帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:李國閔
作者(英文):Li, Kuo-Min
論文名稱(中文):以紫外光誘發臭氧氧化法移除一氧化氮對硫化氫監測系統分析偏差的影響
論文名稱(英文):Reduction of NO-triggered Detection Bias by a UV-Induced Ozone Oxidation Method in a H2S Monitoring System
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:林亮毅
游議輝
口試委員(英文):Lin, Liang-Yi
Yu, Yi-Hui
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:工學院產業安全與防災學程
學號:0761026
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:50
中文關鍵詞:硫化氫分析儀紫外光螢光法一氧化氮紫外光誘發臭氧氧化
外文關鍵詞:Hydrogen sulfide analyzerUltraviolet FluorescenceNitric OxideUV-induced ozone oxidation method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
半導體晶圓廠空氣中的硫化氫(H2S)由於易與含銅薄膜進行反應產生缺陷,因此長期準確監測H2S氣體濃度成為廠區控制產品良率的重要需求。目前普遍用來監測H2S的儀器為紫外光螢光法分析儀,其主要是利用H2S氧化物-二氧化硫(SO2)的螢光發光值回推H2S含量,然而空氣中的一氧化氮(NO)卻會發出與SO2螢光光譜重疊的光譜,因而導致分析偏差與錯誤示警。為改善NO對H2S分析儀的干擾,本研究以紫外光誘發臭氧氧化法將NO轉化為NO2以降低NO干擾並提高分析儀對H2S濃度響應的準確性。實驗結果顯示,廠區空氣中含有38-67 ppbv NO與1.1-1.6 ppbv H2S,NO確實對分析儀造成正偏差影響,且響應值與NO濃度呈正相關(y=0.0149x+0.3581, R2=0.9938),透過紫外光誘發臭氧氧化法可大幅移除99.28 – 99.42% 的NO,但對H2S測值的影響僅0.5-1.8%,系統的方法偵測極限可達0.44 ppbv,相較於一般以活性炭移除NO但卻同步吸附98% H2S,紫外光誘發臭氧氧化法可有效降低NO干擾且低度影響H2S測值。當紫外光燈管輸出功率為75%時,對NO有最快移除速率,其速率常數可達1.64 min-1,且連續15天維持99%以上去除效率,將裝置安裝於H2S監測系統持續7天,錯誤示警次數可從3次降低為0次,估計一年能省下2,340,000元之採樣分析費用。
 As H2S easily reacts Cu to cause defects, demand for H2S monitoring has be becoming emergent in chip factory in order to reach high product quality control. Ultraviolet-fluorescence analyzers are one of commonly used monitors for H2S detection. They mainly measure fluorescence of an oxidized product of H2S, SO2, to reflect concentration of H2S. However, NO in the air emits fluorescence within the fluorescence spectrum of SO2, thus causing analytical bias and false alarms. To reduce the NO interference, an UV-induced ozone oxidation method was developed to convert NO into NO2. Results showed that it contained 38-67 ppbv NO and 1.1-1.6 ppbv H2S in the ambient air in the plant. The H2S analyzer had a positive and linear response to NO concentrations (y=0.0149x+0.3581, R2=0.9938, where x and y are NO concentration and signal output, respectively). The UV-induced ozone oxidation greatly reduced 99.28-99.42% NO but had insignificant influence on H2S measurement (0.5-1.8%). The H2S detection limit was down to 0.44 ppbv with the UV-induced ozone oxidation. Compared to activated carbons, which adsorbed 98% H2S while NO removal, the UV-induced ozone oxidation effectively reduced the bias caused by NO and introduced a low impact on the H2S measurement. When the power of the UV lamp was 75%, NO removal rate was the highest and the rate constant was 1.64 min-1. The NO elimination equipment was able to continuously convert 99% NO for 15 days and reduced the number of false alarms for the H2S monitoring system from 3 to 0 within 7 days. With improved accuracy of the H2S monitoring system by the UV-induced ozone oxidation, approximate 2,340,000 NTD per year for H2S sampling and analysis can be saved.
摘要 ……………………………………………………………………………i
ABSTRACT………………………………………………………………………ii
致謝……………………………………………………………………………iv
目錄 ……………………………………………………………………………v
表目錄 ………………………………………………………………………vii
圖目錄………………………………………………………………………viii
第一章 前言 1
1.1研究背景及動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1含硫物種 3
2.1.1含硫物種來源 3
2.1.2含硫物種監測方法 4
2.2 螢光測量法的干擾 6
2.2.1揮發性有機物 6
2.2.2水氣 9
2.2.3一氧化氮 10
2.3 一氧化氮去除 11
2.3.1 活性炭法 11
2.3.2 觸媒還原性反應 12
2.3.3 臭氧氧化法 13
2.4 臭氧製備 13
2.4.1 高壓電極放電法 14
2.4.2 電解法 14
2.4.3 UV紫外線法 14
第三章 實驗方法 17
3.1 實驗流程 17
3.2. 實驗器材 18
3.2.1實驗儀器 18
3.2.2標準氣體 22
3.2.3去除裝置 23
3.3 實驗步驟 24
3.3.1背景值定性定量分析 24
3.3.2 干擾偏差測試 25
3.3.3干擾去除測試 25
3.3.4 可行性評估 27
3.3.5 加裝效應測試 29
3.4 儀器分析方法 30
3.4.1 硫化氫分析方法 30
3.4.2 一氧化氮分析方法 30
3.4.3 揮發性有機物分析方法 30
3.4.4 臭氧分析方法 31
3.4.5 氨分析方法 31
第四章 結果與討論 32
4.1背景值定性定量分析結果 32
4.2干擾偏差測試結果 34
4.3干擾去除測試結果 37
4.4 可行性評估結果 40
4.5 去除裝置加裝效應 46
第五章 結論與建議 48
5-1結論 48
5-2建議 48
參考文獻 49

1. Jürgen Frickinger, Jürgen Bügler, Gerhard Zielonka, Lothar Pfitzner, Heiner Ryssel, Susanne Hollemann, and Heinz Schneider, “Reducing Airborne Molecular Contamination by Efficient Purging of FOUPs for 300-mmWafers—The Influence of Materials Properties”, IEEE Transactions on Semiconductor Manufacturing, vol. 13, Issue 4, pp. 427-433, 2000
2. Shou-Nan Li. Hui-Ya Shih, Shaw-Yi Yen, Jean Yang, “Case study of micro-contamination control”, Aerosol Air Quality Research, vol. 7, Issue 3, pp. 432-442, 2007
3. Instrument Society of America, “Environmental Conditions for Process Measurement and Control Systems: Airborne Contaminants”, ISA–71.04, 1986
4. Hideo Okabe, Paul L. Splitstone, and Joseph J. Ball, “Ambient and Source SO2 Detector Based on a Fluorescence Method”, Journal of the Air Pollution Control Association, vol. 23, Issue 6, pp. 514-516, 1973
5. Qing Gong and Kenneth L. Demerjian, “Hydrocarbon Losses on a Regenerated Nation® Dryer”, Journal of the Air and Waste Management Association, vol. 45, No.6, pp. 490-493, 1995
6. 鄭伊利,「以臭氧及紫外光程序去除氣體中橡膠臭味之研究」,國立中山大學環境工程研究所,碩士論文,2008年
7. 張晉華,王雷,聶亞峰,楊震,「大氣硫循環中的自然硫釋放研究」,環境科學與技術,第98期,2001年11月
8. 李中光,「淺談煉油廠惡臭污染防治」,桃園大學校院產業環保技術服務團環保簡訊,萬能科技大學環境工程系,2010年
9. 楊秀宜、李聯雄,「造紙業紙漿局限空架作業危害暴露評估調查」,行政院勞工安全衛生研究所,2009年
10. 張瑞琪,「高科技產業高沸點製程廢氣調查技術研究」,國立交通大學工學院碩士在職專班產業安全與防災組,碩士論文,2010年
11. 行政院勞動部,「勞工作業場所容許暴露標準」,2014年
12. American National Standards Institute / Industrial Safety Equipment Association, “American National Standard for Gas Detector tube Units - Short Term Type for Toxic Gases and Vapors in Working Environments”, ANSI / ISEA, pp. 102-1990, 2015
13. João Flávio da Silveira Petruci, Paula Regina Fortes, Vjekoslav Kokoric, Andreas Wilk, Ivo Milton Raimundo, Jr., Arnaldo Alves Cardoso, Boris Mizaikoff, “Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time”, Analyst, vol. 139, Issue 1, pp. 198-203, 2014
14. 行政院環境保護署,「空氣中硫化氫、甲硫醇、二硫化碳、硫化甲基、及二硫化甲基檢驗方法—氣相層析/火焰光度偵測法」,NIEA A701.11C ,2008年
15. 行政院環境保護署,「空氣中二氧化硫自動檢驗方法-紫外光螢光法」,NIEA A416.13C,2016年
16. Sanjay Prasad, Yu-Mei Hsu, Michael Martineau, Kendra Thomas, “H2S and TRS Measurements – Continuous and Integrated Methods”, Wood Buffalo Environmental Association, 2018
17. 李盈鋅,「紅色馬來胺螢光材料的合成與其元件性質」,國立中央大學化學研究所,碩士論文,2007年
18. 洪裕閔,「雷丸抗氧化、螢光成分及揮發性成分之研究」,東海大學食品科學研究所,碩士論文,2001年
19. Edward E. Rickman, Jr., Annette H. Green, Robert S. Wright, Joseph E.Sickles, II, “Laboratory and Field Evaluations of Extra Sensitive Sulfur Dioxide and Nitrogen Dioxide Analyzers for Acid Deposition Monitoring”, Environmental Protection Agency, 1990
20. Winston T. Luke, “Evaluation of a commercial pulsed fluorescence detector for the measurement of low-level SO2 concentrations during the Gas-Phase Sulfur Intercomparison Experiment”, Journal of Geophysical Research, vol. 102, Issue D13, pp. 16255-16265, 1997
21. Anders B. Bluhme, Jonas L. Ingemar, Carl Meusinger, and Matthew S. Johnson, “Water vapor inhibits hydrogen sulfide detection in pulsed fluorescence sulfur monitors”, Atmospheric Measurement Techniques, vol. 9, Issue 6, pp. 2669-2673, 2016
22. 行政院環境保護署,「空氣中氮氧化物自動檢驗方法-化學發光法」,NIEA A417.12C,2016年
23. Duchesne J. and Rosen B., “Contribution to the study of electronic spectra of bent triatomic molecules.”, Journal of Chemical Physics, vol. 15, Issue 9, pp. 631-644, 1947
24. Lotmar W., “Über die Fluoreszenz von Schwefeldioxyd.” Zeitschrift für Physik, vol. 83, Issue 11-12, pp. 765-785, 1933
25. 施佳希,「應用微波反應活性碳固定床處理氮氧化物與硫氧化物之研究」,國立臺北科技大學環境工程與管理研究所,碩士論文,2019年
26. 吳以壯,「以還原性觸媒還原技術同時去除NO及VOCs之效率測試研究」,國立交通大學環境工程研究所,碩士論文,2005年
27. Young Sun Mok, Heon-Ju Lee, "Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique," Fuel Processing Technology, vol. 87, Issue 7, pp. 591-597, 2006.
28. Steven T. Summerfelt, ”Ozonation and UV irradiation - an introduction and examples of current applications”, Aquacultural Engineering, vol. 28, Issue 1-2, pp. 21-36, 2003
(此全文20260823後開放外部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *