|
[1] L. Swatuk, M. McMorris, C. Leung, Y. Zu, Seeing “invisible water”: challenging conceptions of water for agriculture, food and human security, Canadian Journal of Development Studies/Revue canadienne d'études du développement, 36 (2015) 24-37. [2] M. Zafra, P. Lavela, G. Rasines, C. Macías, J. Tirado, C.J.E.A. Ania, A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water, Electrochemical Acta, 135 (2014) 208-216. [3] N. Arora, F. Banat, G. Bharath, E. Alhseinat, Capacitive deionization of NaCl from saline solution using graphene/CNTs/ZnO NPs based electrodes, J. Phys. D-Appl. Phys., 52 (2019) 12. [4] J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants, Applied Energy, 254 (2019) 113652. [5] A.A. Zagorodni, Ion exchange materials: properties and applications, Elsevier, 2006. [6] M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochimica Acta, 55 (2010) 3845-3856. [7] J.W. Blair, G.W. Murphy, Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area, in: Saline Water Conversion, 1960, pp. 206-223. [8] G. Murphy, D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochimica Acta, 12 (1967) 1655-1664. [9] A. Johnson, A. Venolia, J. Newman, R. Wilbourne, C. Wong, W. Gillam, S. Johnson, R. Horowitz, Electrosorb process for desalting water, Office of Saline Water Research and Development, in: Progress Report No 516, US Department of the Interior, Publication 200 056, 1970. [10] Y. Oren, A. Soffer, Water desalting by means of electrochemical parametric pumping, Journal of Applied Electrochemistry, 13 (1983) 473-487. [11] N. Kim, J. Lee, S. Kim, S.P. Hong, C. Lee, J. Yoon, C. Kim, Short review of multichannel membrane capacitive deionization: principle, current status, and future prospect, Applied Sciences, 10 (2020) 683. [12] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.J.P.i.m.s. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science, 58 (2013) 1388-1442. [13] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, Experimental review of graphene, ISRN Condensed Matter Physics, 2012 (2012). [14] G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, F. Zaviska, Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization, Membranes, 10 (2020) 96. [15] W. Tang, D. He, C. Zhang, T.D. Waite, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water research, 121 (2017) 302-310. [16] J. Pan, Y. Zheng, J. Ding, C. Gao, B. Van der Bruggen, J. Shen, Fluoride removal from water by membrane capacitive deionization with a monovalent anion selective membrane, Industrial & Engineering Chemistry Research, 57 (2018) 7048-7053. [17] H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water research, 42 (2008) 4923-4928. [18] P. Biesheuvel, Y. Fu, M. Bazant, Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes, Russian Journal of Electrochemistry, 48 (2012) 580-592. [19] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in materials science, 58 (2013) 1388-1442. [20] M.A. Anderson, A.L. Cudero, J.J.E.A. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochimica Acta, 5 (2010) 3845-3856. [21] L.L. Zhang, X.J.C.S.R. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38 (2009) 2520-2531. [22] L. Agartan, B. Akuzum, T. Mathis, K. Ergenekon, E. Agar, E.C.J.S. Kumbur, P. Technology, Influence of thermal treatment conditions on capacitive deionization performance and charge efficiency of carbon electrodes, Separation and Purification Technology, 202 (2018) 67-75. [23] H. Li, L. Zou, L. Pan, Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Separation and purification technology, 75 (2010) 8-14. [24] Y.J.D. Oren, Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Elsevier, 228 (2008) 10-29. [25] Z. Yu, L. Tetard, L. Zhai, J.J.E. Thomas, E. Science, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy & Environmental Science, 8 (2015) 702-730. [26] H. Li, L. Zou, L. Pan, Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environmental science & technology, 44 (2010) 8692-8697. [27] H. Li, F. Zaviska, S. Liang, J. Li, L. He, H.Y. Yang, A high charge efficiency electrode by self-assembling sulphonated reduced graphene oxide onto carbon fibre: towards enhanced capacitive deionization, Journal of Materials Chemistry A, 2 (2014) 3484-3491. [28] Y. Ho, G. McKay, Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash, Journal of Environmental Science & Health Part A, 34 (1999) 1179-1204. [29] Y.-S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water research, 34 (2000) 735-742. [30] W. Weber, J. Morris, Advances in water pollution research, in: Proceedings of the First International Conference on Water Pollution Research, Pergamon Press Oxford, 1962, pp. 231. [31] M. Pan, X. Lin, J. Xie, X. Huang, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites, RSC advances, 7 (2017) 4492-4500. [32] M. Jansson-Charrier, E. Guibal, J. Roussy, B. Delanghe, P. Le Cloirec, Vanadium (IV) sorption by chitosan: kinetics and equilibrium, Water Research, 30 (1996) 465-475. [33] H. Marsh, F.R. Reinoso, Activated carbon, Elsevier, 2006. [34] M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 305 (2012) 24-30. [35] L. Li, L. Zou, H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride, Carbon, 47 (2009) 775-781. [36] C.-M. Yang, W.-H. Choi, B.-K. Na, B.W. Cho, W.I. Cho, Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes, Desalination, 174 (2005) 125-133. [37] R. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of materials science, 24 (1989) 3221-3227. [38] H. Tamon, A. Olabi, Carbon aerogels, Elsevier (2016). [39] L. Zou, Developing nano-structured carbon electrodes for capacitive brackish water desalination, Expanding Issues in Desalination, (2011) 301-318. [40] W. Choi, J.-w. Lee, Graphene: synthesis and applications, CRC press, 2011. [41] A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 39 (2001) 507-514. [42] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the american chemical society, 80 (1958) 1339-1339. [43] M.A. Ahmed, S. Tewari, Capacitive deionization: Processes, materials and state of the technology, Journal of Electroanalytical Chemistry, 813 (2018) 178-192. [44] J.-X. Feng, S.-H. Ye, X.-F. Lu, Y.-X. Tong, G.-R.J.A.a.m. Li, interfaces, Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni (OH) 2 positive electrode: a novel and high-performance flexible electrochemical energy storage device, ACS Applied Materials & Interfaces 7 (2015) 11444-11451. [45] G. Wei, L. Wei, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J.J.S.r. Jiao, Reversible control of the magnetization of spinel ferrites based electrodes by lithium-ion migration, Scientific reports, 7 (2017) 12554. [46] H. Younes, F. Ravaux, N. El Hadri, L.J.E.A. Zou, Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization, Electrochimica Acta, 306 (2019) 1-8. [47] C. Yuan, H.B. Wu, Y. Xie, X.W.J.A.C.I.E. Lou, Mixed transition‐metal oxides: design, synthesis, and energy‐related applications, Chemie International Edition, 53 (2014) 1488-1504. [48] W.J.N. Bragg, The structure of magnetite and the spinels, Nature, 95 (1915) 561-561. [49] K.K. Kefeni, B.B. Mamba, T.A. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review, Separation and Purification Technology, 188 (2017) 399-422. [50] D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification?, Coordination Chemistry Reviews, 315 (2016) 90-111. [51] M. Zhu, D. Meng, C. Wang, G. Diao, Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property, ACS Appl Mater Interfaces, 5 (2013) 6030-6037. [52] S.-L. Kuo, N.-L.J.E. Wu, S.-S. Letters, Electrochemical capacitor of MnFe2O4 with NaCl electrolyte, Electrochemical and Solid State Letters, 8 (2005) A495-A499. [53] B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications, International journal of molecular sciences, 14 (2013) 21266-21305. [54] K.V. Sankar, R.K.J.E.A. Selvan, Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances, Electrochimica Acta, 213 (2016) 469-481. [55] V. Kumbhar, A. Jagadale, N. Shinde, C.J.A.S.S. Lokhande, Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application, Applied Surface, 259 (2012) 39-43. [56] P. He, K. Yang, W. Wang, F. Dong, L. Du, Y.J.R.J.o.E. Deng, Reduced graphene oxide-CoFe 2 O 4 composites for supercapacitor electrode, Russian Journal of Electrochemistry, 49 (2013) 359-364. [57] P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, X. Wang, Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance, Journal of Power Sources, 266 (2014) 384-392. [58] A. Soam, R. Kumar, P.K. Sahoo, C. Mahender, B. Kumar, N. Arya, M. Singh, S. Parida, R.O. Dusane, Synthesis of Nickel Ferrite Nanoparticles Supported on Graphene Nanosheets as Composite Electrodes for High Performance Supercapacitor, ChemistrySelect, 4 (2019) 9952-9958. [59] L. Zou, L. Li, H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water research, 42 (2008) 2340-2348. [60] G. Rasines, P. Lavela, C. Macías, M. Zafra, J. Tirado, C. Ania, Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water, Journal of Electroanalytical Chemistry, 741 (2015) 42-50. [61] H. Li, L. Zou, Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination, Desalination, 275 (2011) 62-66. [62] Y. Chen, M. Yue, Z.-H. Huang, F. Kang, Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization, Chemical Engineering Journal, 252 (2014) 30-37. [63] H. Wang, D. Zhang, T. Yan, X. Wen, J. Zhang, L. Shi, Q. Zhong, Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization, Journal of Materials Chemistry A, 1 (2013) 11778-11789. [64] B. Jia, L. Zou, Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization, Chemical Physics Letters, 548 (2012) 23-28. [65] H. Younes, F. Ravaux, N. El Hadri, L. Zou, Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization, Electrochimica Acta, 306 (2019) 1-8. [66] K. Rambabu, G. Bharath, A. Hai, S. Luo, K. Liao, M.A. Haijaa, F. Banat, M. Naushad, Development of watermelon rind derived activated carbon/manganese ferrite nanocomposite for cleaner desalination by capacitive deionization, Journal of Cleaner Production, (2020) 122626. [67] A. Bahrami, I. Kazeminezhad, Y. Abdi, Pt-Ni/rGO counter electrode: electrocatalytic activity for dye-sensitized solar cell, Superlattices and Microstructures, 125 (2019) 125-137. [68] Y.-Z. Cai, W.-Q. Cao, P. He, Y.-L. Zhang, M.-S. Cao, NiFe2O4 nanoparticles on reduced graphene oxide for supercapacitor electrodes with improved capacitance, Materials Research Express, 6 (2019) 105535. [69] M. Hua, L. Xu, F. Cui, J. Lian, Y. Huang, J. Bao, J. Qiu, Y. Xu, H. Xu, Y. Zhao, Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance, Journal of materials science, 53 (2018) 7621-7636. [70] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Applied surface science, 254 (2008) 2441-2449. [71] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid state communications, 143 (2007) 47-57. [72] X. Zhou, D. Chuai, D. Zhu, Electrospun synthesis of reduced graphene oxide (RGO)/NiZn ferrite nanocomposites for excellent microwave absorption properties, Journal of Superconductivity and Novel Magnetism, 32 (2019) 2687-2697. [73] T. Kim, J. Yoon, CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization, RSC advances, 5 (2015) 1456-1461. [74] B. Bashir, W. Shaheen, M. Asghar, M.F. Warsi, M.A. Khan, S. Haider, I. Shakir, M. Shahid, Copper doped manganese ferrites nanoparticles anchored on graphene nano-sheets for high performance energy storage applications, Journal of Alloys and Compounds, 695 (2017) 881-887. [75] M.K. Zate, V.V. Jadhav, S.K. Gore, J.H. Shendkar, S.U. Ekar, A. Al-Osta, M. Naushad, R.S. Mane, Structural, morphological and electrochemical supercapacitive properties of sprayed manganese ferrite thin film electrode, Journal of Analytical and Applied Pyrolysis, 122 (2016) 224-229. [76] C. Wei, Z. Feng, M. Baisariyev, L. Yu, L. Zeng, T. Wu, H. Zhao, Y. Huang, M.J. Bedzyk, T. Sritharan, Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X= Mn, Co, Ni, Fe), Chemistry of Materials, 28 (2016) 4129-4133. [77] Z. Wang, X. Zhang, Y. Li, Z. Liu, Z. Hao, Synthesis of graphene–NiFe 2 O 4 nanocomposites and their electrochemical capacitive behavior, Journal of Materials Chemistry A, 1 (2013) 6393-6399. [78] A.S. Yasin, H.O. Mohamed, I.M. Mohamed, H.M. Mousa, N.A. Barakat, Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Separation and Purification Technology, 171 (2016) 34-43. [79] A.G. El-Deen, J.-H. Choi, C.S. Kim, K.A. Khalil, A.A. Almajid, N.A. Barakat, TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization, Desalination, 361 (2015) 53-64. [80] H. Li, Z.Y. Leong, W. Shi, J. Zhang, T. Chen, H.Y. Yang, Hydrothermally synthesized graphene and Fe 3 O 4 nanocomposites for high performance capacitive deionization, RSC advances, 6 (2016) 11967-11972. [81] A. Yousef, A.M. Al-Enizi, I.M. Mohamed, M. El-Halwany, M. Ubaidullah, R.M. Brooks, Synthesis and characterization of CeO2/rGO nanoflakes as electrode material for capacitive deionization technology, Ceramics International, (2020). [82] H. Li, S. Liang, J. Li, L. He, The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite, Journal of Materials Chemistry A, 1 (2013) 6335-6341. [83] G. Divyapriya, K.K. Vijayakumar, I. Nambi, Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system, Desalination, 451 (2019) 102-110. [84]台灣經濟部水利署 [85]行政院環保署
|