帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:葉璨瑜
作者(英文):Yeh, Tsan-Yu
論文名稱(中文):分子拓印光子晶體應用於檢測自來水中雙酚A
論文名稱(英文):Application of A Molecular Imprinted Photonic Crystal for Detection of Bisphenol A in Tap Water
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:張淑閔
袁紹英
林宏洲
口試委員(英文):Chang, Sue-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0751726
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:74
中文關鍵詞:分子拓印光子晶體感測器環境荷爾蒙鹽析效應自來水
外文關鍵詞:Molecularly imprinted photonic crystal sensorEndocrine disrupting chemicalsSalting-out effectTap water
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
基於光子晶體(Photonic Crystal, PC)和分子拓印聚合物(Molecularly Imprinted Polymer, MIP)的組合,本研究開發出一種可於自來水來中快速、無須標記針對雙酚A (Bisphenol A, BPA)檢測的分子拓印聚合物智能感測器。分子拓印光子晶體感測器(Molecularly Imprinted Photonic Crystal, MIPC)由分子拓印水凝膠膜和單分散二氧化矽(SiO2)膠體粒子自組裝方式所得的光子晶體模板所構成,分子拓印水凝膠膜由功能性單體甲基丙烯酸(Methacrylic acid, MAA)、交聯劑乙二醇二甲基丙烯酸酯(Ethylene Glycol Dimethacrylate, EGDMA)和模板分子BPA在BPA/MAA/EGDMA摩爾比=1:5:2.5所構成。爾後,去除SiO2膠體模板和模板分子BPA後,所得的MIPC具有三維結構、高度有序且相互連接的大孔陣列組成的薄水凝膠層,通過形狀和官能基位置與目標分子互補的拓印孔洞於水溶液中吸附後,基於MIPC結構響應其與目標分子的再結合而發生的晶格變化,可藉由布拉格衍射峰紅移來檢測MIPC對水樣中BPA分子的響應,所製備的MIPC可於4 分鐘內響應BPA濃度,動態濃度檢測範圍可達0.2-100 mg/L,最低偵測極限為0.13 mg/L,相較於BPF與phenol,對BPA的檢測選擇性可達4倍,使用後的MIPC可經甲醇/醋酸(9:1, V/V)萃洗BPA分子後回復感測能力,於10次反覆吸-脫附程序後,訊號回復率可達99.5 %,標準差為0.996,並通過鹽析作用提高本MIPC的靈敏度於實際水樣中的感測範圍可達0.03-0.6 mg/L,且最低偵測極限提升至6×10-3 mg/L。此MIPC可用於視覺推估水樣中BPA的濃度,且無需使用標記技術和貴重儀器即可實現於實際水樣中針對BPA分子直接和選擇性的檢測,使本MIPC在現場篩選和視覺檢測實際水樣中的檢測具有莫大的潛力。
Based on the combination of a photonic crystal (PC) and molecular imprinting polymer (MIP), we have developed a label-free molecular (molecularly) imprinted sensor for bisphenol A (BPA) detection with high sensitivity and fast response. The molecularly imprinted photonic crystal (MIPC) sensor was composed of a molecularly imprinted hydrogel film and a photonic crystal template which was constructed by self-assembled SiO2 colloids. The molecular imprinted hydrogel film was composed of functional monomer methacrylic acid (MAA), cross-linker ethylene glycol dimethacrylate (EGDMA), and template BPA at the molar ratio of BPA/MAA/EDGMA of 1:5:2.5. After removing the colloidal crystal template and the imprinted BPA molecules, the resulting imprinted inverse opal photonic crystal sensor had a three-dimensional structure, highly ordered, and interconnected macroporous structure. With BPA binding by the imprinted cavities within the hydrogel, expanding the lattice of the MIPC red shifted the diffraction light. The MIPC was able to respond to BPA within 4 minutes with a wide dynamic range (0.2-100 mg/L) and a low detection limit (0.13 mg/L). In addition, it exhibited 4 times higher wavelength shift with respective to BPF and phenol. The used sensor can be recovered by washing with methanol/acetic acid (9:1, V/V) and the sensing ability after 10 times of adsorption-desorption procedures still maintained 99.5% with a small variation of 0.996. With salting-out effect, the detectable BPA concentration in the tap water was remarkably decreased to 0.03 mg/L with a detection limit of 6×10-3 mg/L. This sensor can be used to visually estimate the concentration of BPA in the water sample without the use of labeling technology and expensive instruments and is promising to be applied for on-site screening.
主目錄
摘要.....I
Abstract......II
主目錄.....IV
表目錄.....V
圖目錄.....VI
第一章 前言...VI
1.1 研究背景與動機...1
1.2 研究目的...4
第二章 文獻回顧...5
2.1 分子拓印材料...5
2.2 光子晶體 (Photonic crystal, PC)...11
2.3 拓印光子晶體感測器(Impinted Photonic Crystal, IPC)...21
2.4 光子晶體感測器於實際樣品中應用...26
第三章 研究方法...31
3.1實驗材料...33
3.2分子拓印光子晶體感測器...34
3.3感測能力試驗...36
3.4儀器分析...39
第四章 結果與討論...41
4.1 分子拓印光子晶體感測器...41
4.2 分子拓印高分子聚合物...47
4.3 去離子水中感測能力試驗...51
4.4 自來水中的BPA分析...57
第五章 結論與建議...64
5.1 結論...64
5.2 未來建議...65
參考文獻...66
附錄...72

[1].J. E. Harries.; T. Runnalls.; E. Hill.; C. A. Harris.; S. Maddix.; J. P. Sumpter.;C. R. Tyler. Development of a Reproductive Performance Test for Endocrine Disrupting Chemicals Using Pair-Breeding Fathead Minnows (Pimephales promelas). Environ. Sci. Technol. 2000, 34(14), 3003-3011.
[2].Vesper, H.W.; Botelho, J.C.; Wang, Y. Challenges and improvements in testosterone and estradiol testing. Asian J. Androl 2014, 16, 178-184.
[3].Joseph J. BelBruno. Molecularly Imprinted Polymers. Chem. Rev 2019, 119(1), 94-119.
[4].Wei Chen.; Zihui Meng.; Min Xue, Kenneth J Shea. Molecular imprinted photonic crystal for sensing of biomolecules. Molecular Imprinting 2016, 4(1), 2084-8803.
[5].Lingxin Chen.; Shoufang Xuab.; Jinhua Lia. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 2011, 40, 2922-2942.
[6].Ge, J.; Yin, Y. Responsive photonic crystals. Angewandte Chemie International Edition 2011, 50(7), 1492-1522.
[7].Griffete, N., Frederich, H., Maître, A., Schwob, C., Ravaine, S., Carbonnier, B., … Mangeney, C. Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A. Journal of Colloid and Interface Science.2011, 364(1), 18–23.
[8].Abbas J. Kadhem.; Shuting Xiang.; Susan Nagel.; Chung-Ho Lin.; Maria Fidalgo de Cortalezzi. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers 2018, 10(4), 349.
[9].Sharon Marx.; Amalya Zaltsman.; Iva Turyan.; Daniel Mandler. Parathion Sensor Based on Molecularly Imprinted Sol−Gel Films. Anal. Chem 2004, 76(1), 120-126.
[10].Zhang, Y., Jin, Z., Zeng, Q. et al. Visual test for the presence of the illegal additive ethyl anthranilate by using a photonic crystal test strip. Microchim Acta 2019, 186(685).
[11].Yang, Q., Peng, H., Li, J., Li, Y., Xiong, H., Chen, L. Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology. New J. Chem 2017; 41:10174-10180.
[12].WU, W.-Z., HUANG, M.-X., HUANG, Q.-D., LYU, C.-H., LAI, J.-P., & SUN, H. Molecularly Imprinted Photonic Hydrogels for Visual Detection of Methylanthranilate in Wine. Chinese Journal of Analytical Chemistry. 2019, 47(9), 1330-1336.
[13].Zhu, W., Tao, S., Tao, C., Li, W., Lin, C., Li, M., … Li, G. Hierarchically Imprinted Porous Films for Rapid and Selective Detection of Explosives. Langmuir, 2011, 27(13), 8451–8457.
[14].方峙翔, 張., 晶格參數調控拓印光子晶體感測器雙酚A之靈敏度. 2013
[15].Dai, J., Fidalgo de Cortalezzi M. Influence of pH, ionic strength and natural organic matter concentration on a MIP-Fluorescent sensor for the quantification of DNT in water. Heliyon, 2019, 5(6):e01922.
[16].陳盈彣, 張., 分子干擾對於高分子吸附與感測能力之影響. 2019
[17].Le Noir, M., Plieva, F., Hey, T., Guieysse, B., & Mattiasson, B. Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. Journal of Chromatography A, 2007, 1154(1-2), 158-164.
[18].Lin, Y., Shi, Y., Jiang, M., Jin, Y., Peng, Y., Lu, B., & Dai, K. Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environmental Pollution, 2008, 153(2), 483-491.
[19].Liu, Y., Wang, Y., Dai, Q; Zhou, Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal Chim Acta, 2016, 936, 168-78.
[20].Xia, X., Lai, E. P. C., & Örmeci, B. Duo-molecularly imprinted polymer-coated magnetic particles for class-selective removal of endocrine-disrupting compounds from aqueous environment. Environmental Science and Pollution Research, 2012, 20(5), 3331–3339.
[21].Gary, W. Proteins: Biochemistry and Biotechnology. 2002
[22].Wang, X.; Mu, Z.; Liu, R.; Pu, Y.; Yin, L., Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food chemistry 2013, 141 (4), 3947-3953.
[23].Polyakov, M.V. Adsorption properties and structure of silica gel. Zhurnal fizicheskoi khimii 2 S 1931, 799–804.
[24].Pauling, L. A Theory of the Structure and Process of Formation of Antibodies. J. Am. Chem. Soc 1940, 62, 10, 2643-2657.
[25].Dickey, F. H. The Preparation of Specific Adsorbents. Proceeding of the National Academy of Science of the United States of America 1949, 35(5), 227-9.
[26].Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-analogue built polymers and their use for the resolution of racemates. Angewandte Chemie International Edition, 11(3), 341-344.
[27].Bi, S.; Zhao, T.; Luo, B., A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chemical Communications 2012, 48 (1), 106-108.
[28].Arshady, R.; Mosbach,K. Synthesis of substrate‐selective polymers by host‐guest polymerization. Die Makromolekulare Chemie 182(2):687-692.
[29].Vlatakis, G., Andersson, L., Müller, R., Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361(6413), 645-647.
[30].Nikesh B. Samarth1.; Vinayak Kamble1 Prakash A.; Mahanwar.; Ajay Vasudeo Rane.; Abitha V. K. A historical perspective and the development of molecular imprinting polymer- A review. Chemistry International. 2015, 1(4), 202-21.
[31].Mayes, A.; Whitcombe, M. Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews 2005, 57(12), 1742-1778.
[32].Alvarez-Lorenzo, C.; Angel, C. Molecular Imprinting: A Historical Perspective. Handbook of Molecularly Imprinted Polymers; A Smither Group Company: Shawbury, UK, 2013.
[33].Katz, E.; Willner, I. Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition. 2004, 43 (45), 6042-6108.
[34].Peeters, M., Kobben, S., Jiménez-Monroy K.L., Modesto, L., Kraus, M., Vandenryt, T., Gaulke, A., van Grinsven, B., Ingebrandt, S., Junkers, T., et al. Thermal detection of histamine with a graphene oxide based molecularly imprinted polymer platform prepared by reversible addition-fragmentation chain transfer polymerization. Sens. Actuators B Chem 2014; 203:527-535.
[35].Chen L., Wang X., Lu W., Wu X., Li J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev 2016; 45:2137-2211.
[36].Yang Q., Wu X., Peng H., Fu L., Song X., Li J., Xiong H., Chen L. Simultaneous phase-inversion and imprinting based sensor for highly sensitive and selective detection of bisphenol A. Talanta 2018; 176:595-603.
[37].Peng, H., Wang, S., Zhang Z., Xiong, H., Li, J., Chen, L., Li, Y. Molecularly Imprinted Photonic Hydrogels as Colorimetric Sensors for Rapid and Label-free Detection of Vanillin. J. Agric. Food Chem 2012; 60:1921-1928.
[38].Li J., Zhang Z., Xu S., Chen L., Zhou N., Xiong H., Peng H. Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels. J. Mater. Chem 2011; 21:19267–19274.
[39].Zhou, H., Xu, Y., Tong, H., Liu, Y., Han, F., Yan, X., Liu, S. Direct synthesis of surface molecularly imprinted polymers based on vinyl-SiO2 nanospheres for recognition of bisphenol A. Journal of Applied Polymer Science. 2013, 128(6), 3846-3852.
[40].John, S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 1987, 58(23), 2486-2489.
[41].Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters 1987, 58(20), 2059-2062
[42].Blanford, C.F., Yan, H., Stein, A. Gems of Chemistry and Physics: Macroporous Metal Oxides with 3D Order. Advanced Material 2001, 13(6), 401-407.
[43].Noda S., Chutinan A., Imada M., Trapping and Emission of Photons by a Single Defect in a Photonic Band gap Structure [J]. Nature, 2000, 407, 6804: 608-610.
[44].Ogawa S.P., Imada M., Yoshimoto S., Okano M., Noda S. Control of Light Emission by 3D Photonic Crystals [J]. Science, 2004, 305: 227-229.
[45].Corey, S., Dante F. DeMeo., Thomas E. Vandervelde. Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermophotovoltaic applications. Applied Physics Letters, 2014, 104(2): 021115-021115-4.
[46].F. S. S. Chien., C. L. Wu., Y. C. Chou., T. T. Chen., S. Gwo., W. F. Hsieh. Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching. Applied Physics Letters, 1999, 75(16), 2429-2431.
[47].Yablonovitch, E., Gmitter, T. J., Leung, K. M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett.1991, 67(17), 2295-2298.
[48].Ho, K. M., Chan, C. T., Soukoulis, C. M., Biswas, R., Sigalas, M. Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Communications, 1994, 89(5), 413-416.
[49].Özbay, E. Layer-by-layer photonic crystals from microwave to far-infrared frequencies. Journal of the Optical Society of America B, 1996, 13(9), 1945-1955.
[50].Stein, A., Wilson, B. E., Rudisill, S. G. Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals. Chem. Soc. Rev. 2013, 42(7), 2763-2803.
[51].Zhang, J., Sun, Z., & Yang, B. Self-assembly of photonic crystals from polymer colloids. Colloid & Interface Science 2009, 14(2), 103-114.
[52].Amokrane, G., Falentin-Daudré, C., Ramtani, S., Migonney, V. A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. IRBM 2018, 39(4), 268-278.
[53].Reuss, F.F. Sur un nouvel effet de l'électricité glavanique. Mémoires de la Société impériale des naturalistes de Moscou, 1809, 2: 327-337.
[54].Gu, Z, Z., Fujishima, A., Sato, O. Fabrication of High-Quality Opal Films with Controllable Thickness. Chem. Mater 2002, 14(2), 760-765.
[55].Yan, H., Yang, Y., Fu, Z., Yang, B., Xia, L., Xu, Y., Fu, S., Li, F. Cathodic electrode position of ordered porous titania films by polystyrene colloidal crystal templating. Chemistry Letters, 2006, 35(8), 864-865.
[56].Zakhidov, A. A. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths. Science, 1998, 282(5390), 897-901.
[57].Moon, JH., Cho, YS., Yang, SM. Room temperature chemical vapor deposition for fabrication of titania inverse opals:fabrication, morphology analysis and optical characterization. the Korean Chemical Society, 2009, 30 (10), 2245-2248.
[58].Ying-Hui, Z., Hui-Hui, R., Li-Ping, Y. Development of molecularly imprinted photonic polymer for sensing of sulfonamides in egg white. Analytical Methods 2018, 10, 101-108.
[59].Hong, X., Peng, Y., Bai, J., Ning, B., Liu, Y., Zhou, Z., & Gao, Z. A Novel Opal Closest-Packing Photonic Crystal for Naked-Eye Glucose Detection. Small, 2013, 10(7), 1308-1313.
[60].Sai, N.; Ning, B.; Huang, G.; Wu, Y.; Zhou, Z.; Peng, Y.; Bai, J.; Yu, G.; Gao, Z., An imprinted crystalline colloidal array chemical-sensing material for detection of trace diethylstilbestrol. Analyst 2013, 138 (9), 2720-2728.
[61].Guo, C.; Zhou, C.; Sai, N.; Ning, B.; Liu, M.; Chen, H.; Gao, Z., Detection of bisphenol A using an opal photonic crystal sensor. Sensors and Actuators B: Chemical, 2012, 166, 17-23.
[62].Sai, N.; Wu, Y.; Sun, Z.; Huang, G.; Gao, Z., Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution. Talanta, 2015, 144, 157-162.
[63].Xue, F., Meng, Z., Wang, Y., Huang, S., Wang, Q., Lu, W., Xu, M. A molecularly imprinted colloidal array as a colorimetric sensor for label-free detection of p-nitrophenol. Analytical Methods 2014, 6(3), 831-837.
[64].Lei L., Lin Z., Huang Z., Peng A. Rapid detection of sulfaguanidine in fish by using a photonic crystal molecularly imprinted polymer. Food Chem. 2019, 281, 57-62.
[65].Chen, S., Sun, H., Huang, Z., Jin, Z., Fang, S., He, J., … Lai, J. The visual detection of anesthetics in fish based on an inverse opal photonic crystal sensor. RSC Advances, 2019, 9(29), 16831–16838.
[66].Wang, L.-Q.; Lin, F.-Y.; Yu, L.-P., A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst, 2012, 137(15), 3502-3509.
[67].Lu, W., Dong, X., Qiu, L., Yan, Z., Meng, Z., Xue, M., Liu, X. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. Journal of Hazardous Materials, 2017, 326, 130-137.
[68].Zhang, X., Cui, Y., Bai, J., Sun, Z., Ning, B., Li, S., Wang, J., Peng, Y., Gao, Z. Novel biomimic crystalline colloidal array for fast detection of trace parathion. ACS Sens, 2017, 2, 1013-1019.
[69].Chen, Q., Shi, W., Cheng, M., Liao, S., Zhou, J., Wu, Z. Molecularly imprinted photonic hydrogel sensor for optical detection of l-histidine. Microchim. Acta, 2018, 185, 557-565.
[70].Meng, L., Meng, P., Tang, B., Zhang, Q., & Wang, Y. Molecularly imprinted photonic hydrogels for fast screening of atropine in biological samples with high sensitivity. Forensic Science International. 2013, 231(1-3), 6-12.
[71].Dai, J., Vu, D., Nagel, S., Lin, C.-H., & Fidalgo de Cortalezzi, M. Colloidal crystal templated molecular imprinted polymer for the detection of 2-butoxyethanol in water contaminated by hydraulic fracturing. Microchimica Acta.2017, 185(1).
[72].Rizvi, A. S., Murtaza, G., Yan, D., Irfan, M., Xue, M., Meng, Z. H., & Qu, F. Development of molecularly imprinted 2D photonic crystal hydrogel sensor for detection of L-Kynurenine in human serum. Talanta.2019, 120403.
[73].Fan, J., Meng, Z., Dong, X., Xue, M., Qiu, L., Liu, X., … He, X. Colorimetric screening of nitramine explosives by molecularly imprinted photonic crystal. Microchemical Journal. 2020, Volume 158, 105143.
[74].Casis, N., Busatto, C., Fidalgo de Cortalezzi, M. M., Ravaine, S., & Estenoz, D. A. Molecularly imprinted hydrogels from colloidal crystals for the detection of progesterone. Polymer International. 2014, 64(6), 773-779.
[75].Ren, J., Weber, F., Weigert, F., Wang, Y., Choudhury, S., Xiao, J., … Petit, T. Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale.2018, 11 (4), 2056-2064.
[76].Ullah, R., Ahmad, I., & Zheng, Y. Fourier Transform Infrared Spectroscopy of “Bisphenol A.” Journal of Spectroscopy, 2016, 1-5.
[77].Sajiki, J., Takahashi, K., & Yonekubo, J. Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 736(1-2), 255-261.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *