帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:葉北辰
論文名稱(中文):利用鐵酸鎳/還原氧化石墨烯做為高效能離子選擇性電極應用在電容去離子技術之研究
論文名稱(英文):Nickel Ferrite-reduced Graphene Oxide as a High-Performance IOn Selective Electrode for Capacitive Deionization
指導教授(中文):張淑閔
董瑞安
指導教授(英文):Chang, Sue-Min
Doong, Ruey-An
口試委員:張淑閔
董瑞安
王竹方
陳慶隆
林亮毅
口試委員(英文):Chang, Sue-Min
Doong, Ruey-An
Wang, Chu-Fang
Chen, Ching-Lung
Lin, Liang-Yi
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0751713
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:84
中文關鍵詞:鐵酸鎳還原氧化石墨烯電容去離子
外文關鍵詞:Nickel ferritesReduced graphene oxideCapacitive deionization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
混和金屬氧化物(Mixed transition metal oxide)為一具有高度潛力的導電材料,其擁有比單組分之金屬氧化物高之比電容能力,透過與碳材結合應用於電容去離子,並提升其脫鹽能力。
本研究利用水熱法合成鐵酸鎳(Nickel Ferrite, NiFe2O4),並添加不同重量氧化石墨烯(GO)進行水熱法還原成還原氧化石墨烯(rGO)並與之結合,形成NiFe2O4/rGO(NFG)複合材料並應用於電容去離子技術。首先利用SEM、TEM、EDX、Raman、XRD、XPS、TGA等分析方法對NFG進行特性的鑑定,接著透過循環伏安法(CV)以及定電流充放電法(GCD)觀察其電化學表現。根據結果顯示,本研究利用水熱法所製備之rGO於1M Na2SO4電解液下電流密度為0.6 A/g時比電容值為104.9 F/g,而鐵酸鎳(NiFe2O4)之比電容值在電流密度為0.6 A/g時為27.9 F/g。此外,NFG複合材料於1M Na2SO4電解液電流密度為0.6 A/g時比電容值提升至221.0 F/g,證明兩者的結合能夠有效地提升其比電容能力,所製備之奈米複合材料將應用於電容去離子技術之電極材料。
本研究探討了不同施加電壓下(0.8 V、1.0 V、1.2 V、1.4 V)其電吸附的能力,NFG∥NFG之電吸附能力會隨著施加電壓增加而隨之上升,在1.4 V 時有著最佳SEC(salt electrosorption capacity)為29.6 mg/g,高於NFO∥NFO電極之SEC 21.5 mg/g。另外也探討了不同初始NaCl濃度(100 mg/L、200 mg/L、500 mg/、1000 mg/L)對電容去離子效率之影響,當初始濃度為1000 mg/L時SEC為28.1 mg/g,且根據Langmuir吸附模式,NFG∥NGO電極之最大SEC可達30.2 mg/g。總結來說,鐵酸鎳/還原氧化石墨烯複合材料可以有效提升電化學性能及比電容值,進而提升其電吸附能力。
Mixed transition metal oxide is a highly potential conductive material. It has a higher specific capacitance than single-component metal oxides. It can be used in capacitive deionization by combining with carbon materials and enhance its desalination ability.
In this study, Nickel ferrite (NiFe2O4) was synthesized by hydrothermal method, and graphene oxide (GO) of different weights was added and reduced to reduced graphene oxide (rGO) through hydrothermal method and combine with it to form NiFe2O4/rGO(NFG) nanocomposite and applied to capacitive deionization technology. First, we use SEM, TEM, EDX, Raman, XRD, XPS, TGA and other analytical methods to identify the characteristics of NFG, and then its electrochemical performances were evaluated through cyclic voltammetry (CV) and Galvanostatic charge/discharge (GCD). According to the results, the specific capacitance of rGO prepared by the hydrothermal method in the 1M Na2SO4 electrolyte is 104.9 F/g when the current density is 0.6 A/g, while the specific capacitance of nickel ferrite (NiFe2O4) is 27.9 F/g. In addition, the specific capacitance of the NFG composite material increases to 221.0 F/g when the current density is 0.6 A/g in 1M Na2SO4 electrolyte, which proves that the combination of the two materials can effectively improve its specific capacitance. The prepared nanocomposite material has been use in capacitive deionization technology.
This study discusses its electro-adsorption capacity under different applied voltages (0.8 V, 1.0 V, 1.2 V, 1.4 V). The electro-adsorption capacity of NFG∥NFG will increase with the increase of applied voltage. At 1.4 V, it has the best SEC (salt electrosorption capacity) is 29.6 mg/g, which is higher than the SEC of NFO∥NFO electrode of 21.5 mg/g. In addition, the influence of different initial NaCl concentrations (100 mg/L, 200 mg/L, 500 mg/, 1000 mg/L) on the deionization efficiency is also discussed. When the initial concentration is 1000 mg/L, the SEC is 28.1 mg/g, and according to the Langmuir adsorption mode, the maximum SEC of NFG∥NFG electrode can reach 30.2 mg/g. In summary, the nickel ferrite/reduced graphene oxide nanocomposite can effectively improve the electrochemical performances and specific capacitance, and then enhance its electrosorption capacity.
摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 水資源之重要性 4
2-2 水質汙染 8
2-3 海水淡化 9
2-4 水溶液去離子之方法 11
2-5 逆滲透(Reverse Osmosis, RO) 12
2-6 電透析(Electrodialysis, ED) 12
2-7 電容去離子之優點 13
2-8電容去離子技術 (Capacitive deionization, CDI) 之原理及發展應用 15
2-8-1 電容去離子之起源及原理 16
2-8-2 膜電容去離子(Membrane Capacitive Deionization, MCDI) 17
2-8-3 非法拉第效應(Non-faradaic effect) 18
2-8-4 法拉第反應(Faradaic reactions) 19
2-9 電雙層理論(Electrical double layer) 20
2-10 影響電容去離子效率之因素 21
2-11 電吸附動力學(Electrsorption kinetics) 22
2-12 等溫吸附曲線(Electrosorption isotherm) 23
2-13 活性碳(Activated Carbon, AC) 24
2-14 有序中孔碳材(Ordered Mesoporous Carbons, OMC) 24
2-15 碳氣凝膠(Carbon aerogels, CAs) 24
2-16 奈米碳管(Carbon nanotubes, CNTs) 25
2-17 石墨烯及氧化石墨烯 (Graphene, Graphene oxides, GO) 25
2-18 過渡金屬氧化物(Transition Metal Oxides) 26
2-19 尖晶石結構鐵氧體(Spinel ferrites) 26
第三章 實驗方法與步驟 30
3-1 實驗藥品與器材 30
3-2 實驗架構與流程 32
3-3 氧化石墨烯(Graphene Oxide, GO)之合成方法 34
3-4 還原氧化石墨烯(reduced Graphene Oxide, rGO)之合成方法 35
3-5 鐵酸鎳(Nickel Ferrite, NFO)之合成方法 35
3-6 鐵酸鎳/還原氧化石墨烯(NiFe2O4/rGO, NFG)之合成方法 36
3-7儀器之使用 37
3-7-1 X光粉末繞射儀 (X-ray Powder Diffractometer, XRD) 37
3-7-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 38
3-7-3 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 38
3-7-4 比表面積分析儀 (Brunauer-Emmett-Teller specific area analyzer, BET) 38
3-7-5 傅立葉轉換紅外光譜 (Fourier-transform infrared spectroscopy, FTIR) 39
3-7-6 熱重分析儀 (Thermogravimetric Analysis, TGA) 39
3-7-7 拉曼散射光譜儀 (Raman Spectroscopy) 39
3-8 電化學測試 40
3-8-1 電極材料製備 40
3-8-2循環伏安法(Cyclic voltammetry, CV) 40
3-8-3 電化學阻抗法 (Electrochemical impedance spectrum, EIS) 41
3-8-4 定電流充放電法(Galvanostatic charge-discharge) 41
3-9 電容去離子之實驗方法 41
3-9-1 電容去離子電極製備方法 41
第四章 結果與討論 43
4-1 氧化石墨烯及還原氧化石墨烯之初步特性鑑定 43
4-1-1結晶度比較 43
4-1-2 表面形貌 44
4-2 鐵酸鎳與鐵酸鎳/還原氧化石墨烯(NFO,NFG)之特性鑑定 45
4-2-1結晶度比較 45
4-2-2 表面形貌 46
4-2-3 比表面積之分析 48
4-2-4 XPS之分析 50
4-2-5 拉曼圖譜 52
4-2-6 TGA 54
4-3還原氧化石墨烯之電化學測試 54
4-4 鐵酸鎳與鐵酸鎳/還原氧化石墨烯之電化學測試 57
4-5 鐵酸鎳/還原氧化石墨烯之電容去離子測試 61
4-5-1 不同電壓之電容去離子表現 61
4-5-2 不同初始濃度對電容去離子效率之影響 64
4-5-3 電極材料之再生能力 66
4-5-4 電吸附動力學 67
4-5-5 Langmuir吸附模式 69
4-6 總結 71
第五章 結論與建議 73
5-1 結論 73
5-2 建議 74
參考文獻 75
[1] L. Swatuk, M. McMorris, C. Leung, Y. Zu, Seeing “invisible water”: challenging conceptions of water for agriculture, food and human security, Canadian Journal of Development Studies/Revue canadienne d'études du développement, 36 (2015) 24-37.
[2] M. Zafra, P. Lavela, G. Rasines, C. Macías, J. Tirado, C.J.E.A. Ania, A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water, Electrochemical Acta, 135 (2014) 208-216.
[3] N. Arora, F. Banat, G. Bharath, E. Alhseinat, Capacitive deionization of NaCl from saline solution using graphene/CNTs/ZnO NPs based electrodes, J. Phys. D-Appl. Phys., 52 (2019) 12.
[4] J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants, Applied Energy, 254 (2019) 113652.
[5] A.A. Zagorodni, Ion exchange materials: properties and applications, Elsevier, 2006.
[6] M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochimica Acta, 55 (2010) 3845-3856.
[7] J.W. Blair, G.W. Murphy, Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area, in: Saline Water Conversion, 1960, pp. 206-223.
[8] G. Murphy, D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochimica Acta, 12 (1967) 1655-1664.
[9] A. Johnson, A. Venolia, J. Newman, R. Wilbourne, C. Wong, W. Gillam, S. Johnson, R. Horowitz, Electrosorb process for desalting water, Office of Saline Water Research and Development, in: Progress Report No 516, US Department of the Interior, Publication 200 056, 1970.
[10] Y. Oren, A. Soffer, Water desalting by means of electrochemical parametric pumping, Journal of Applied Electrochemistry, 13 (1983) 473-487.
[11] N. Kim, J. Lee, S. Kim, S.P. Hong, C. Lee, J. Yoon, C. Kim, Short review of multichannel membrane capacitive deionization: principle, current status, and future prospect, Applied Sciences, 10 (2020) 683.
[12] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.J.P.i.m.s. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science, 58 (2013) 1388-1442.
[13] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, Experimental review of graphene, ISRN Condensed Matter Physics, 2012 (2012).
[14] G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, F. Zaviska, Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization, Membranes, 10 (2020) 96.
[15] W. Tang, D. He, C. Zhang, T.D. Waite, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water research, 121 (2017) 302-310.
[16] J. Pan, Y. Zheng, J. Ding, C. Gao, B. Van der Bruggen, J. Shen, Fluoride removal from water by membrane capacitive deionization with a monovalent anion selective membrane, Industrial & Engineering Chemistry Research, 57 (2018) 7048-7053.
[17] H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water research, 42 (2008) 4923-4928.
[18] P. Biesheuvel, Y. Fu, M. Bazant, Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes, Russian Journal of Electrochemistry, 48 (2012) 580-592.
[19] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in materials science, 58 (2013) 1388-1442.
[20] M.A. Anderson, A.L. Cudero, J.J.E.A. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochimica Acta, 5 (2010) 3845-3856.
[21] L.L. Zhang, X.J.C.S.R. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38 (2009) 2520-2531.
[22] L. Agartan, B. Akuzum, T. Mathis, K. Ergenekon, E. Agar, E.C.J.S. Kumbur, P. Technology, Influence of thermal treatment conditions on capacitive deionization performance and charge efficiency of carbon electrodes, Separation and Purification Technology, 202 (2018) 67-75.
[23] H. Li, L. Zou, L. Pan, Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Separation and purification technology, 75 (2010) 8-14.
[24] Y.J.D. Oren, Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Elsevier, 228 (2008) 10-29.
[25] Z. Yu, L. Tetard, L. Zhai, J.J.E. Thomas, E. Science, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy & Environmental Science, 8 (2015) 702-730.
[26] H. Li, L. Zou, L. Pan, Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environmental science & technology, 44 (2010) 8692-8697.
[27] H. Li, F. Zaviska, S. Liang, J. Li, L. He, H.Y. Yang, A high charge efficiency electrode by self-assembling sulphonated reduced graphene oxide onto carbon fibre: towards enhanced capacitive deionization, Journal of Materials Chemistry A, 2 (2014) 3484-3491.
[28] Y. Ho, G. McKay, Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash, Journal of Environmental Science & Health Part A, 34 (1999) 1179-1204.
[29] Y.-S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water research, 34 (2000) 735-742.
[30] W. Weber, J. Morris, Advances in water pollution research, in: Proceedings of the First International Conference on Water Pollution Research, Pergamon Press Oxford, 1962, pp. 231.
[31] M. Pan, X. Lin, J. Xie, X. Huang, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites, RSC advances, 7 (2017) 4492-4500.
[32] M. Jansson-Charrier, E. Guibal, J. Roussy, B. Delanghe, P. Le Cloirec, Vanadium (IV) sorption by chitosan: kinetics and equilibrium, Water Research, 30 (1996) 465-475.
[33] H. Marsh, F.R. Reinoso, Activated carbon, Elsevier, 2006.
[34] M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 305 (2012) 24-30.
[35] L. Li, L. Zou, H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride, Carbon, 47 (2009) 775-781.
[36] C.-M. Yang, W.-H. Choi, B.-K. Na, B.W. Cho, W.I. Cho, Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes, Desalination, 174 (2005) 125-133.
[37] R. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of materials science, 24 (1989) 3221-3227.
[38] H. Tamon, A. Olabi, Carbon aerogels, Elsevier (2016).
[39] L. Zou, Developing nano-structured carbon electrodes for capacitive brackish water desalination, Expanding Issues in Desalination, (2011) 301-318.
[40] W. Choi, J.-w. Lee, Graphene: synthesis and applications, CRC press, 2011.
[41] A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 39 (2001) 507-514.
[42] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the american chemical society, 80 (1958) 1339-1339.
[43] M.A. Ahmed, S. Tewari, Capacitive deionization: Processes, materials and state of the technology, Journal of Electroanalytical Chemistry, 813 (2018) 178-192.
[44] J.-X. Feng, S.-H. Ye, X.-F. Lu, Y.-X. Tong, G.-R.J.A.a.m. Li, interfaces, Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni (OH) 2 positive electrode: a novel and high-performance flexible electrochemical energy storage device, ACS Applied Materials & Interfaces 7 (2015) 11444-11451.
[45] G. Wei, L. Wei, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J.J.S.r. Jiao, Reversible control of the magnetization of spinel ferrites based electrodes by lithium-ion migration, Scientific reports, 7 (2017) 12554.
[46] H. Younes, F. Ravaux, N. El Hadri, L.J.E.A. Zou, Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization, Electrochimica Acta, 306 (2019) 1-8.
[47] C. Yuan, H.B. Wu, Y. Xie, X.W.J.A.C.I.E. Lou, Mixed transition‐metal oxides: design, synthesis, and energy‐related applications, Chemie International Edition, 53 (2014) 1488-1504.
[48] W.J.N. Bragg, The structure of magnetite and the spinels, Nature, 95 (1915) 561-561.
[49] K.K. Kefeni, B.B. Mamba, T.A. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review, Separation and Purification Technology, 188 (2017) 399-422.
[50] D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification?, Coordination Chemistry Reviews, 315 (2016) 90-111.
[51] M. Zhu, D. Meng, C. Wang, G. Diao, Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property, ACS Appl Mater Interfaces, 5 (2013) 6030-6037.
[52] S.-L. Kuo, N.-L.J.E. Wu, S.-S. Letters, Electrochemical capacitor of MnFe2O4 with NaCl electrolyte, Electrochemical and Solid State Letters, 8 (2005) A495-A499.
[53] B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications, International journal of molecular sciences, 14 (2013) 21266-21305.
[54] K.V. Sankar, R.K.J.E.A. Selvan, Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances, Electrochimica Acta, 213 (2016) 469-481.
[55] V. Kumbhar, A. Jagadale, N. Shinde, C.J.A.S.S. Lokhande, Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application, Applied Surface, 259 (2012) 39-43.
[56] P. He, K. Yang, W. Wang, F. Dong, L. Du, Y.J.R.J.o.E. Deng, Reduced graphene oxide-CoFe 2 O 4 composites for supercapacitor electrode, Russian Journal of Electrochemistry, 49 (2013) 359-364.
[57] P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, X. Wang, Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance, Journal of Power Sources, 266 (2014) 384-392.
[58] A. Soam, R. Kumar, P.K. Sahoo, C. Mahender, B. Kumar, N. Arya, M. Singh, S. Parida, R.O. Dusane, Synthesis of Nickel Ferrite Nanoparticles Supported on Graphene Nanosheets as Composite Electrodes for High Performance Supercapacitor, ChemistrySelect, 4 (2019) 9952-9958.
[59] L. Zou, L. Li, H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water research, 42 (2008) 2340-2348.
[60] G. Rasines, P. Lavela, C. Macías, M. Zafra, J. Tirado, C. Ania, Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water, Journal of Electroanalytical Chemistry, 741 (2015) 42-50.
[61] H. Li, L. Zou, Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination, Desalination, 275 (2011) 62-66.
[62] Y. Chen, M. Yue, Z.-H. Huang, F. Kang, Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization, Chemical Engineering Journal, 252 (2014) 30-37.
[63] H. Wang, D. Zhang, T. Yan, X. Wen, J. Zhang, L. Shi, Q. Zhong, Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization, Journal of Materials Chemistry A, 1 (2013) 11778-11789.
[64] B. Jia, L. Zou, Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization, Chemical Physics Letters, 548 (2012) 23-28.
[65] H. Younes, F. Ravaux, N. El Hadri, L. Zou, Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization, Electrochimica Acta, 306 (2019) 1-8.
[66] K. Rambabu, G. Bharath, A. Hai, S. Luo, K. Liao, M.A. Haijaa, F. Banat, M. Naushad, Development of watermelon rind derived activated carbon/manganese ferrite nanocomposite for cleaner desalination by capacitive deionization, Journal of Cleaner Production, (2020) 122626.
[67] A. Bahrami, I. Kazeminezhad, Y. Abdi, Pt-Ni/rGO counter electrode: electrocatalytic activity for dye-sensitized solar cell, Superlattices and Microstructures, 125 (2019) 125-137.
[68] Y.-Z. Cai, W.-Q. Cao, P. He, Y.-L. Zhang, M.-S. Cao, NiFe2O4 nanoparticles on reduced graphene oxide for supercapacitor electrodes with improved capacitance, Materials Research Express, 6 (2019) 105535.
[69] M. Hua, L. Xu, F. Cui, J. Lian, Y. Huang, J. Bao, J. Qiu, Y. Xu, H. Xu, Y. Zhao, Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance, Journal of materials science, 53 (2018) 7621-7636.
[70] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Applied surface science, 254 (2008) 2441-2449.
[71] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid state communications, 143 (2007) 47-57.
[72] X. Zhou, D. Chuai, D. Zhu, Electrospun synthesis of reduced graphene oxide (RGO)/NiZn ferrite nanocomposites for excellent microwave absorption properties, Journal of Superconductivity and Novel Magnetism, 32 (2019) 2687-2697.
[73] T. Kim, J. Yoon, CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization, RSC advances, 5 (2015) 1456-1461.
[74] B. Bashir, W. Shaheen, M. Asghar, M.F. Warsi, M.A. Khan, S. Haider, I. Shakir, M. Shahid, Copper doped manganese ferrites nanoparticles anchored on graphene nano-sheets for high performance energy storage applications, Journal of Alloys and Compounds, 695 (2017) 881-887.
[75] M.K. Zate, V.V. Jadhav, S.K. Gore, J.H. Shendkar, S.U. Ekar, A. Al-Osta, M. Naushad, R.S. Mane, Structural, morphological and electrochemical supercapacitive properties of sprayed manganese ferrite thin film electrode, Journal of Analytical and Applied Pyrolysis, 122 (2016) 224-229.
[76] C. Wei, Z. Feng, M. Baisariyev, L. Yu, L. Zeng, T. Wu, H. Zhao, Y. Huang, M.J. Bedzyk, T. Sritharan, Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X= Mn, Co, Ni, Fe), Chemistry of Materials, 28 (2016) 4129-4133.
[77] Z. Wang, X. Zhang, Y. Li, Z. Liu, Z. Hao, Synthesis of graphene–NiFe 2 O 4 nanocomposites and their electrochemical capacitive behavior, Journal of Materials Chemistry A, 1 (2013) 6393-6399.
[78] A.S. Yasin, H.O. Mohamed, I.M. Mohamed, H.M. Mousa, N.A. Barakat, Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Separation and Purification Technology, 171 (2016) 34-43.
[79] A.G. El-Deen, J.-H. Choi, C.S. Kim, K.A. Khalil, A.A. Almajid, N.A. Barakat, TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization, Desalination, 361 (2015) 53-64.
[80] H. Li, Z.Y. Leong, W. Shi, J. Zhang, T. Chen, H.Y. Yang, Hydrothermally synthesized graphene and Fe 3 O 4 nanocomposites for high performance capacitive deionization, RSC advances, 6 (2016) 11967-11972.
[81] A. Yousef, A.M. Al-Enizi, I.M. Mohamed, M. El-Halwany, M. Ubaidullah, R.M. Brooks, Synthesis and characterization of CeO2/rGO nanoflakes as electrode material for capacitive deionization technology, Ceramics International, (2020).
[82] H. Li, S. Liang, J. Li, L. He, The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite, Journal of Materials Chemistry A, 1 (2013) 6335-6341.
[83] G. Divyapriya, K.K. Vijayakumar, I. Nambi, Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system, Desalination, 451 (2019) 102-110.
[84]台灣經濟部水利署
[85]行政院環保署

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *