帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:林修民
作者(英文):Lin, Hsiu-Min
論文名稱(中文):以 NaBH4 製備表面缺陷二氧化鈦對二氧化碳的還原特性
論文名稱(英文):CO 2 Photoreduction Characteristics of Surface Defective TiO 2 Prepared by NaBH 4
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:徐雍鎣
林亮毅
黃逸帆
口試委員(英文):Hsu, Yung-Jung
Lin, Liang-Yi
Huang, Yi-Fan
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:環境工程系所
學號:0751734
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:92
中文關鍵詞:氧空缺硼氮摻雜二氧化鈦二氧化碳光催化還原
外文關鍵詞:Oxygen vacanciesBN co-doped TiO2TiO2CO2 photoreduction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:86
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗在N2環境下以NaBH4在不同溫度下還原P25以製備含有氧空缺(OV)與硼氮(BN)摻雜物種的光觸媒,並探討其對CO2光催化還原的活性與選擇性。由XPS圖譜可以發現,當溫度由300C提升至500C時,OV/Ti比例由0.23提高至0.67,材料在400C時開始有BN(BN/Ti= 0.08)以及硼氧化物物種生成,且結晶型態轉為無晶相。CO2-TPD結果顯示當樣品有最高Ov比例(OV/Ti= 0.67)時CO2有最高脫附量(1.28 mmol/g),反映Ov能幫助CO2於TiO2上的化學吸附,另外,EPR顯示表面帶有大量OV及BN物種的觸媒有利於光生載子的轉移,BN摻雜 TiO2樣品對CO2還原的產物以CO與CH4為主,CO在400C有最高產率(44.4 mol/g),而CH4的相對產量則隨溫度增加而提高,使光量子效率在600C時達最高0.066%,為P25 的8.28倍‧整體來說,材料表面特性主導CO2還原表現,表面OV與BN能促進CO2化學吸附而提高CO2還原活性,其中BN能進一步促進表面電荷轉移,而OV則能提高CH4選擇性。
In this experiment, P25 was reduced with NaBH4 at different temperatures in N2 environment to prepare a photocatalyst containing oxygen vacancies (Ov) and boron nitrogen (BN) alternative species. To explore its activity and selectivity for CO2 photocatalytic reaction. XPS spectrum can reveal that when the temperature rises from 300C to 500C, the Ov/Ti ratio increases from 0.23 to 0.67, BN/Ti increase from 0 to 0.54. And when the calcined temperature was over 400℃, we can found crystalinity decrease and start to transform to amorphous。The CO2-TPD results showed that when the sample has highest Ov ratio (Ov/Ti=0.67)can enhance CO2 adsorption capability about 4.3 times than P25. this result reflecting that Ov can help the chemical adsorption of CO2 on TiO2 . In addition, EPR shows that there are a large number of Ov and BN exist on the surface of catalysts to facilitate the transfer of photogenerated carriers.。The product in CO2 photocatalytic reaction with BN doped TiO2 are mainly CO and CH4, CO has the highest product yield in 400-N2(44.4μmol/g) and when the calcined temperature raise from 400℃ to 600℃ the selectivity changed toward CH4 making the AQE up to 0.066% which is 8.28 times than P25, this result shows that surface oxygen vacancies and BN can increase activity of CO2 photoreduction through promote CO2 adsorption and photogenerated carriers transer.
主目錄
摘要……………………………………………………………………………………………ⅰ
Abstract………………………………………………………………………………………..ⅱ
主目錄………………………………………………………………………………………...ⅲ
表目錄………………………………………………………………………………………...ⅳ
圖目錄……………………………………………………………………………………..…ⅶ
第一章  前言………………………………………………………………………………1
 1.1研究動機……………………………………………………………………………….1
 1.2研究目的……………………………………………………………………………….2
第二章  文獻回顧…………………………………………………………………………3
 2.1光觸媒簡介……………………………………………………………………………..3
  2.1.1光觸媒發展與應用……………...…………………………………………………3
  2.1.2 TiO2特性…………………………………………………………………………...3
 2.2 光觸媒還原CO2 ……………………………………………………………………….5
  2.2.1光觸媒還原CO2原理……………………………………………………………...5
  2.2.1T iO2光催化還原CO2反應機制…………………………………………………...7
 2.3 光觸媒修飾…………………………………………………………………………...10
  2.3.1T iO2缺陷化學…………………………………………………………………….10
  2.3.2氧空缺TiO2…………………………………………………………………………………………………………..10
  2.3.3 氧空缺TiO2對CO2光催化還原的影響…………………………………………12
  2.3.4表面氧空缺TiO2製備…………………………………………………………….13
 2.4光催化還原CO2反應系統…………………………………………………………….16
  2.4.1液相反應…………………………………………………………………………..16
  2.4.2氣相反應…………………………………………………………………………..16
第三章  研究方法………………………………………………………………………..17
 3.1實驗架構………………………………………………………………………………17
 3.2實驗藥品……………………………………………………………………………...18
 3.3觸媒製備方法………………………………………………………………………...18
 3.4 材料鑑定分析………………………………………………………………………..19
  3.4.1穿透式電子顯微鏡 (Transmission Electron Microscopy-Energy Dispersive spectrum,TEM)………………………………………………………………………………20
  3.4.2等溫氮氣吸脫附分析儀(Nitrogen Adsorption-Desorption Isothermal Analyzer)……………………………………………………………………………………..20
  3.4.3 X光粉末繞射儀(X-ray Powder Diffraction Spectrum , XRD)………………….21
  3.4.4化學分析電子儀(Electron Spectroscopy for Chemical Analysis , ESCA)………21
  3.4.5傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer , FTIR )………………………………………………………………………………………...22
  3.4.6紫外光可見光及遠紅外光分光光譜儀(UV-vis and Near Infrared Spectrophotometer)…………………………………………………………………………..22
  3.4.7電子順磁共振儀(Electron Paramagnetic Resonance, EPR)……………………..23
  3.4.8二氧化碳程式升溫脫附分析(CO2 Temperature-Programmed Desorption, CO2-TPD)…………………………………………………………………………………….24
  3.4.9 漫反射紅外線傅立葉轉換即時監測(Diffuse Reflectance Infrared Fourier Transforms , DRIFT)…………………………………………………………………………24
 3.5 光催化CO2還原系統………………………………………………………………..25
  3.5.1氣相系統………………………………………………………………………….25
  3.5.2液相系統………………………………………………………………………….25
  3.5.3氣相層析儀(Gas Chromatography, GC)………………………………………….28
第四章  結果與討論……………………………………………………………………..29
 4.1微結構…………………………………………………………………………………29
 4.2表面特性………………………………………………………………………………32
  4.2.1化學組成……..………………………………………………………………….32
  4.2.2表面官能基………………………………………………………………………37
 4.3光學特性………………………………………………………………………………38
 4.4 CO2光催化還原活性………………………………………………………………….40
 4.5 CO2吸附能力………………………………………………………………………….44
 4.6 CO2光催化還原機制………………………………………………………………….45
  4.6.1表面電荷轉移…………………………………………………………………….46
  4.6.2 In-situ DRIFT……………………………………………………………………..51
 4.7 CO2還原特性探討…………………………………………………………………….54
 4.8材料重複利用性………………………………………………………………………….55
第五章  結論……………………………………………………………………………..57
參考文獻……………………………………………………………………………………..58
附錄A不同數量氧空缺以及BN光觸媒製備……………………………………………..65
附錄B. 不同數量氧空缺以及BN光觸媒微結構…………………………………………66
附錄C. 不同數量氧空缺以及BN光觸媒表面化學組成…………………………………68
附錄D. 不同數量氧空缺以及BN光觸媒CO2光還原效率……………………………..71
附錄E. P25與300~600-N2 TGA圖譜…………………………………………………….73
附錄F. 600-N2 CO2-TPD 空白……………………………………………………………..74
附錄G. 300-N2、400-N2、600-N2 真空環境下未照光圖譜…………………………….75
附錄H. P25、400-N2、600-N2之XPS Valence band spectra……………………………..76
附錄I. P25、300-N2、400-N2、600-N2之XPS C1s spectra after CO2 photoreduction…77
附錄J. P25、300-N2、400-N2、600-N2之XPS Ti 2p spectra after CO2 photoreduction…79
附錄K. 300-N2、400-N2、600-N2之XPS O 1s spectra after CO2 photoreduction……….80
附錄L. 400-N2、600-N2之XPS B 1s spectra after CO2 photoreduction…………………..82
附錄M. 400-N2、600-N2之XPS N 1s spectra after CO2 photoreduction………………….83

附錄N. 600-N2在IR光源及太陽光源下的活性……………………………………….84
附錄O. 600-N2光催化O2生成量………………………………………………………..85
附錄P. 400-N2、600-N2 EDX影像..……………………………………………………..86
附錄Q. 氧空缺TiO2 AQE比較表………………………………………………………..88
附錄R. 300-N2、400-N2 DRIFT圖譜……………………………………………………..89



圖目錄
圖2.1常見半導體於pH=7水溶液的氧化還原電位………………………………………..3
圖2.2 TiO2晶相圖…………………………………………………………………….........4.
圖2.3 TiO2光催化還原CO2機制…………………………………………………………5
圖2.4 CO2吸附於TiO2表面的可能結構………………………………………………….7
圖2.5 光催化還原CO2機制…………………………………………………………………8
圖2.6 帶有氧空缺TiO2的光催化還原CO2機制……………………………………………9
圖2.7 (a)完美晶體 (b)Frenkel defect (c) Schottky defect…………………………………..10
圖2.8 氧空缺濃度與O2分壓關係圖……………………………………………………….12
圖2.9 氧空缺TiO2電子結構示意圖………………………………………………………..13
圖 3.1實驗架構圖…………………………………………………………………………..16
圖 3.2材料合成示意圖……………………………………………………………………..17
圖3.3管狀高溫爐升溫程序…………………………………………………………………19
圖3.4 氣相CO2光催化還原系統示意圖…………………………………………………..26
圖3.5 氣相CO2光催化還原系統示意圖…………………………………………………..27
圖4.1(a、b) 300-N2 (c) 400-N2 (d、e) 600-N2 (f) 600-N2之繞射圖(e、f) P25 TEM影像……………………………………………………………………………………………..30
圖4.2 300~600-N2之XRD繞射圖………………………………………………………31
圖4.3. 300~600-N2 Ti 2p 圖譜…………………………………………………………...32
圖4.4 300~600-N2 O 1s 圖譜…………………………………………………………….33
圖4.5 (a)400-N2 (b)500-N2 (c)600-N2 B 1s 圖譜……………………………………….35
圖4.6 (a)400-N2 (b)500-N2 (c)600-N2 N 1s 圖譜………………………………………..36
圖4.7 300~600-N2的FTIR圖譜………………………………………………….………37
圖4.8 P25及300~600-N2的UV-vis and NIR光譜……………………………………..39
圖4.9 (a) P25與(b) 600-N2的電子結構圖………………………………………………..40
圖4.10 P25 與300~600-N2在10小時氣相光催化還原產物量…………………………42
圖4.11 P25 與300~600-N2在10小時液相光催化還原產物量 (a)CO與CH4 (b)H2…43
圖4.12 P25與300~600-N2 CO2-TPD曲線圖……………………………………………..45
圖4.13 77K,UV光照下不同氣氛的(a)300-N2, (b)400-N2, (c)600-N2 EPR圖譜……….50
圖4.14 600-N2的(a)In-situ DRIFT圖譜(b)以照光30min 圖譜為基準的In-situ DRIFT圖譜…………………………………………………………………………………………..51
圖4.15 600-N2的CO2 光催化還原機制圖(a)當CO2化學吸附於氧空缺位置(b) 當CO2化學吸附於Ti3+ (c) 當H2O先與氧空缺位置作用形成OH group後進行CO2光催化還原……………………………………………………………………………………………..52
圖 4.16 600-N2在CO2氣相還原系統中之重複使用率………………………………..54
圖 4.17 600-N2在CO2液相還原系統中(a)CO與CH4, (b)H2之重複使用率…………55
附圖B.1 不同數量氧空缺以及BN光觸媒XRD繞射圖譜………………………………65
附圖B.2 不同數量氧空缺以及BN光觸媒TEM影像(a)400-Ar、(b)600-Ar、(c)500-Vac、(d)600-Vac……………………………………………………………………………………67
附圖C.1 500-Vac O1s 圖譜…………………………………………………………………68
附圖C.2 600-Vac O1s 圖譜…………………………………………………………………69
附圖C.3 400-Ar O1s 圖譜…………………………………………………………………..69
附圖C.4 600-Ar O1s 圖譜…………………………………………………………………..70
附圖D.1 不同數量氧空缺以及BN光觸媒氣相CO2還原效率……………………….....71
附圖D.2 不同數量氧空缺以及BN光觸媒液相CO2還原效率…………………………..72
附圖E. P25與300~600-N2 TGA圖譜………………………………………………………73
附圖F. 600-N2 CO2-TPD 空白……………………………………………………………...74
附圖G. 300-N2、400-N2、600-N2 真空環境下未照光之EPR圖譜…………………….75
附圖H P25、400-N2、600-N2之XPS Valence band spectra…………………………….76
附圖I P25、300-N2、400-N2、600-N2 經CO2光還原後之XPS C1s圖譜………….78
附圖J P25、300-N2、400-N2、600-N2 經CO2光還原後之XPS C1s圖譜………..79
附圖K 300-N2、400-N2、600-N2 經CO2光還原後之XPS O1s圖譜………………81
附圖L 400-N2、600-N2 經CO2光還原後之XPS B1s圖譜…………………………..82
附圖M 400-N2、600-N2 經CO2光還原後之XPS N1s圖譜…………………………...83
附圖N 600-N2 在IR 以及太陽光下CO2光還原活性………………………………….84
附圖O O2檢量線…………………………………………………………………………..85
附圖P 400-N2、600-N2 EDX影像及元素分析………………………………………….86
附圖R 400-N2、600-N2 DRIFT圖譜…………………………………………………….89
1. Huang, H.; Lin, J.; Zhu, G.; Weng, Y.; Wang, X.; Fu, X.; Long, J., A Long-Lived Mononuclear Cyclopentadienyl Ruthenium Complex Grafted onto Anatase TiO2 for Efficient CO2 Photoreduction. Angew Chem Int Ed Engl 2016, 55 (29), 8314-8.
2. Boreriboon, N.; Jiang, X.; Song, C.; Prasassarakich, P., Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to hydrocarbons. Journal of CO2 Utilization 2018, 25, 330-337.
3. Camarillo, R.; Tostón, S.; Martínez, F.; Jiménez, C.; Rincón, J., Enhancing the photocatalytic reduction of CO2 through engineering of catalysts with high pressure technology: Pd/TiO2 photocatalysts. The Journal of Supercritical Fluids 2017, 123, 18-27.
4. Wu, D.; Guo, J.; Wang, H.; Zhang, X.; Yang, Y.; Yang, C.; Gao, Z.; Wang, Z.; Jiang, K., Green synthesis of boron and nitrogen co-doped TiO2 with rich B-N motifs as Lewis acid-base couples for the effective artificial CO2 photoreduction under simulated sunlight. J Colloid Interface Sci 2021, 585, 95-107.
5. Li, Y.; Fu, R.; Gao, M.; Wang, X., B–N co-doped black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy 2019, 44 (54), 28629-28637.
6. Pan, X.; Yang, M. Q.; Fu, X.; Zhang, N.; Xu, Y. J., Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5 (9), 3601-14.
7. Gao, J.; Shen, Q.; Guan, R.; Xue, J.; Liu, X.; Jia, H.; Li, Q.; Wu, Y., Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. Journal of CO2 Utilization 2020, 35, 205-215.
8. Kong, X. Y.; Choo, Y. Y.; Chai, S. P.; Soh, A. K.; Mohamed, A. R., Oxygen vacancy induced Bi2WO6 for the realization of photocatalytic CO2 reduction over the full solar spectrum: from the UV to the NIR region. Chem Commun (Camb) 2016, 52 (99), 14242-14245.
9. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S., Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331 (6018), 746-50.
10. Kovačič, Ž.; Likozar, B.; Huš, M., Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catalysis 2020, 10 (24), 14984-15007.
11. Li, J.; Zhang, M.; Guan, Z.; Li, Q.; He, C.; Yang, J., Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2017, 206, 300-307.
12. Pipornpong, W.; Wanbayor, R.; Ruangpornvisuti, V., Adsorption CO2 on the perfect and oxygen vacancy defect surfaces of anatase TiO2 and its photocatalytic mechanism of conversion to CO. Applied Surface Science 2011, 257 (24), 10322-10328.
13. .
14. Lin, L.-Y.; Kavadiya, S.; He, X.; Wang, W.-N.; Karakocak, B. B.; Lin, Y.-C.; Berezin, M. Y.; Biswas, P., Engineering stable Pt nanoparticles and oxygen vacancies on defective TiO2 via introducing strong electronic metal-support interaction for efficient CO2 photoreduction. Chemical Engineering Journal 2020, 389.
15. Zhang, W.; He, H.; Tian, Y.; Li, H.; Lan, K.; Zu, L.; Xia, Y.; Duan, L.; Li, W.; Zhao, D., Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. Nano Energy 2019, 66.
16. Sorcar, S.; Hwang, Y.; Grimes, C. A.; In, S.-I., Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO 2 reduction into CH 4. Materials Today 2017, 20 (9), 507-515.
17. Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells 2007, 91 (19), 1765-1774.
18. Zhang, M.; Zhao, K.; Xiong, J.; Wei, Y.; Han, C.; Li, W.; Cheng, G., A 1D/2D WO3 nanostructure coupled with a nanoparticulate CuO cocatalyst for enhancing solar-driven CO2 photoreduction: the impact of the crystal facet. Sustainable Energy & Fuels 2020, 4 (5), 2593-2603.
19. Li, P.; Luo, G.; Zhu, S.; Guo, L.; Qu, P.; He, T., Unraveling the selectivity puzzle of H2 evolution over CO2 photoreduction using ZnS nanocatalysts with phase junction. Applied Catalysis B: Environmental 2020, 274.
20. Peng, Y.; Kang, S.; Hu, Z., Pt Nanoparticle-Decorated CdS Photocalysts for CO2 Reduction and H2 Evolution. ACS Applied Nano Materials 2020, 3 (9), 8632-8639.
21. Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J., Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis 2018, 8 (4), 3602-3635.
22. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95 (3), 735-758.
23. Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2010, 46 (4), 855-874.
24. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis 2012, 2 (8), 1817-1828.
25. X.Z. Lia, F.B. Lia, C.L. Yangb, W.K. Geb, Photocatalytic activity of WOx-TiO2under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2001.
26. Chang, S.-m.; Liu, W.-s., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B: Environmental 2011, 101 (3-4), 333-342.
27. Hwang, H. M.; Oh, S.; Shim, J. H.; Kim, Y. M.; Kim, A.; Kim, D.; Kim, J.; Bak, S.; Cho, Y.; Bui, V. Q.; Le, T. A.; Lee, H., Phase-Selective Disordered Anatase/Ordered Rutile Interface System for Visible-Light-Driven, Metal-Free CO2 Reduction. ACS Appl Mater Interfaces 2019, 11 (39), 35693-35701.
28. Zhao, J.; Li, Y.; Zhu, Y.; Wang, Y.; Wang, C., Enhanced CO2 photoreduction activity of black TiO2−coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Applied Catalysis A: General 2016, 510, 34-41.
29. Wang, Z.; Zhou, W.; Wang, X.; Zhang, X.; Chen, H.; Hu, H.; Liu, L.; Ye, J.; Wang, D., Enhanced Photocatalytic CO2 Reduction over TiO2 Using Metalloporphyrin as the Cocatalyst. Catalysts 2020, 10 (6).
30. Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J., Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials 2014, 57 (1), 70-100.
31. Mino, L.; Spoto, G.; Ferrari, A. M., CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study. The Journal of Physical Chemistry C 2014, 118 (43), 25016-25026.
32. Ji, Y.; Luo, Y., New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. J Am Chem Soc 2016, 138 (49), 15896-15902.
33. K Rajalakshmi, V. J., K R Krishnamurthy & B Viswanathan* Photocatalytic reduction of carbon dioxide by water on titania Role of photophysical and structural properties.pdf. ndian Journal of Chemistry 2012.
34. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P., Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J Am Chem Soc 2011, 133 (11), 3964-71.
35. Kharade, A. K., Correlations of Physicochemical and Surface Properties of TiO2-Based Photocatalysts to CO2-to-Hydrocarbon Conversions. 2019.
36. Kharade, A. K.; Chang, S.-m., Contributions of Abundant Hydroxyl Groups to Extraordinarily High Photocatalytic Activity of Amorphous Titania for CO2 Reduction. The Journal of Physical Chemistry C 2020, 124 (20), 10981-10992.
37. .
38. Surface Modifications and Growth of Titanium Dioxide for Photo-Electrochemical Water Splitting. 2016.
39. Disorder in TiO

2─
x. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1997, 384 (1786), 157-173.
40. .
41. J.Garra, 42. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science 2009, 2 (7).
43. Liu, H.; Meng, X.; Dao, T. D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J., Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation. Angew Chem Int Ed Engl 2015, 54 (39), 11545-9.
44. Zhao, H.; Pan, F.; Li, Y., A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics 2017, 3 (1), 17-32.
45. Chen, S.; Xiao, Y.; Wang, Y.; Hu, Z.; Zhao, H.; Xie, W., A Facile Approach to Prepare Black TiO(2) with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials (Basel) 2018, 8 (4).
46. Pacchioni, G., Oxygen vacancy: the invisible agent on oxide surfaces. Chemphyschem 2003, 4 (10), 1041-7.
47. Fang, W.; Xing, M.; Zhang, J., A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Applied Catalysis B: Environmental 2014, 160-161, 240-246.
48. Xing, M.-Y.; Li, W.-K.; Wu, Y.-M.; Zhang, J.-L.; Gong, X.-Q., Formation of New Structures and Their Synergistic Effects in Boron and Nitrogen Codoped TiO2 for Enhancement of Photocatalytic Performance. The Journal of Physical Chemistry C 2011, 115 (16), 7858-7865.
49. Czoska, A. M.; Livraghi, S.; Paganini, M. C.; Giamello, E.; Di Valentin, C.; Pacchioni, G., The nitrogen-boron paramagnetic center in visible light sensitized N-B co-doped TiO(2). Experimental and theoretical characterization. Phys Chem Chem Phys 2011, 13 (1), 136-43.
50. Phongamwong, T.; Chareonpanich, M.; Limtrakul, J., Role of chlorophyll in Spirulina on photocatalytic activity of CO 2 reduction under visible light over modified N-doped TiO 2 photocatalysts. Applied Catalysis B: Environmental 2015, 168-169, 114-124.
51. Knotek, M. L.; Feibelman, P. J., Ion Desorption by Core-Hole Auger Decay. Physical Review Letters 1978, 40 (14), 964-967.
52. Nishimura, A.; Ishida, N.; Tatematsu, D.; Hirota, M.; Koshio, A.; Kokai, F.; Hu, E., Effect of Fe Loading Condition and Reductants on CO2 Reduction Performance with Fe/TiO2 Photocatalyst. International Journal of Photoenergy 2017, 2017, 1-11.
53. Chang, X.; Wang, T.; Gong, J., CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science 2016, 9 (7), 2177-2196.
54. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89 (3-4), 494-502.
55. Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y., Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem Int Ed Engl 2013, 52 (22), 5776-9.
56. Ku, Y.; Lee, W.-H.; Wang, W.-Y., Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. Journal of Molecular Catalysis A: Chemical 2004, 212 (1-2), 191-196.
57. Xie, S.; Wang, Y.; Zhang, Q.; Deng, W.; Wang, Y., MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis 2014, 4 (10), 3644-3653.
58. Ross, J. R. H., Catalyst Characterization. In Contemporary Catalysis, 2019; pp 121-132.
59. Xiao, F.; Zhou, W.; Sun, B.; Li, H.; Qiao, P.; Ren, L.; Zhao, X.; Fu, H., Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution. Science China Materials 2018, 61 (6), 822-830.
60. Li, J.; Zhou, H.; Zhuo, H.; Wei, Z.; Zhuang, G.; Zhong, X.; Deng, S.; Li, X.; Wang, J., Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A 2018, 6 (5), 2264-2272.
61. Liu, J.; Ding, T.; Zhang, H.; Li, G.; Cai, J.; Zhao, D.; Tian, Y.; Xian, H.; Bai, X.; Li, X., Engineering surface defects and metal–support interactions on Pt/TiO2(B) nanobelts to boost the catalytic oxidation of CO. Catalysis Science & Technology 2018, 8 (19), 4934-4944.
62. Xie, W.; Zou, C.; Tang, Z.; Fu, H.; Zhu, X.; Kuang, J.; Deng, Y., Well-crystallized borax prepared from boron-bearing tailings by sodium roasting and pressure leaching. RSC Advances 2017, 7 (49), 31042-31048.
63. Sun, K.; Zhang, H.; Ouyang, J., Indium tin oxide modified with sodium compounds as cathode of inverted polymer solar cells. Journal of Materials Chemistry 2011, 21 (45).
64. Paiva, J. M.; Shalaby, M. A. M.; Chowdhury, M.; Shuster, L.; Chertovskikh, S.; Covelli, D.; Junior, E. L.; Stolf, P.; Elfizy, A.; Bork, C. A. S.; Fox-Rabinovich, G.; Veldhuis, S. C., Tribological and Wear Performance of Carbide Tools with TiB2 PVD Coating under Varying Machining Conditions of TiAl6V4 Aerospace Alloy. Coatings 2017, 7 (11).
65. Electrochemical and Thermal Oxidation of TiN Coatings Studied by XPS
66. Sudeep, P. M.; Vinod, S.; Ozden, S.; Sruthi, R.; Kukovecz, A.; Konya, Z.; Vajtai, R.; Anantharaman, M. R.; Ajayan, P. M.; Narayanan, T. N., Functionalized boron nitride porous solids. RSC Advances 2015, 5 (114), 93964-93968.
67. K Rajalakshmi, V. J., K R Krishnamurthy & B Viswanathan* Infrared spectroscopic investigations on h-BN and mixed h/c-BN thin films. Indian Journal of Chemistry 2012.
68. Herburger, A.; Oncak, M.; Siu, C. K.; Demissie, E. G.; Heller, J.; Tang, W. K.; Beyer, M. K., Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO2 (.-) (H2 O)n (n=2-61) in the C-O Stretch Region. Chemistry 2019, 25 (43), 10165-10171.
69. Litke, A.; Su, Y.; Tranca, I.; Weber, T.; Hensen, E. J. M.; Hofmann, J. P., Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO2. J Phys Chem C Nanomater Interfaces 2017, 121 (13), 7514-7524.
70. Wang, K.; Qincheng, W.; Wang, F.; Bai, S.; Li, S.; Li, Z., Coating a N-doped TiO2 shell on dually sensitized upconversion nanocrystals to provide NIR-enhanced photocatalysts for efficient utilization of upconverted emissions. Inorganic Chemistry Frontiers 2016, 3 (9), 1190-1197.
71. Byrne, C.; Rhatigan, S.; Hermosilla, D.; Merayo, N.; Blanco, Á.; Michel, M. C.; Hinder, S.; Nolan, M.; Pillai, S. C., Modification of TiO2 with hBN: high temperature anatase phase stabilisation and photocatalytic degradation of 1,4-dioxane. Journal of Physics: Materials 2019, 3 (1).
72. Grátzel, R. F. H. a. M., EPR Study of Hydrated Anatase under UV Irradiation. J. Phys. Chem. C 1987.
73. Yasuhiro Nakaoka, Y. N., ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated Ti02 powder. Journal of Photochemistry and Photobiology A: Chemis~ 1997.
74. Thurnauer, D. C. H. a. K. A. G. T. R. a. M. C., Recombination Pathways in the Degussa P25 Formulation of TiO2: Surface versus Lattice Mechanisms. J. Phys. Chem. B 2005.
75. Chinthala Praveen Kumar, N. O. G., ‡ Ting Chung Wang,† Ming-Show Wong,‡ and Shyue Chu Ke*,†, EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. J. Phys. Chem. B 2006.
76. Juan M. Coronado, † A. Javier Maira,† Jose´ Carlos Conesa,† King Lun Yeung,‡ Vincenzo Augugliaro,†,§ and Javier Soria†, EPR Study of the Surface Characteristics of Nanostructured TiO2 under UV Irradiation. Langmuir 2001.
77. Scot T. Martin, C. L. M., f and Michael R. Hoffmann* *, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles. J. Phys. Chem 1994.
78. Abdelraheem, W. H. M.; Patil, M. K.; Nadagouda, M. N.; Dionysiou, D. D., Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Applied Catalysis B: Environmental 2019, 241, 598-611.
79. Cavalcante, R. P.; Dantas, R. F.; Bayarri, B.; González, O.; Giménez, J.; Esplugas, S.; Machulek, A., Synthesis and characterization of B-doped TiO2 and their performance for the degradation of metoprolol. Catalysis Today 2015, 252, 27-34.
80. Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M., Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Journal of Materials Chemistry A 2017, 5 (7), 3230-3238.
81. Geist, D., V. Electron Paramagnetic Resonance (EPR) in Boron Nitride, Boron and Boron Carbide Boron and Refractory Borides 1977.
82. design of a fixed bed plasma DRIFTS cell for studying the NTP-assisted heterogeneously catalysed reactions.
83. Chen, S.; Gao, H.; Han, M.; Chen, X.; Zhang, X.; Dong, W.; Wang, G., In‐situ Self‐transformation Synthesis of N‐doped Carbon Coating Paragenetic Anatase/Rutile Heterostructure with Enhanced Photocatalytic CO
2
Reduction Activity. ChemCatChem 2020, 12 (12), 3274-3284.
84. Synthesis, Spectroscopic (FT-IR,1H,13C, MassSpectrometry), and Biological Investigation ofFive-Coordinated Germanium-SubstitutedTricyclohexyl Antimony Dipropionates: CrystalStructure of Tricyclohexylantimony Dibromide.
85. Pan, X.; Zhang, N.; Fu, X.; Xu, Y.-J., Selective oxidation of benzyl alcohol over TiO2 nanosheets with exposed {001} facets: Catalyst deactivation and regeneration. Applied Catalysis A: General 2013, 453, 181-187.
86. Li, Y.; Wang, C.; Song, M.; Li, D.; Zhang, X.; Liu, Y., TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Applied Catalysis B: Environmental 2019, 243, 760-770.
87. Rawool, S. A.; Yadav, K. K.; Polshettiwar, V., Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals. Chem Sci 2021, 12 (12), 4267-4299.
88. Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y., Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light. ACS Catalysis 2016, 6 (2), 1097-1108.


(此全文20240712後開放外部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *