|
[1].J. E. Harries.; T. Runnalls.; E. Hill.; C. A. Harris.; S. Maddix.; J. P. Sumpter.;C. R. Tyler. Development of a Reproductive Performance Test for Endocrine Disrupting Chemicals Using Pair-Breeding Fathead Minnows (Pimephales promelas). Environ. Sci. Technol. 2000, 34(14), 3003-3011. [2].Vesper, H.W.; Botelho, J.C.; Wang, Y. Challenges and improvements in testosterone and estradiol testing. Asian J. Androl 2014, 16, 178-184. [3].Joseph J. BelBruno. Molecularly Imprinted Polymers. Chem. Rev 2019, 119(1), 94-119. [4].Wei Chen.; Zihui Meng.; Min Xue, Kenneth J Shea. Molecular imprinted photonic crystal for sensing of biomolecules. Molecular Imprinting 2016, 4(1), 2084-8803. [5].Lingxin Chen.; Shoufang Xuab.; Jinhua Lia. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 2011, 40, 2922-2942. [6].Ge, J.; Yin, Y. Responsive photonic crystals. Angewandte Chemie International Edition 2011, 50(7), 1492-1522. [7].Griffete, N., Frederich, H., Maître, A., Schwob, C., Ravaine, S., Carbonnier, B., … Mangeney, C. Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A. Journal of Colloid and Interface Science.2011, 364(1), 18–23. [8].Abbas J. Kadhem.; Shuting Xiang.; Susan Nagel.; Chung-Ho Lin.; Maria Fidalgo de Cortalezzi. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers 2018, 10(4), 349. [9].Sharon Marx.; Amalya Zaltsman.; Iva Turyan.; Daniel Mandler. Parathion Sensor Based on Molecularly Imprinted Sol−Gel Films. Anal. Chem 2004, 76(1), 120-126. [10].Zhang, Y., Jin, Z., Zeng, Q. et al. Visual test for the presence of the illegal additive ethyl anthranilate by using a photonic crystal test strip. Microchim Acta 2019, 186(685). [11].Yang, Q., Peng, H., Li, J., Li, Y., Xiong, H., Chen, L. Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology. New J. Chem 2017; 41:10174-10180. [12].WU, W.-Z., HUANG, M.-X., HUANG, Q.-D., LYU, C.-H., LAI, J.-P., & SUN, H. Molecularly Imprinted Photonic Hydrogels for Visual Detection of Methylanthranilate in Wine. Chinese Journal of Analytical Chemistry. 2019, 47(9), 1330-1336. [13].Zhu, W., Tao, S., Tao, C., Li, W., Lin, C., Li, M., … Li, G. Hierarchically Imprinted Porous Films for Rapid and Selective Detection of Explosives. Langmuir, 2011, 27(13), 8451–8457. [14].方峙翔, 張., 晶格參數調控拓印光子晶體感測器雙酚A之靈敏度. 2013 [15].Dai, J., Fidalgo de Cortalezzi M. Influence of pH, ionic strength and natural organic matter concentration on a MIP-Fluorescent sensor for the quantification of DNT in water. Heliyon, 2019, 5(6):e01922. [16].陳盈彣, 張., 分子干擾對於高分子吸附與感測能力之影響. 2019 [17].Le Noir, M., Plieva, F., Hey, T., Guieysse, B., & Mattiasson, B. Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. Journal of Chromatography A, 2007, 1154(1-2), 158-164. [18].Lin, Y., Shi, Y., Jiang, M., Jin, Y., Peng, Y., Lu, B., & Dai, K. Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environmental Pollution, 2008, 153(2), 483-491. [19].Liu, Y., Wang, Y., Dai, Q; Zhou, Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal Chim Acta, 2016, 936, 168-78. [20].Xia, X., Lai, E. P. C., & Örmeci, B. Duo-molecularly imprinted polymer-coated magnetic particles for class-selective removal of endocrine-disrupting compounds from aqueous environment. Environmental Science and Pollution Research, 2012, 20(5), 3331–3339. [21].Gary, W. Proteins: Biochemistry and Biotechnology. 2002 [22].Wang, X.; Mu, Z.; Liu, R.; Pu, Y.; Yin, L., Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food chemistry 2013, 141 (4), 3947-3953. [23].Polyakov, M.V. Adsorption properties and structure of silica gel. Zhurnal fizicheskoi khimii 2 S 1931, 799–804. [24].Pauling, L. A Theory of the Structure and Process of Formation of Antibodies. J. Am. Chem. Soc 1940, 62, 10, 2643-2657. [25].Dickey, F. H. The Preparation of Specific Adsorbents. Proceeding of the National Academy of Science of the United States of America 1949, 35(5), 227-9. [26].Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-analogue built polymers and their use for the resolution of racemates. Angewandte Chemie International Edition, 11(3), 341-344. [27].Bi, S.; Zhao, T.; Luo, B., A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chemical Communications 2012, 48 (1), 106-108. [28].Arshady, R.; Mosbach,K. Synthesis of substrate‐selective polymers by host‐guest polymerization. Die Makromolekulare Chemie 182(2):687-692. [29].Vlatakis, G., Andersson, L., Müller, R., Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361(6413), 645-647. [30].Nikesh B. Samarth1.; Vinayak Kamble1 Prakash A.; Mahanwar.; Ajay Vasudeo Rane.; Abitha V. K. A historical perspective and the development of molecular imprinting polymer- A review. Chemistry International. 2015, 1(4), 202-21. [31].Mayes, A.; Whitcombe, M. Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews 2005, 57(12), 1742-1778. [32].Alvarez-Lorenzo, C.; Angel, C. Molecular Imprinting: A Historical Perspective. Handbook of Molecularly Imprinted Polymers; A Smither Group Company: Shawbury, UK, 2013. [33].Katz, E.; Willner, I. Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition. 2004, 43 (45), 6042-6108. [34].Peeters, M., Kobben, S., Jiménez-Monroy K.L., Modesto, L., Kraus, M., Vandenryt, T., Gaulke, A., van Grinsven, B., Ingebrandt, S., Junkers, T., et al. Thermal detection of histamine with a graphene oxide based molecularly imprinted polymer platform prepared by reversible addition-fragmentation chain transfer polymerization. Sens. Actuators B Chem 2014; 203:527-535. [35].Chen L., Wang X., Lu W., Wu X., Li J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev 2016; 45:2137-2211. [36].Yang Q., Wu X., Peng H., Fu L., Song X., Li J., Xiong H., Chen L. Simultaneous phase-inversion and imprinting based sensor for highly sensitive and selective detection of bisphenol A. Talanta 2018; 176:595-603. [37].Peng, H., Wang, S., Zhang Z., Xiong, H., Li, J., Chen, L., Li, Y. Molecularly Imprinted Photonic Hydrogels as Colorimetric Sensors for Rapid and Label-free Detection of Vanillin. J. Agric. Food Chem 2012; 60:1921-1928. [38].Li J., Zhang Z., Xu S., Chen L., Zhou N., Xiong H., Peng H. Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels. J. Mater. Chem 2011; 21:19267–19274. [39].Zhou, H., Xu, Y., Tong, H., Liu, Y., Han, F., Yan, X., Liu, S. Direct synthesis of surface molecularly imprinted polymers based on vinyl-SiO2 nanospheres for recognition of bisphenol A. Journal of Applied Polymer Science. 2013, 128(6), 3846-3852. [40].John, S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 1987, 58(23), 2486-2489. [41].Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters 1987, 58(20), 2059-2062 [42].Blanford, C.F., Yan, H., Stein, A. Gems of Chemistry and Physics: Macroporous Metal Oxides with 3D Order. Advanced Material 2001, 13(6), 401-407. [43].Noda S., Chutinan A., Imada M., Trapping and Emission of Photons by a Single Defect in a Photonic Band gap Structure [J]. Nature, 2000, 407, 6804: 608-610. [44].Ogawa S.P., Imada M., Yoshimoto S., Okano M., Noda S. Control of Light Emission by 3D Photonic Crystals [J]. Science, 2004, 305: 227-229. [45].Corey, S., Dante F. DeMeo., Thomas E. Vandervelde. Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermophotovoltaic applications. Applied Physics Letters, 2014, 104(2): 021115-021115-4. [46].F. S. S. Chien., C. L. Wu., Y. C. Chou., T. T. Chen., S. Gwo., W. F. Hsieh. Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching. Applied Physics Letters, 1999, 75(16), 2429-2431. [47].Yablonovitch, E., Gmitter, T. J., Leung, K. M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett.1991, 67(17), 2295-2298. [48].Ho, K. M., Chan, C. T., Soukoulis, C. M., Biswas, R., Sigalas, M. Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Communications, 1994, 89(5), 413-416. [49].Özbay, E. Layer-by-layer photonic crystals from microwave to far-infrared frequencies. Journal of the Optical Society of America B, 1996, 13(9), 1945-1955. [50].Stein, A., Wilson, B. E., Rudisill, S. G. Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals. Chem. Soc. Rev. 2013, 42(7), 2763-2803. [51].Zhang, J., Sun, Z., & Yang, B. Self-assembly of photonic crystals from polymer colloids. Colloid & Interface Science 2009, 14(2), 103-114. [52].Amokrane, G., Falentin-Daudré, C., Ramtani, S., Migonney, V. A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. IRBM 2018, 39(4), 268-278. [53].Reuss, F.F. Sur un nouvel effet de l'électricité glavanique. Mémoires de la Société impériale des naturalistes de Moscou, 1809, 2: 327-337. [54].Gu, Z, Z., Fujishima, A., Sato, O. Fabrication of High-Quality Opal Films with Controllable Thickness. Chem. Mater 2002, 14(2), 760-765. [55].Yan, H., Yang, Y., Fu, Z., Yang, B., Xia, L., Xu, Y., Fu, S., Li, F. Cathodic electrode position of ordered porous titania films by polystyrene colloidal crystal templating. Chemistry Letters, 2006, 35(8), 864-865. [56].Zakhidov, A. A. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths. Science, 1998, 282(5390), 897-901. [57].Moon, JH., Cho, YS., Yang, SM. Room temperature chemical vapor deposition for fabrication of titania inverse opals:fabrication, morphology analysis and optical characterization. the Korean Chemical Society, 2009, 30 (10), 2245-2248. [58].Ying-Hui, Z., Hui-Hui, R., Li-Ping, Y. Development of molecularly imprinted photonic polymer for sensing of sulfonamides in egg white. Analytical Methods 2018, 10, 101-108. [59].Hong, X., Peng, Y., Bai, J., Ning, B., Liu, Y., Zhou, Z., & Gao, Z. A Novel Opal Closest-Packing Photonic Crystal for Naked-Eye Glucose Detection. Small, 2013, 10(7), 1308-1313. [60].Sai, N.; Ning, B.; Huang, G.; Wu, Y.; Zhou, Z.; Peng, Y.; Bai, J.; Yu, G.; Gao, Z., An imprinted crystalline colloidal array chemical-sensing material for detection of trace diethylstilbestrol. Analyst 2013, 138 (9), 2720-2728. [61].Guo, C.; Zhou, C.; Sai, N.; Ning, B.; Liu, M.; Chen, H.; Gao, Z., Detection of bisphenol A using an opal photonic crystal sensor. Sensors and Actuators B: Chemical, 2012, 166, 17-23. [62].Sai, N.; Wu, Y.; Sun, Z.; Huang, G.; Gao, Z., Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution. Talanta, 2015, 144, 157-162. [63].Xue, F., Meng, Z., Wang, Y., Huang, S., Wang, Q., Lu, W., Xu, M. A molecularly imprinted colloidal array as a colorimetric sensor for label-free detection of p-nitrophenol. Analytical Methods 2014, 6(3), 831-837. [64].Lei L., Lin Z., Huang Z., Peng A. Rapid detection of sulfaguanidine in fish by using a photonic crystal molecularly imprinted polymer. Food Chem. 2019, 281, 57-62. [65].Chen, S., Sun, H., Huang, Z., Jin, Z., Fang, S., He, J., … Lai, J. The visual detection of anesthetics in fish based on an inverse opal photonic crystal sensor. RSC Advances, 2019, 9(29), 16831–16838. [66].Wang, L.-Q.; Lin, F.-Y.; Yu, L.-P., A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst, 2012, 137(15), 3502-3509. [67].Lu, W., Dong, X., Qiu, L., Yan, Z., Meng, Z., Xue, M., Liu, X. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. Journal of Hazardous Materials, 2017, 326, 130-137. [68].Zhang, X., Cui, Y., Bai, J., Sun, Z., Ning, B., Li, S., Wang, J., Peng, Y., Gao, Z. Novel biomimic crystalline colloidal array for fast detection of trace parathion. ACS Sens, 2017, 2, 1013-1019. [69].Chen, Q., Shi, W., Cheng, M., Liao, S., Zhou, J., Wu, Z. Molecularly imprinted photonic hydrogel sensor for optical detection of l-histidine. Microchim. Acta, 2018, 185, 557-565. [70].Meng, L., Meng, P., Tang, B., Zhang, Q., & Wang, Y. Molecularly imprinted photonic hydrogels for fast screening of atropine in biological samples with high sensitivity. Forensic Science International. 2013, 231(1-3), 6-12. [71].Dai, J., Vu, D., Nagel, S., Lin, C.-H., & Fidalgo de Cortalezzi, M. Colloidal crystal templated molecular imprinted polymer for the detection of 2-butoxyethanol in water contaminated by hydraulic fracturing. Microchimica Acta.2017, 185(1). [72].Rizvi, A. S., Murtaza, G., Yan, D., Irfan, M., Xue, M., Meng, Z. H., & Qu, F. Development of molecularly imprinted 2D photonic crystal hydrogel sensor for detection of L-Kynurenine in human serum. Talanta.2019, 120403. [73].Fan, J., Meng, Z., Dong, X., Xue, M., Qiu, L., Liu, X., … He, X. Colorimetric screening of nitramine explosives by molecularly imprinted photonic crystal. Microchemical Journal. 2020, Volume 158, 105143. [74].Casis, N., Busatto, C., Fidalgo de Cortalezzi, M. M., Ravaine, S., & Estenoz, D. A. Molecularly imprinted hydrogels from colloidal crystals for the detection of progesterone. Polymer International. 2014, 64(6), 773-779. [75].Ren, J., Weber, F., Weigert, F., Wang, Y., Choudhury, S., Xiao, J., … Petit, T. Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale.2018, 11 (4), 2056-2064. [76].Ullah, R., Ahmad, I., & Zheng, Y. Fourier Transform Infrared Spectroscopy of “Bisphenol A.” Journal of Spectroscopy, 2016, 1-5. [77].Sajiki, J., Takahashi, K., & Yonekubo, J. Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 736(1-2), 255-261.
|