|
1. Huang, H.; Lin, J.; Zhu, G.; Weng, Y.; Wang, X.; Fu, X.; Long, J., A Long-Lived Mononuclear Cyclopentadienyl Ruthenium Complex Grafted onto Anatase TiO2 for Efficient CO2 Photoreduction. Angew Chem Int Ed Engl 2016, 55 (29), 8314-8. 2. Boreriboon, N.; Jiang, X.; Song, C.; Prasassarakich, P., Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to hydrocarbons. Journal of CO2 Utilization 2018, 25, 330-337. 3. Camarillo, R.; Tostón, S.; Martínez, F.; Jiménez, C.; Rincón, J., Enhancing the photocatalytic reduction of CO2 through engineering of catalysts with high pressure technology: Pd/TiO2 photocatalysts. The Journal of Supercritical Fluids 2017, 123, 18-27. 4. Wu, D.; Guo, J.; Wang, H.; Zhang, X.; Yang, Y.; Yang, C.; Gao, Z.; Wang, Z.; Jiang, K., Green synthesis of boron and nitrogen co-doped TiO2 with rich B-N motifs as Lewis acid-base couples for the effective artificial CO2 photoreduction under simulated sunlight. J Colloid Interface Sci 2021, 585, 95-107. 5. Li, Y.; Fu, R.; Gao, M.; Wang, X., B–N co-doped black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy 2019, 44 (54), 28629-28637. 6. Pan, X.; Yang, M. Q.; Fu, X.; Zhang, N.; Xu, Y. J., Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5 (9), 3601-14. 7. Gao, J.; Shen, Q.; Guan, R.; Xue, J.; Liu, X.; Jia, H.; Li, Q.; Wu, Y., Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. Journal of CO2 Utilization 2020, 35, 205-215. 8. Kong, X. Y.; Choo, Y. Y.; Chai, S. P.; Soh, A. K.; Mohamed, A. R., Oxygen vacancy induced Bi2WO6 for the realization of photocatalytic CO2 reduction over the full solar spectrum: from the UV to the NIR region. Chem Commun (Camb) 2016, 52 (99), 14242-14245. 9. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S., Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331 (6018), 746-50. 10. Kovačič, Ž.; Likozar, B.; Huš, M., Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catalysis 2020, 10 (24), 14984-15007. 11. Li, J.; Zhang, M.; Guan, Z.; Li, Q.; He, C.; Yang, J., Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2017, 206, 300-307. 12. Pipornpong, W.; Wanbayor, R.; Ruangpornvisuti, V., Adsorption CO2 on the perfect and oxygen vacancy defect surfaces of anatase TiO2 and its photocatalytic mechanism of conversion to CO. Applied Surface Science 2011, 257 (24), 10322-10328. 13. . 14. Lin, L.-Y.; Kavadiya, S.; He, X.; Wang, W.-N.; Karakocak, B. B.; Lin, Y.-C.; Berezin, M. Y.; Biswas, P., Engineering stable Pt nanoparticles and oxygen vacancies on defective TiO2 via introducing strong electronic metal-support interaction for efficient CO2 photoreduction. Chemical Engineering Journal 2020, 389. 15. Zhang, W.; He, H.; Tian, Y.; Li, H.; Lan, K.; Zu, L.; Xia, Y.; Duan, L.; Li, W.; Zhao, D., Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. Nano Energy 2019, 66. 16. Sorcar, S.; Hwang, Y.; Grimes, C. A.; In, S.-I., Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO 2 reduction into CH 4. Materials Today 2017, 20 (9), 507-515. 17. Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells 2007, 91 (19), 1765-1774. 18. Zhang, M.; Zhao, K.; Xiong, J.; Wei, Y.; Han, C.; Li, W.; Cheng, G., A 1D/2D WO3 nanostructure coupled with a nanoparticulate CuO cocatalyst for enhancing solar-driven CO2 photoreduction: the impact of the crystal facet. Sustainable Energy & Fuels 2020, 4 (5), 2593-2603. 19. Li, P.; Luo, G.; Zhu, S.; Guo, L.; Qu, P.; He, T., Unraveling the selectivity puzzle of H2 evolution over CO2 photoreduction using ZnS nanocatalysts with phase junction. Applied Catalysis B: Environmental 2020, 274. 20. Peng, Y.; Kang, S.; Hu, Z., Pt Nanoparticle-Decorated CdS Photocalysts for CO2 Reduction and H2 Evolution. ACS Applied Nano Materials 2020, 3 (9), 8632-8639. 21. Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J., Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis 2018, 8 (4), 3602-3635. 22. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95 (3), 735-758. 23. Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2010, 46 (4), 855-874. 24. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis 2012, 2 (8), 1817-1828. 25. X.Z. Lia, F.B. Lia, C.L. Yangb, W.K. Geb, Photocatalytic activity of WOx-TiO2under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2001. 26. Chang, S.-m.; Liu, W.-s., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B: Environmental 2011, 101 (3-4), 333-342. 27. Hwang, H. M.; Oh, S.; Shim, J. H.; Kim, Y. M.; Kim, A.; Kim, D.; Kim, J.; Bak, S.; Cho, Y.; Bui, V. Q.; Le, T. A.; Lee, H., Phase-Selective Disordered Anatase/Ordered Rutile Interface System for Visible-Light-Driven, Metal-Free CO2 Reduction. ACS Appl Mater Interfaces 2019, 11 (39), 35693-35701. 28. Zhao, J.; Li, Y.; Zhu, Y.; Wang, Y.; Wang, C., Enhanced CO2 photoreduction activity of black TiO2−coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Applied Catalysis A: General 2016, 510, 34-41. 29. Wang, Z.; Zhou, W.; Wang, X.; Zhang, X.; Chen, H.; Hu, H.; Liu, L.; Ye, J.; Wang, D., Enhanced Photocatalytic CO2 Reduction over TiO2 Using Metalloporphyrin as the Cocatalyst. Catalysts 2020, 10 (6). 30. Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J., Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials 2014, 57 (1), 70-100. 31. Mino, L.; Spoto, G.; Ferrari, A. M., CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study. The Journal of Physical Chemistry C 2014, 118 (43), 25016-25026. 32. Ji, Y.; Luo, Y., New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. J Am Chem Soc 2016, 138 (49), 15896-15902. 33. K Rajalakshmi, V. J., K R Krishnamurthy & B Viswanathan* Photocatalytic reduction of carbon dioxide by water on titania Role of photophysical and structural properties.pdf. ndian Journal of Chemistry 2012. 34. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P., Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J Am Chem Soc 2011, 133 (11), 3964-71. 35. Kharade, A. K., Correlations of Physicochemical and Surface Properties of TiO2-Based Photocatalysts to CO2-to-Hydrocarbon Conversions. 2019. 36. Kharade, A. K.; Chang, S.-m., Contributions of Abundant Hydroxyl Groups to Extraordinarily High Photocatalytic Activity of Amorphous Titania for CO2 Reduction. The Journal of Physical Chemistry C 2020, 124 (20), 10981-10992. 37. . 38. Surface Modifications and Growth of Titanium Dioxide for Photo-Electrochemical Water Splitting. 2016. 39. Disorder in TiO
2─ x. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1997, 384 (1786), 157-173. 40. . 41. J.Garra, 42. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science 2009, 2 (7). 43. Liu, H.; Meng, X.; Dao, T. D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J., Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation. Angew Chem Int Ed Engl 2015, 54 (39), 11545-9. 44. Zhao, H.; Pan, F.; Li, Y., A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics 2017, 3 (1), 17-32. 45. Chen, S.; Xiao, Y.; Wang, Y.; Hu, Z.; Zhao, H.; Xie, W., A Facile Approach to Prepare Black TiO(2) with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials (Basel) 2018, 8 (4). 46. Pacchioni, G., Oxygen vacancy: the invisible agent on oxide surfaces. Chemphyschem 2003, 4 (10), 1041-7. 47. Fang, W.; Xing, M.; Zhang, J., A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Applied Catalysis B: Environmental 2014, 160-161, 240-246. 48. Xing, M.-Y.; Li, W.-K.; Wu, Y.-M.; Zhang, J.-L.; Gong, X.-Q., Formation of New Structures and Their Synergistic Effects in Boron and Nitrogen Codoped TiO2 for Enhancement of Photocatalytic Performance. The Journal of Physical Chemistry C 2011, 115 (16), 7858-7865. 49. Czoska, A. M.; Livraghi, S.; Paganini, M. C.; Giamello, E.; Di Valentin, C.; Pacchioni, G., The nitrogen-boron paramagnetic center in visible light sensitized N-B co-doped TiO(2). Experimental and theoretical characterization. Phys Chem Chem Phys 2011, 13 (1), 136-43. 50. Phongamwong, T.; Chareonpanich, M.; Limtrakul, J., Role of chlorophyll in Spirulina on photocatalytic activity of CO 2 reduction under visible light over modified N-doped TiO 2 photocatalysts. Applied Catalysis B: Environmental 2015, 168-169, 114-124. 51. Knotek, M. L.; Feibelman, P. J., Ion Desorption by Core-Hole Auger Decay. Physical Review Letters 1978, 40 (14), 964-967. 52. Nishimura, A.; Ishida, N.; Tatematsu, D.; Hirota, M.; Koshio, A.; Kokai, F.; Hu, E., Effect of Fe Loading Condition and Reductants on CO2 Reduction Performance with Fe/TiO2 Photocatalyst. International Journal of Photoenergy 2017, 2017, 1-11. 53. Chang, X.; Wang, T.; Gong, J., CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science 2016, 9 (7), 2177-2196. 54. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89 (3-4), 494-502. 55. Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y., Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem Int Ed Engl 2013, 52 (22), 5776-9. 56. Ku, Y.; Lee, W.-H.; Wang, W.-Y., Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. Journal of Molecular Catalysis A: Chemical 2004, 212 (1-2), 191-196. 57. Xie, S.; Wang, Y.; Zhang, Q.; Deng, W.; Wang, Y., MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis 2014, 4 (10), 3644-3653. 58. Ross, J. R. H., Catalyst Characterization. In Contemporary Catalysis, 2019; pp 121-132. 59. Xiao, F.; Zhou, W.; Sun, B.; Li, H.; Qiao, P.; Ren, L.; Zhao, X.; Fu, H., Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution. Science China Materials 2018, 61 (6), 822-830. 60. Li, J.; Zhou, H.; Zhuo, H.; Wei, Z.; Zhuang, G.; Zhong, X.; Deng, S.; Li, X.; Wang, J., Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A 2018, 6 (5), 2264-2272. 61. Liu, J.; Ding, T.; Zhang, H.; Li, G.; Cai, J.; Zhao, D.; Tian, Y.; Xian, H.; Bai, X.; Li, X., Engineering surface defects and metal–support interactions on Pt/TiO2(B) nanobelts to boost the catalytic oxidation of CO. Catalysis Science & Technology 2018, 8 (19), 4934-4944. 62. Xie, W.; Zou, C.; Tang, Z.; Fu, H.; Zhu, X.; Kuang, J.; Deng, Y., Well-crystallized borax prepared from boron-bearing tailings by sodium roasting and pressure leaching. RSC Advances 2017, 7 (49), 31042-31048. 63. Sun, K.; Zhang, H.; Ouyang, J., Indium tin oxide modified with sodium compounds as cathode of inverted polymer solar cells. Journal of Materials Chemistry 2011, 21 (45). 64. Paiva, J. M.; Shalaby, M. A. M.; Chowdhury, M.; Shuster, L.; Chertovskikh, S.; Covelli, D.; Junior, E. L.; Stolf, P.; Elfizy, A.; Bork, C. A. S.; Fox-Rabinovich, G.; Veldhuis, S. C., Tribological and Wear Performance of Carbide Tools with TiB2 PVD Coating under Varying Machining Conditions of TiAl6V4 Aerospace Alloy. Coatings 2017, 7 (11). 65. Electrochemical and Thermal Oxidation of TiN Coatings Studied by XPS 66. Sudeep, P. M.; Vinod, S.; Ozden, S.; Sruthi, R.; Kukovecz, A.; Konya, Z.; Vajtai, R.; Anantharaman, M. R.; Ajayan, P. M.; Narayanan, T. N., Functionalized boron nitride porous solids. RSC Advances 2015, 5 (114), 93964-93968. 67. K Rajalakshmi, V. J., K R Krishnamurthy & B Viswanathan* Infrared spectroscopic investigations on h-BN and mixed h/c-BN thin films. Indian Journal of Chemistry 2012. 68. Herburger, A.; Oncak, M.; Siu, C. K.; Demissie, E. G.; Heller, J.; Tang, W. K.; Beyer, M. K., Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO2 (.-) (H2 O)n (n=2-61) in the C-O Stretch Region. Chemistry 2019, 25 (43), 10165-10171. 69. Litke, A.; Su, Y.; Tranca, I.; Weber, T.; Hensen, E. J. M.; Hofmann, J. P., Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO2. J Phys Chem C Nanomater Interfaces 2017, 121 (13), 7514-7524. 70. Wang, K.; Qincheng, W.; Wang, F.; Bai, S.; Li, S.; Li, Z., Coating a N-doped TiO2 shell on dually sensitized upconversion nanocrystals to provide NIR-enhanced photocatalysts for efficient utilization of upconverted emissions. Inorganic Chemistry Frontiers 2016, 3 (9), 1190-1197. 71. Byrne, C.; Rhatigan, S.; Hermosilla, D.; Merayo, N.; Blanco, Á.; Michel, M. C.; Hinder, S.; Nolan, M.; Pillai, S. C., Modification of TiO2 with hBN: high temperature anatase phase stabilisation and photocatalytic degradation of 1,4-dioxane. Journal of Physics: Materials 2019, 3 (1). 72. Grátzel, R. F. H. a. M., EPR Study of Hydrated Anatase under UV Irradiation. J. Phys. Chem. C 1987. 73. Yasuhiro Nakaoka, Y. N., ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated Ti02 powder. Journal of Photochemistry and Photobiology A: Chemis~ 1997. 74. Thurnauer, D. C. H. a. K. A. G. T. R. a. M. C., Recombination Pathways in the Degussa P25 Formulation of TiO2: Surface versus Lattice Mechanisms. J. Phys. Chem. B 2005. 75. Chinthala Praveen Kumar, N. O. G., ‡ Ting Chung Wang,† Ming-Show Wong,‡ and Shyue Chu Ke*,†, EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. J. Phys. Chem. B 2006. 76. Juan M. Coronado, † A. Javier Maira,† Jose´ Carlos Conesa,† King Lun Yeung,‡ Vincenzo Augugliaro,†,§ and Javier Soria†, EPR Study of the Surface Characteristics of Nanostructured TiO2 under UV Irradiation. Langmuir 2001. 77. Scot T. Martin, C. L. M., f and Michael R. Hoffmann* *, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles. J. Phys. Chem 1994. 78. Abdelraheem, W. H. M.; Patil, M. K.; Nadagouda, M. N.; Dionysiou, D. D., Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Applied Catalysis B: Environmental 2019, 241, 598-611. 79. Cavalcante, R. P.; Dantas, R. F.; Bayarri, B.; González, O.; Giménez, J.; Esplugas, S.; Machulek, A., Synthesis and characterization of B-doped TiO2 and their performance for the degradation of metoprolol. Catalysis Today 2015, 252, 27-34. 80. Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M., Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Journal of Materials Chemistry A 2017, 5 (7), 3230-3238. 81. Geist, D., V. Electron Paramagnetic Resonance (EPR) in Boron Nitride, Boron and Boron Carbide Boron and Refractory Borides 1977. 82. design of a fixed bed plasma DRIFTS cell for studying the NTP-assisted heterogeneously catalysed reactions. 83. Chen, S.; Gao, H.; Han, M.; Chen, X.; Zhang, X.; Dong, W.; Wang, G., In‐situ Self‐transformation Synthesis of N‐doped Carbon Coating Paragenetic Anatase/Rutile Heterostructure with Enhanced Photocatalytic CO 2 Reduction Activity. ChemCatChem 2020, 12 (12), 3274-3284. 84. Synthesis, Spectroscopic (FT-IR,1H,13C, MassSpectrometry), and Biological Investigation ofFive-Coordinated Germanium-SubstitutedTricyclohexyl Antimony Dipropionates: CrystalStructure of Tricyclohexylantimony Dibromide. 85. Pan, X.; Zhang, N.; Fu, X.; Xu, Y.-J., Selective oxidation of benzyl alcohol over TiO2 nanosheets with exposed {001} facets: Catalyst deactivation and regeneration. Applied Catalysis A: General 2013, 453, 181-187. 86. Li, Y.; Wang, C.; Song, M.; Li, D.; Zhang, X.; Liu, Y., TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Applied Catalysis B: Environmental 2019, 243, 760-770. 87. Rawool, S. A.; Yadav, K. K.; Polshettiwar, V., Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals. Chem Sci 2021, 12 (12), 4267-4299. 88. Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y., Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light. ACS Catalysis 2016, 6 (2), 1097-1108.
|