5. Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W., A Hierarchical Z-Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small 2015, 11 (39), 5262-5271.
6. Park, H.; Park, Y.; Kim, W.; Choi, W., Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 15, 1-20.
7. Singhal, N.; Kumar, U., Noble metal modified TiO2: selective photoreduction of CO2 to hydrocarbons. Molecular Catalysis 2017, 439, 91-99.
8. Kongsuebchart, W.; Praserthdam, P.; Panpranot, J.; Sirisuk, A.; Supphasrirongjaroen, P.; Satayaprasert, C., Effect of crystallite size on the surface defect of nano-TiO2 prepared via solvothermal synthesis. Journal of Crystal Growth 2006, 297 (1), 234-238.
9. Henrich, V. E.; Kurtz, R. L., Surface electronic structure of TiO2: Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen. Physical Review B 1981, 23 (12), 6280-6287.
10. Zhao, H.; Pan, F.; Li, Y., A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics 2017, 3 (1), 17-32.
11. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S., Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331 (6018), 746-750.
12. Li, J.; Zhang, M.; Guan, Z.; Li, Q.; He, C.; Yang, J., Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2017, 206.
13. Yang, X.; Salzmann, C.; Shi, H.; Wang, H.; Green, M. L. H.; Xiao, T., The Role of Photoinduced Defects in TiO2 and Its Effects on Hydrogen Evolution from Aqueous Methanol solution. The Journal of Physical Chemistry A 2008, 112 (43), 10784-10789.
14. Gopal, N. O.; Lo, H.-H.; Sheu, S.-C.; Ke, S.-C., A Potential Site for Trapping Photogenerated Holes on Rutile TiO2 Surface as Revealed by EPR Spectroscopy: An Avenue for Enhancing Photocatalytic Activity. J. Am. Chem. Soc. 2010, 132 (32), 10982-10983.
15. Boehm, H. P., Acidic and basic properties of hydroxylated metal oxide surfaces. Discussions of the Faraday Society 1971, 52, 264-275.
16. Yu, H.; Yan, S.; Zhou, P.; Zou, Z., CO2 photoreduction on hydroxyl-group-rich mesoporous single crystal TiO2. Applied Surface Science 2018, 427, 603-607.
17. Wu, J. C. S.; Lin, H.-M., Photo reduction of CO2 to methanol via TiO2 photocatalyst. International Journal of Photoenergy 2005, 7, 324760.
18. Kapica-Kozar, J.; Piróg, E.; Wrobel, R. J.; Mozia, S.; Kusiak-Nejman, E.; Morawski, A. W.; Narkiewicz, U.; Michalkiewicz, B., TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Microporous Mesoporous Mat. 2016, 231, 117-127.
19. Hussain, H.; Tocci, G.; Woolcot, T.; Torrelles, X.; Pang, C. L.; Humphrey, D. S.; Yim, C. M.; Grinter, D. C.; Cabailh, G.; Bikondoa, O.; Lindsay, R.; Zegenhagen, J.; Michaelides, A.; Thornton, G., Structure of a model TiO2 photocatalytic interface. Nature Materials 2017, 16 (4), 461-466.
20. Kharade, A. K.; Chang, S.-m., Contributions of Abundant Hydroxyl Groups to Extraordinarily High Photocatalytic Activity of Amorphous Titania for CO2 Reduction. The Journal of Physical Chemistry C 2020, 124 (20), 10981-10992.
21. Di Paola, A.; Bellardita, M.; Palmisano, L.; Barbieriková, Z.; Brezová, V., Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry 2014, 273, 59-67.
22. Wu, C.-Y.; Tu, K.-J.; Deng, J.-P.; Lo, Y.-S.; Wu, C.-H., Markedly Enhanced Surface Hydroxyl Groups of TiO₂ Nanoparticles with Superior Water-Dispersibility for Photocatalysis. Materials (Basel) 2017, 10 (5), 566.
23. Eskandarloo, H.; Badiei, A.; Behnajady, M. A.; Mohammadi Ziarani, G., Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts. Photochem Photobiol 2015, 91 (4), 797-806.
24. Fu, J.; Cao, S.; Yu, J.; Low, J.; Lei, Y., Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment. Dalton Trans. 2014, 43 (24), 9158-9165.
25. Ye, M.; Wang, X.; Liu, E.; Ye, J.; Wang, D., Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction by using a Surface‐Alkalinized Titanium Carbide MXene as Cocatalyst. ChemSusChem 2018, 11 (10), 1606-1611.
26. Litke, A.; Su, Y.; Tranca, I.; Weber, T.; Hensen, E. J. M.; Hofmann, J. P., Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO2. The Journal of Physical Chemistry C 2017, 121 (13), 7514-7524.
27. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis 2012, 2 (8), 1817-1828.
28. Lin, H.; Long, J.; Gu, Q.; Zhang, W.; Ruan, R.; Li, Z.; Wang, X., In situ IR study of surface hydroxyl species of dehydrated TiO2: towards understanding pivotal surface processes of TiO2 photocatalytic oxidation of toluene. Physical Chemistry Chemical Physics 2012, 14 (26), 9468-9474.
29. Kumar, S.; Isaacs, M. A.; Trofimovaite, R.; Durndell, L.; Parlett, C. M. A.; Douthwaite, R. E.; Coulson, B.; Cockett, M. C. R.; Wilson, K.; Lee, A. F., P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Applied Catalysis B: Environmental 2017, 209, 394-404.
30. Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells 2007, 91 (19), 1765-1774.
31. Miseki, Y.; Kusama, H.; Sugihara, H.; Sayama, K., Cs-Modified WO 3 Photocatalyst Showing Efficient Solar Energy Conversion for O 2 Production and Fe (III) Ion Reduction under Visible Light. Journal of Physical Chemistry Letters - J PHYS CHEM LETT 2010, 1, 1196-1200.
32. Mahmodi, G.; Sharifnia, S.; Rahimpour, F.; Hosseini, S. N., Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization. Solar Energy Materials and Solar Cells 2013, 111, 31-40.
33. Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M., A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. 2014, 2 (10), 3407-3416.
34. Dalton, J. S.; Janes, P. A.; Jones, N. G.; Nicholson, J. A.; Hallam, K. R.; Allen, G. C., Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environmental Pollution 2002, 120 (2), 415-422.
35. Grätzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
36. Janisch, R.; Gopal, P.; Spaldin, N. A., Transition metal-doped TiO2and ZnO—present status of the field. Journal of Physics: Condensed Matter 2005, 17 (27), R657-R689.
37. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M., Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Scientific Reports 2014, 4 (1), 4043.
38. Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2011, 46 (4), 855-874.
39. Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J., Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials 2014, 57 (1), 70-100.
40. Chang, S.-m.; Liu, W.-s., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B: Environmental 2011, 101 (3), 333-342.
41. Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y., Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light. ACS Catalysis 2016, 6 (2), 1097-1108.
42. He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S., Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Applied Surface Science 2016, 364, 416-427.
43. Xu, F.; Meng, K.; Cheng, B.; Yu, J.; Ho, W., Enhanced Photocatalytic Activity and Selectivity for CO2 Reduction over a TiO2 Nanofibre Mat Using Ag and MgO as Bi-Cocatalyst. ChemCatChem 2019, 11 (1), 465-472.
44. Xu, F.; Zhang, J.; Zhu, B.; Yu, J.; Xu, J., CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2018, 230, 194-202.
45. Gao, J.; Shen, Q.; Guan, R.; Xue, J.; Liu, X.; Jia, H.; Li, Q.; Wu, Y., Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. Journal of CO2 Utilization 2020, 35, 205-215.
46. Phongamwong, T.; Chareonpanich, M.; Limtrakul, J., Role of chlorophyll in Spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalysts. Applied Catalysis B: Environmental 2015, 168-169, 114-124.
47. He, H.; Zapol, P.; Curtiss, L. A., Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase (101) surfaces. Energy & Environmental Science 2012, 5 (3), 6196-6205.
48. Chang, X.; Wang, T.; Gong, J., CO2 Photo-reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environ. Sci. 2016, 9.
49. Xie, S.; Wang, Y.; Zhang, Q.; Deng, W.; Wang, Y., MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis 2014, 4 (10), 3644-3653.
50. Ji, Y.; Luo, Y., New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. J. Am. Chem. Soc. 2016, 138 (49), 15896-15902.
51. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P., Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania. J. Am. Chem. Soc. 2011, 133 (11), 3964-3971.
52. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126 (15), 4943-4950.
53. Mao, J.; Ye, L.; Li, K.; Zhang, X.; Liu, J.; Peng, T.; Zan, L., Pt-loading reverses the photocatalytic activity order of anatase TiO2 {001} and {010} facets for photoreduction of CO2 to CH4. Applied Catalysis B Environmental 2014, 144, 855-862.
54. Koirala, A. R.; Docao, S.; Lee, S. B.; Yoon, K. B., Fate of methanol under one-pot artificial photosynthesis condition with metal-loaded TiO2 as photocatalysts. Catalysis Today 2015, 243, 235-250.
55. Dong, C.; Xing, M.; Zhang, J., Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2–SiO2. The Journal of Physical Chemistry Letters 2016, 7 (15), 2962-2966.
56. Zhang, J.; Hu, Y.; Jiang, X.; Chen, S.; Meng, S.; Fu, X., Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. Journal of Hazardous Materials 2014, 280, 713-722.
57. Gui, M. M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A. R., Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Solar Energy Materials and Solar Cells 2014, 122, 183-189.
58. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M., A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122.
59. Meng, X.; Ouyang, S.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J., Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chemical Communications 2014, 50 (78), 11517-11519.
60. Lee, S. C.; Choi, B. Y.; Lee, T. J.; Ryu, C. K.; Ahn, Y. S.; Kim, J. C., CO2 absorption and regeneration of alkali metal-based solid sorbents. Catalysis Today 2006, 111 (3), 385-390.
61. Nie, L.; Yu, J.; Li, X.; Cheng, B.; Liu, G.; Jaroniec, M., Enhanced Performance of NaOH-Modified Pt/TiO2 toward Room Temperature Selective Oxidation of Formaldehyde. Environmental Science & Technology 2013, 47 (6), 2777-2783.
62. Liu, L.; Zhao, C.; Zhao, H.; Pitts, D.; Li, Y., Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability. Chemical Communications 2013, 49 (35), 3664-3666.
63. Li, W.; Li, D.; Lin, Y.; Wang, P.; Chen, W.; Fu, X.; Shao, Y., Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. The Journal of Physical Chemistry C 2012, 116 (5), 3552-3560.
64. Chong, R.; Fan, Y.; Du, Y.; Liu, L.; Chang, Z.; Li, D., Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. International Journal of Hydrogen Energy 2018, 43 (49), 22329-22339.
65. Nakamura, M.; Kato, S.; Aoki, T.; Sirghi, L.; Hatanaka, Y., Role of terminal OH groups on the electrical and hydrophilic properties of hydro-oxygenated amorphous TiOx:OH thin films. Journal of Applied Physics 2001, 90 (7), 3391-3395.
66. Henderson, M. A.; Epling, W. S.; Peden, C. H. F.; Perkins, C. L., Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2(110). The Journal of Physical Chemistry B 2003, 107 (2), 534-545.
67. Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y., In Situ FTIR Studies of Primary Intermediates of Photocatalytic Reactions on Nanocrystalline TiO2 Films in Contact with Aqueous Solutions. J. Am. Chem. Soc. 2003, 125 (24), 7443-7450.
68. Kasuga, T.; Kondo, H.; Nogami, M., Apatite formation on TiO2 in simulated body fluid. Journal of Crystal Growth 2002, 235 (1), 235-240.
69. Loyalka, S.; Riggs, C., Inverse problem in diffuse reflectance spectroscopy: Accuracy of the Kubelka-Munk equations. Applied spectroscopy 1995, 49 (8), 1107-1110.
70. Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E., OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19 (1), 160-165.
71. Coenen, K.; Gallucci, F.; Mezari, B.; Hensen, E.; Annaland, M., An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. Journal of CO2 Utilization 2018, 24, 228-239.
72. Herburger, A.; Ončák, M.; Siu, C.-K.; Demissie, E. G.; Heller, J.; Tang, W. K.; Beyer, M. K., Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO2.−(H2O)n (n=2–61) in the C−O Stretch Region. Chemistry – A European Journal 2019, 25 (43), 10165-10171.
73. Haneda, M.; Joubert, E.; Menezo, J.; Duprez, D.; Barbier, J.; Bion, N.; Daturi, M.; Saussey, J.; Lavalley, J.-C.; Hamada, H., Surface characterization of alumina-supported catalysts prepared by sol-gel method. Part II. Surface reactivity with CO. Physical Chemistry Chemical Physics 2001, 3, 1371-1375.
74. Rawool, S. A.; Yadav, K. K.; Polshettiwar, V., Defective TiO 2 for photocatalytic CO 2 conversion to fuels and chemicals. Chemical Science 2021, 12 (12), 4267-4299.
75. Elsalamony, R.; Mahmoud, S., Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light. Arabian Journal of Chemistry 2012, 46.
76. Li, H.; Liu, B.; Yin, S.; Sato, T.; Wang, Y., Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution. Nanoscale research letters 2015, 10 (1), 415.
77. Guo, G.; Shi, Q.; Luo, Y.; Fan, R.; Zhou, L.; Qian, Z.; Yu, J., Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives. Nanoscale research letters 2014, 9, 215.
78. Liao, L.-F.; Lien, C.-F.; Lin, J.-L., FTIR study of adsorption and photoreactions of acetic acid on TiO2. Physical Chemistry Chemical Physics 2001, 3 (17), 3831-3837.
79. Murphy, W. F.; Bernstein, H. J., Raman spectra and an assignment of the vibrational stretching region of water. The Journal of Physical Chemistry 1972, 76 (8), 1147-1152.
80. Maira, A. J.; Coronado, J. M.; Augugliaro, V.; Yeung, K. L.; Conesa, J. C.; Soria, J., Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene. Journal of Catalysis 2001, 202 (2), 413-420.
81. Finnie, K. S.; Cassidy, D. J.; Bartlett, J. R.; Woolfrey, J. L., IR Spectroscopy of Surface Water and Hydroxyl Species on Nanocrystalline TiO2 Films. Langmuir 2001, 17 (3), 816-820.
82. Simonsen, M. E.; Li, Z.; Søgaard, E. G., Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film. Applied Surface Science 2009, 255 (18), 8054-8062.
83. Wasielewski, R.; Domaradzki, J.; Wojcieszak, D.; Kaczmarek, D.; Borkowska, A.; Prociow, E. L.; Ciszewski, A., Surface characterization of TiO2 thin films obtained by high-energy reactive magnetron sputtering. Applied Surface Science 2008, 254 (14), 4396-4400.
84. Oku, M.; Matsuta, H.; Wagatsuma, K.; Waseda, Y.; Kohiki, S., Removal of inelastic scattering part from Ti2p XPS spectrum of TiO2 by deconvolution method using O1s as response function. Journal of Electron Spectroscopy and Related Phenomena 1999, 105 (2), 211-218.
85. Arruda, L. B.; Santos, C. M.; Orlandi, M. O.; Schreiner, W. H.; Lisboa-Filho, P. N., Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceramics International 2015, 41 (2), 2884-2891.
86. Atashbar, M. Z.; Sun, H. T.; Gong, B.; Wlodarski, W.; Lamb, R., XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method. Thin Solid Films 1998, 326 (1), 238-244.
87. Wang, X.; Shen, M.; Song, L.; Su, Y.; Wang, J., Surface basicity on bulk modified phosphorus alumina through different synthesis methods. Physical Chemistry Chemical Physics 2011, 13 (34), 15589-15596.
88. Nguyen Thanh, D.; Kikhtyanin, O.; Ramos, R.; Kothari, M.; Ulbrich, P.; Munshi, T.; Kubička, D., Nanosized TiO2—A promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading. Catalysis Today 2016, 277, 97-107.
89. Duvernay, F.; Rimola, A.; Theule, P.; Danger, G.; Sanchez, T.; Chiavassa, T., Formaldehyde chemistry in cometary ices: the case of HOCH 2 OH formation. Physical Chemistry Chemical Physics 2014, 16 (44), 24200-24208.
90. Chernyshova, I. V.; Ponnurangam, S.; Somasundaran, P., Linking interfacial chemistry of CO 2 to surface structures of hydrated metal oxide nanoparticles: Hematite. Physical Chemistry Chemical Physics 2013, 15 (18), 6953-6964.
91. Lucks, C.; Rossberg, A.; Tsushima, S.; Foerstendorf, H.; Fahmy, K.; Bernhard, G., Formic acid interaction with the uranyl (VI) ion: structural and photochemical characterization. Dalton Trans. 2013, 42 (37), 13584-13589.
92. Sutton, C. C.; da Silva, G.; Franks, G. V., Modeling the IR spectra of aqueous metal carboxylate complexes: Correlation between bonding geometry and stretching mode wavenumber shifts. Chemistry–A European Journal 2015, 21 (18), 6801-6805.
93. Huang, Z.; Liu, B.; Liu, J., Mn2+-Assisted DNA Oligonucleotide Adsorption on Ti2C MXene Nanosheets. Langmuir 2019, 35 (30), 9858-9866.
94. Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R., Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137 (50), 15703-15711.
95. Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C., Recombination Pathways in the Degussa P25 Formulation of TiO2:  Surface versus Lattice Mechanisms. The Journal of Physical Chemistry B 2005, 109 (11), 5388-5388.
96. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J., EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 2001, 17 (17), 5368-5374.
97. Nakaoka, Y.; Nosaka, Y., ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A: Chemistry 1997, 110 (3), 299-305.
98. Kumar, C. P.; Gopal, N. O.; Wang, T. C.; Wong, M.-S.; Ke, S. C., EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. The Journal of Physical Chemistry B 2006, 110 (11), 5223-5229.
99. Masakazu, A.; Takahito, S.; Yutaka, K., ESR AND PHOTOLUMINESCENCE EVIDENCE FOR THE PHOTOCATALYTIC FORMATION OF HYDROXYL RADICALS ON SMALL TiO2 PARTICLES. Chemistry Letters 1985, 14 (12), 1799-1802.
100. Howe, R. F.; Gratzel, M., EPR study of hydrated anatase under UV irradiation. Journal of Physical Chemistry 1987, 91 (14), 3906-3909.
101. Tan, J. Z. Y.; Gavrielides, S.; Xu, H. R.; Thompson, W. A.; Maroto-Valer, M. M., Alkali modified P25 with enhanced CO2 adsorption for CO2 photoreduction. RSC Advances 2020, 10 (47), 27989-27994.
(此全文20240712後開放外部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *