帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:陳秉宜
作者(英文):Chen, Bing-Yi
論文名稱(中文):環境因子對有機無機複合拓印高分子吸附與固相萃取雙酚A能力之影響
論文名稱(英文):Influences of Environmental Factors on Adsorption and Solid-Phase Extraction Ability of Imprinted Organic-Inorganic Hybrids for Bisphenol A
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:陳仁焜
林郁真
徐樹剛
口試委員(英文):Chen, Jen-Kun
Lin, Yu-Chen
Hsu, Shu-Kang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0751704
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:99
中文關鍵詞:雙酚A分子拓印高分子環境因子固相萃取環境樣品
外文關鍵詞:bisphenol Amolecularly imprinted polymerenvironmental factorssolid phase extractionfield samples
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要 i
Abstract ii
主目錄 iii
表目錄 vi
圖目錄 vii
第 1 章 前言 1
1.1 研究背景與動機 1
1.2 研究目的 3
第 2 章 文獻回顧 4
2.1 分子拓印技術 4
2.2 SPE應用 10
2.3 環境因子影響 14
2.3.1 pH 14
2.3.2 離子強度 18
2.3.3 天然有機物質 22
第 3 章 研究方法 26
3.1 實驗材料 28
3.2 MIH製備 30
3.3 材料特性鑑定 33
3.3.1 傅立葉轉換紅外線光譜分析 33
3.3.2 等溫氮氣吸脫附分析 33
3.3.3 熱重分析 33
3.3.4 表面電位分析 35
3.4 分析溶液配置 36
3.4.1 儲備液 36
3.4.2 檢量線溶液 36
3.4.3 混和溶液 36
3.4.4 酸鹼溶液 36
3.4.5 NaCl混合溶液 37
3.4.6 HA儲備液 37
3.4.7 環境水樣品處理與配置 38
3.5 吸附特性試驗 39
3.5.1 動力吸附 39
3.5.2 等溫吸附 40
3.5.3 溶劑影響 41
3.5.4 選擇性吸附 42
3.6 環境因子試驗 44
3.6.1 pH影響 44
3.6.2 離子強度影響 44
3.6.3 天然有機物質影響 45
3.7 SPE能力分析與比較 46
3.7.1 商用SPE材料吸附特性分析 46
3.7.2 SPE流程 47
3.7.3 分析方法建立 49
3.7.4 環境水樣分析與回收率 50
第 4 章 結果與討論 52
4.1 MIH材料鑑定 52
4.1.1 傅立葉轉換紅外線光譜分析 52
4.1.2 熱重分析 53
4.1.3 比表面積分析 55
4.2 MIH吸附特性 57
4.2.1 動力吸附 57
4.2.2 等溫吸附 59
4.2.3 溶劑影響 62
4.2.4 選擇性 65
4.3 環境因子影響 69
4.3.1 pH影響 69
4.3.2 離子強度影響 72
4.3.3 天然有機物質影響 73
4.4 SPE能力 75
4.4.1 商用SPE材料吸附特性 75
4.4.2 分析方法建立 77
4.4.3 環境水樣分析 79
第 5 章 結論與建議 82
5.1 結論 82
5.2 建議 84
參考文獻 85
附錄 95

1. Guerra, P.; Kim, M.; Teslic, S.; Alaee, M.; Smyth, S., Bisphenol-A removal in various wastewater treatment processes: operational conditions, mass balance, and optimization. Journal of environmental management 2015, 152, 192-200.
2. Nagel, S. C.; Bromfield, J. J., Bisphenol A: a model endocrine disrupting chemical with a new potential mechanism of action. Oxford University Press: 2013.
3. Alenazi, N. A.; Manthorpe, J. M.; Lai, E. P., Selectivity enhancement in molecularly imprinted polymers for binding of bisphenol A. Sensors 2016, 16 (10), 1697.
4. Azizi, A.; Bottaro, C. S., A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. Journal of Chromatography A 2020, 1614, 460603.
5. Zhongbo, Z.; Hu, J., Selective removal of estrogenic compounds by molecular imprinted polymer (MIP). Water research 2008, 42 (15), 4101-4108.
6. Hiratsuka, Y.; Funaya, N.; Matsunaga, H.; Haginaka, J., Preparation of magnetic molecularly imprinted polymers for bisphenol A and its analogues and their application to the assay of bisphenol A in river water. Journal of pharmaceutical and biomedical analysis 2013, 75, 180-185.
7. Le Noir, M.; Guieysse, B.; Mattiasson, B., Removal of trace contaminants using molecularly imprinted polymers. Water science and technology 2006, 53 (11), 205-212.
8. Bravo, J.; Garcinuño, R.; Fernández, P.; Durand, J., Selective solid-phase extraction of ethynylestradiol from river water by molecularly imprinted polymer microcolumns. Analytical and bioanalytical chemistry 2009, 393 (6-7), 1763-1768.
9. Krupadam, R. J.; Khan, M. S.; Wate, S. R., Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water research 2010, 44 (3), 681-688.
10. Lin, C. I.; Joseph, A. K.; Chang, C. K.; Wang, Y. C.; Der Lee, Y., Synthesis of molecular imprinted organic–inorganic hybrid polymer binding caffeine. Analytica chimica acta 2003, 481 (2), 175-180.
11. He, J.; Fang, G.; Deng, Q.; Wang, S., Preparation, characterization and application of organic–inorganic hybrid ractopamine multi-template molecularly imprinted capillary monolithic column. Analytica chimica acta 2011, 692 (1-2), 57-62.
12. Li, G.; Zha, J.; Niu, M.; Hu, F.; Hui, X.; Tang, T.; Fizir, M.; He, H., Bifunctional monomer molecularly imprinted sol-gel polymers based on the surface of magnetic halloysite nanotubes as an effective extraction approach for norfloxacin. Applied Clay Science 2018, 162, 409-417.
13. Deiminiat, B.; Rounaghi, G. H.; Arbab-Zavar, M. H., Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol–gel and multiwall carbon nanotubes for determination of tramadol. Sensors and Actuators B: Chemical 2017, 238, 651-659.
14. Chin, K.-Z.; Chang, S.-m., SiO2-Coated Molecularly Imprinted Copolymer Nanostructures for the Adsorption of Bisphenol A. ACS Applied Nano Materials 2019, 2 (1), 89-99.
15. Lin, Y.; Shi, Y.; Jiang, M.; Jin, Y.; Peng, Y.; Lu, B.; Dai, K., Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environmental Pollution 2008, 153 (2), 483-491.
16. Zhang, Z.; Hu, J., Effect of environmental factors on estrogenic compounds adsorption by MIP. Water, Air, & Soil Pollution 2010, 210 (1-4), 255-264.
17. Yan, M., Molecularly imprinted materials: science and technology. CRC press: 2004.
18. Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O'Mahony, J.; Whitcombe, M. J., Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition: An Interdisciplinary Journal 2006, 19 (2), 106-180.
19. Sellergren, B.; Hall, A. J., Molecularly imprinted polymers. Supramolecular chemistry: from molecules to nanomaterials 2012.
20. Gast, M.; Sobek, H.; Mizaikoff, B., Advances in imprinting strategies for selective virus recognition a review. TrAC Trends in Analytical Chemistry 2019.
21. Hu, Y.; Pan, J.; Zhang, K.; Lian, H.; Li, G., Novel applications of molecularly-imprinted polymers in sample preparation. TrAC Trends in Analytical Chemistry 2013, 43, 37-52.
22. Haginaka, J.; Sanbe, H., Uniform-sized molecularly imprinted polymers for bisphenol A. Chemistry letters 1999, 28 (8), 757-758.
23. Theodoridis, G.; Manesiotis, P., Selective solid-phase extraction sorbent for caffeine made by molecular imprinting. Journal of Chromatography A 2002, 948 (1-2), 163-169.
24. Wei, H.-S.; Tsai, Y.-L.; Wu, J.-Y.; Chen, H., Preparation of inorganic molecularly imprinted polymers with higher adsorption and selectivity by sol–gel method. Journal of Chromatography B 2006, 836 (1-2), 57-62.
25. Mujahid, A.; Lieberzeit, P. A.; Dickert, F. L., Chemical sensors based on molecularly imprinted sol-gel materials. Materials 2010, 3 (4), 2196-2217.
26. Díaz-García, M. E.; Laínño, R. B., Molecular imprinting in sol-gel materials: Recent developments and applications. Microchimica Acta 2005, 149 (1-2), 19-36.
27. Katz, A.; Davis, M. E., Molecular imprinting of bulk, microporous silica. Nature 2000, 403 (6767), 286-289.
28. da Silva Anacleto, S.; de Oliveira, H. L.; da Silva, A. T. M.; do Nascimento, T. A.; Borges, K. B., Preparation of an organic–inorganic hybrid molecularly imprinted polymer for effective removal of albendazole sulfoxide enantiomers from aqueous medium. Journal of environmental chemical engineering 2017, 5 (6), 6179-6187.
29. Lv, Y.-K.; Zhang, J.-Q.; He, Y.-D.; Zhang, J.; Sun, H.-W., Adsorption-controlled preparation of molecularly imprinted hybrid composites for selective extraction of tetracycline residues from honey and milk. New Journal of Chemistry 2014, 38 (2), 802-808.
30. Shea, K. J.; Loy, D. A., Bridged polysilsesquioxanes. Molecular-engineered hybrid organic−inorganic materials. Chemistry of materials 2001, 13 (10), 3306-3319.
31. Haupt, K., Peer reviewed: molecularly imprinted polymers: the next generation. ACS Publications: 2003.
32. Xu, W.; Zhang, X.; Huang, W.; Luan, Y.; Yang, Y.; Zhu, M.; Yang, W., Synthesis of surface molecular imprinted polymers based on carboxyl-modified silica nanoparticles with the selective detection of dibutyl phthalate from tap water samples. Applied Surface Science 2017, 426, 1075-1083.
33. Marx, S.; Liron, Z., Molecular imprinting in thin films of organic− inorganic hybrid sol− gel and acrylic polymers. Chemistry of materials 2001, 13 (10), 3624-3630.
34. Andersson, L. I., Molecular imprinting for drug bioanalysis: A review on the application of imprinted polymers to solid-phase extraction and binding assay. Journal of Chromatography B: Biomedical Sciences and Applications 2000, 739 (1), 163-173.
35. Andersson, L. I., Molecular imprinting: developments and applications in the analytical chemistry field. Journal of Chromatography B: Biomedical Sciences and Applications 2000, 745 (1), 3-13.
36. Caro, E.; Marcé, R.; Borrull, F.; Cormack, P.; Sherrington, D., Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. TrAC Trends in Analytical Chemistry 2006, 25 (2), 143-154.
37. Turiel, E.; Martín-Esteban, A., Molecularly imprinted polymers for sample preparation: a review. Analytica chimica acta 2010, 668 (2), 87-99.
38. Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J., Molecular imprinting: perspectives and applications. Chemical Society Reviews 2016, 45 (8), 2137-2211.
39. Sellergren, B., Direct drug determination by selective sample enrichment on an imprinted polymer. Analytical chemistry 1994, 66 (9), 1578-1582.
40. Turiel, E.; Martin-Esteban, A., Molecularly imprinted polymers: towards highly selective stationary phases in liquid chromatography and capillary electrophoresis. Analytical and bioanalytical chemistry 2004, 378 (8), 1876-1886.
41. Hoshina, K.; Horiyama, S.; Matsunaga, H.; Haginaka, J., Molecularly imprinted polymers for simultaneous determination of antiepileptics in river water samples by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 2009, 1216 (25), 4957-4962.
42. Liu, Z. S.; Zheng, C.; Yan, C.; Gao, R. Y., Molecularly imprinted polymers as a tool for separation in CEC. Electrophoresis 2007, 28 (1‐2), 127-136.
43. Wei, Z.-H.; Wu, X.; Zhang, B.; Li, R.; Huang, Y.-P.; Liu, Z.-S., Coatings of one monomer molecularly imprinted polymers for open tubular capillary electrochromatography. Journal of Chromatography A 2011, 1218 (37), 6498-6504.
44. San Vicente, B.; Villoslada, F. N.; Moreno-Bondi, M. C., Continuous solid-phase extraction and preconcentration of bisphenol A in aqueous samples using molecularly imprinted columns. Analytical and bioanalytical chemistry 2004, 380 (1), 115-122.
45. Beltran, A.; Borrull, F.; Marcé, R.; Cormack, P., Molecularly-imprinted polymers: useful sorbents for selective extractions. TrAC Trends in Analytical Chemistry 2010, 29 (11), 1363-1375.
46. Ncube, S.; Madikizela, L. M.; Nindi, M. M.; Chimuka, L., Solid phase extraction technique as a general field of application of molecularly imprinted polymer materials. Mip Synthesis, Characteristics and Analytical Application 2019, 41.
47. Guan, W.; Han, C.; Wang, X.; Zou, X.; Pan, J.; Huo, P.; Li, C., Molecularly imprinted polymer surfaces as solid‐phase extraction sorbents for the extraction of 2‐nitrophenol and isomers from environmental water. Journal of separation science 2012, 35 (4), 490-497.
48. Le Noir, M.; Plieva, F.; Hey, T.; Guieysse, B.; Mattiasson, B., Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. Journal of Chromatography A 2007, 1154 (1-2), 158-164.
49. Herrero-Hernández, E.; Rodríguez-Gonzalo, E.; Andrades, M. S.; Sánchez-González, S.; Carabias-Martínez, R., Occurrence of phenols and phenoxyacid herbicides in environmental waters using an imprinted polymer as a selective sorbent. Science of the total environment 2013, 454, 299-306.
50. Ou, J.; Hu, L.; Hu, L.; Li, X.; Zou, H., Determination of phenolic compounds in river water with on-line coupling bisphenol A imprinted monolithic precolumn with high performance liquid chromatography. Talanta 2006, 69 (4), 1001-1006.
51. Alexiadou, D. K.; Maragou, N. C.; Thomaidis, N. S.; Theodoridis, G. A.; Koupparis, M. A., Molecularly imprinted polymers for bisphenol A for HPLC and SPE from water and milk. Journal of separation science 2008, 31 (12), 2272-2282.
52. Hao, Y.; Gao, R.; Shi, L.; Liu, D.; Tang, Y.; Guo, Z., Water-compatible magnetic imprinted nanoparticles served as solid-phase extraction sorbents for selective determination of trace 17beta-estradiol in environmental water samples by liquid chromatography. Journal of Chromatography A 2015, 1396, 7-16.
53. He, X.; Mei, X.; Wang, J.; Lian, Z.; Tan, L.; Wu, W., Determination of diethylstilbestrol in seawater by molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. Marine pollution bulletin 2016, 102 (1), 142-147.
54. Barciela-Alonso, M. C.; Otero-Lavandeira, N.; Bermejo-Barrera, P., Solid phase extraction using molecular imprinted polymers for phthalate determination in water and wine samples by HPLC-ESI-MS. Microchemical Journal 2017, 132, 233-237.
55. Murray, A.; Örmeci, B., Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: a review. Environmental Science and Pollution Research 2012, 19 (9), 3820-3830.
56. Xia, X.; Lai, E. P.; Örmeci, B., Duo-molecularly imprinted polymer-coated magnetic particles for class-selective removal of endocrine-disrupting compounds from aqueous environment. Environmental Science and Pollution Research 2013, 20 (5), 3331-3339.
57. Bautista-Toledo, I.; Ferro-Garcia, M.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Vegas Fernández, F., Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environmental science & technology 2005, 39 (16), 6246-6250.
58. Sun, C.; Berg, J. C., A review of the different techniques for solid surface acid–base characterization. Advances in Colloid and Interface Science 2003, 105 (1-3), 151-175.
59. Li, H.; Wei, S.; Qing, C.; Yang, J., Discussion on the position of the shear plane. Journal of colloid and interface science 2003, 258 (1), 40-44.
60. Berg, J. M.; Romoser, A.; Banerjee, N.; Zebda, R.; Sayes, C. M., The relationship between pH and zeta potential of∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 2009, 3 (4), 276-283.
61. Fiol, N.; Villaescusa, I., Determination of sorbent point zero charge: usefulness in sorption studies. Environmental Chemistry Letters 2009, 7 (1), 79-84.
62. Bhatnagar, A.; Anastopoulos, I., Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review. Chemosphere 2017, 168, 885-902.
63. Huang, D.; Tang, Z.; Peng, Z.; Lai, C.; Zeng, G.; Zhang, C.; Xu, P.; Cheng, M.; Wan, J.; Wang, R., Fabrication of water-compatible molecularly imprinted polymer based on β-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers 2017, 77, 113-121.
64. Meng, M.; Feng, Y.; Guan, W.; Liu, Y.; Xi, Y.; Yan, Y., Selective separation of salicylic acid from aqueous solutions using molecularly imprinted nano-polymer on wollastonite synthesized by oil-in-water microemulsion method. Journal of Industrial and Engineering Chemistry 2014, 20 (6), 3975-3983.
65. Duan, F.; Chen, C.; Zhao, X.; Yang, Y.; Liu, X.; Qin, Y., Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol A from aqueous solution. Environmental Science: Nano 2016, 3 (1), 213-222.
66. Ersöz, A.; Denizli, A.; Şener, İ.; Atılır, A.; Diltemiz, S.; Say, R., Removal of phenolic compounds with nitrophenol-imprinted polymer based on π–π and hydrogen-bonding interactions. Separation and purification technology 2004, 38 (2), 173-179.
67. Yu, Q.; Deng, S.; Yu, G., Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Research 2008, 42 (12), 3089-3097.
68. Zhang, Y.; Zhu, C.; Liu, F.; Yuan, Y.; Wu, H.; Li, A., Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. Science of the Total Environment 2019, 646, 265-279.
69. Hyde, A. M.; Zultanski, S. L.; Waldman, J. H.; Zhong, Y.-L.; Shevlin, M.; Peng, F., General principles and strategies for salting-out informed by the Hofmeister series. Organic Process Research & Development 2017, 21 (9), 1355-1370.
70. Dong, J.; Fan, H.; Sui, D.; Li, L.; Sun, T., Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer. Analytica chimica acta 2014, 822, 69-77.
71. Kempe, H.; Kempe, M., Influence of salt ions on binding to molecularly imprinted polymers. Analytical and bioanalytical chemistry 2010, 396 (4), 1599-1606.
72. Endo, S.; Pfennigsdorff, A.; Goss, K.-U., Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules. Environmental science & technology 2012, 46 (3), 1496-1503.
73. Cai, Y.; Jiang, G.; Liu, J.; Liang, X.; Yao, Z.; Liu, J.; Liu, J.; Zhou, Q., Solid‐Phase Microextraction Coupled with High Performance Liquid Chromatography‐Fluorimetric Detection for the Determination of Bisphenol A, 4‐n‐Nonylphenol, and 4‐tert‐Octylphenol in Environmental Water Samples. Analytical letters 2004, 37 (4), 739-753.
74. Hsieh, R.-Y.; Tsai, H.-A.; Syu, M.-J., Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials 2006, 27 (9), 2083-2089.
75. Bhatnagar, A.; Sillanpää, M., Removal of natural organic matter (NOM) and its constituents from water by adsorption–a review. Chemosphere 2017, 166, 497-510.
76. Zularisam, A.; Ismail, A.; Salim, R., Behaviours of natural organic matter in membrane filtration for surface water treatment—a review. Desalination 2006, 194 (1-3), 211-231.
77. Hong, S.; Elimelech, M., Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of membrane science 1997, 132 (2), 159-181.
78. Li, N.; Lee, H. K., Solid-phase extraction of polycyclic aromatic hydrocarbons in surface water: negative effect of humic acid. Journal of Chromatography A 2001, 921 (2), 255-263.
79. Wang, S.; Mulligan, C. N., Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environmental geochemistry and health 2006, 28 (3), 197-214.
80. Urraca, J. L.; Moreno-Bondi, M. C.; Hall, A. J.; Sellergren, B., Direct extraction of penicillin G and derivatives from aqueous samples using a stoichiometrically imprinted polymer. Analytical chemistry 2007, 79 (2), 695-701.
81. Dai, C.-m.; Geissen, S.-U.; Zhang, Y.-l.; Zhang, Y.-j.; Zhou, X.-f., Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres. Environmental pollution 2011, 159 (6), 1660-1666.
82. Thurman, E. M.; Malcolm, R. L., Preparative isolation of aquatic humic substances. Environmental Science & Technology 1981, 15 (4), 463-466.
83. Robati, D., Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. Journal of nanostructure in Chemistry 2013, 3 (1), 55.
84. Foo, K. Y.; Hameed, B. H., Insights into the modeling of adsorption isotherm systems. Chemical engineering journal 2010, 156 (1), 2-10.
85. Guideline, I. H. T., Validation of analytical procedures: text and methodology. Q2 (R1) 2005, 1, 1-15.
86. Miller, J. N., Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. A review. Analyst 1991, 116 (1), 3-14.
87. Desimoni, E.; Brunetti, B., About estimating the limit of detection by the signal to noise approach. 2015.
88. Ishak, N.; Ahmad, M. N.; Nasir, A. M.; Islam, A., Computational modelling and synthesis of molecular imprinted polymer for recognition of nitrate ion. Malaysian Journal of Analytical Sciences 2015, 19 (4), 866-873.
89. Hermán, V.; Takacs, H.; Duclairoir, F.; Renault, O.; Tortai, J.; Viala, B., Core double–shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RSC Advances 2015, 5 (63), 51371-51381.
90. Tran, T. N.; Pham, T. V. A.; Le, M. L. P.; Nguyen, T. P. T., Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Advances in natural sciences: Nanoscience and nanotechnology 2013, 4 (4), 045007.
91. Huang, Y.-D.; Gao, X.-D.; Gu, Z.-Y.; Li, X.-M., Amino-terminated SiO2 aerogel towards highly-effective lead (II) adsorbent via the ambient drying process. Journal of Non-Crystalline Solids 2016, 443, 39-46.
92. Ren, Y.; Ma, W.; Ma, J.; Wen, Q.; Wang, J.; Zhao, F., Synthesis and properties of bisphenol A molecular imprinted particle for selective recognition of BPA from water. Journal of colloid and interface science 2012, 367 (1), 355-361.
93. Liu, Y.; Zhong, G.; Liu, Z.; Meng, M.; Liu, F.; Ni, L., Facile synthesis of novel photoresponsive mesoporous molecularly imprinted polymers for photo-regulated selective separation of bisphenol A. Chemical Engineering Journal 2016, 296, 437-446.
94. Dong, R.; Li, J.; Xiong, H.; Lu, W.; Peng, H.; Chen, L., Thermosensitive molecularly imprinted polymers on porous carriers: preparation, characterization and properties as novel adsorbents for bisphenol A. Talanta 2014, 130, 182-191.
95. Cai, W.; Gupta, R. B., Molecularly-imprinted polymers selective for tetracycline binding. Separation and purification technology 2004, 35 (3), 215-221.
96. Hansen, C. M., The three dimensional solubility parameter and solvent diffusion coefficient: Their importance in surface coating formulation. 1967.
97. Patrick, R. L., Treatise on adhesion and adhesives. CRC Press: 1981; Vol. 5.
98. Vandenburg, H. J.; Clifford, A. A.; Bartle, K. D.; Carlson, R. E.; Carroll, J.; Newton, I. D., A simple solvent selection method for accelerated solvent extraction of additives from polymers. Analyst 1999, 124 (11), 1707-1710.
99. Groshart, C.; Okkeman, P.; Pijnenburg, A., Chemical study on bisphenol A. Rapportnr.: 2001.027 2001.
100. Davies, J. E. Solid-phase extraction of bisphenol A in water using carbon nanotube envelopes. Carleton University, 2011.
101. Keith, L. H.; Walters, D. B., National toxicology program's chemical solubility compendium. CRC Press: 2019.
(此全文20251109後開放外部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *