|
1. Diamante, G.; Menjivar-Cervantes, N.; Leung, M. S.; Volz, D. C.; Schlenk, D., Contribution of G protein-coupled estrogen receptor 1 (GPER) to 17beta-estradiol-induced developmental toxicity in zebrafish. Aquatic toxicology (Amsterdam, Netherlands) 2017, 186, 180-187. 2. Wang, S.; Huang, W.; Fang, G.; Zhang, Y.; Qiao, H., Analysis of steroidal estrogen residues in food and environmental samples. International Journal of Environmental Analytical Chemistry 2008, 88 (1), 1-25. 3. Scheller, F. W.; Zhang, X.; Yarman, A.; Wollenberger, U.; Gyurcsányi, R. E., Molecularly imprinted polymer based electrochemical sensors for Biopolymers. Current Opinion in Electrochemistry 2018. 4. Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y., Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International 2017, 99, 107-119. 5. Le Noir, M.; Lepeuple, A. S.; Guieysse, B.; Mattiasson, B., Selective removal of 17beta-estradiol at trace concentration using a molecularly imprinted polymer. Water Res 2007, 41 (12), 2825-31. 6. Kim, Y. H.; Lee, B.; Choo, K. H.; Choi, S. J., Selective Adsorption of Bisphenol A by Organic–Inorganic Hybrid Mesoporous Silicas. Microporous Mesoporous Mater. 2011, 138 (1), 184. 7. Udomsap, D.; Brisset, H.; Culioli, G.; Dollet, P.; Laatikainen, K.; Siren, H.; Branger, C., Electrochemical molecularly imprinted polymers as material for pollutant detection. Materials Today Communications 2018, 17, 458-465. 8. Hammam, M. A.; Wagdy, H. A.; El Nashar, R. M., Moxifloxacin hydrochloride electrochemical detection based on newly designed molecularly imprinted polymer. Sensors and Actuators B: Chemical 2018, 275, 127-136. 9. Qader, B.; Baron, M.; Hussain, I.; Sevilla, J. M.; Johnson, R. P.; Gonzalez-Rodriguez, J., Electrochemical determination of disulfoton using a molecularly imprinted poly-phenol polymer. Electrochimica Acta 2019, 295, 333-339. 10. Jin, Y.; Jiang, M.; Shi, Y.; Lin, Y.; Peng, Y.; Dai, K.; Lu, B., Narrowly dispersed molecularly imprinted microspheres prepared by a modified precipitation polymerization method. Analytica Chimica Acta 2008, 612 (1), 105-113. 11. Wei, S.; Molinelli, A.; Mizaikoff, B., Molecularly imprinted micro and nanospheres for the selective recognition of 17beta-estradiol. 2006; Vol. 21, p 1943-51. 12. Chin, K.-Z.; Chang, S.-m., SiO2-Coated Molecularly Imprinted Copolymer Nanostructures for the Adsorption of Bisphenol A. ACS Applied Nano Materials 2019, 2 (1), 89-99. 13. Borthakur, P.; Boruah, P. K.; Das, M. R.; Kulik, N.; Minofar, B., Adsorption of 17α-ethynyl estradiol and β-estradiol on graphene oxide surface: An experimental and computational study. Journal of Molecular Liquids 2018, 269, 160-168. 14. Celiz, M. D.; Aga, D. S.; Colón, L. A., Evaluation of a molecularly imprinted polymer for the isolation/enrichment of β-estradiol. Microchemical Journal 2009, 92 (2), 174-179. 15. Sarafraz-Yazdi, A.; Razavi, N., Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC Trends in Analytical Chemistry 2015, 73, 81-90. 16. Li, Q.; Ling, B.; Jiang, L.; Ye, L., A paradigm shift design of functional monomers for developing molecularly imprinted polymers. Chemical Engineering Journal 2018, 350, 217-224. 17. Huang, D. L.; Wang, R. Z.; Liu, Y. G.; Zeng, G. M.; Lai, C.; Xu, P.; Lu, B. A.; Xu, J. J.; Wang, C.; Huang, C., Application of molecularly imprinted polymers in wastewater treatment: a review. Environmental science and pollution research international 2015, 22 (2), 963-77. 18. Hongyuan, Y.; Row, K., Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. 2006; Vol. 7. 19. Ye, N.; Wang, X.; Liu, Q.; Hu, X., Covalent bonding of Schiff base network-1 as a stationary phase for capillary electrochromatography. Analytica Chimica Acta 2018, 1028, 113-120. 20. Alberti, E.; Zampakou, M.; Donghi, D., Covalent and non-covalent binding of metal complexes to RNA. Journal of Inorganic Biochemistry 2016, 163, 278-291. 21. Kashyap, C.; Ullah, S. S.; Mazumder, L. J.; Kanti Guha, A., Non-covalent interaction in benzene and substituted benzene: A theoretical study. Computational and Theoretical Chemistry 2018, 1130, 134-139. 22. Wulff, G., Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates— A Way towards Artificial Antibodies. 1995, 34 (17), 1812-1832. 23. Zheng, J.; Huang, J.; Yang, Q.; Ni, C.; Xie, X.; Shi, Y.; Sun, J.; Zhu, F.; Ouyang, G., Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. TrAC Trends in Analytical Chemistry 2018, 108, 135-153. 24. Zhang, L.; Wang, G.; Xiong, C.; Zheng, L.; He, J.; Ding, Y.; Lu, H.; Zhang, G.; Cho, K.; Qiu, L., Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosensors and Bioelectronics 2018, 105, 121-128. 25. Uniyal, S.; Sharma, R. K., Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosensors and Bioelectronics 2018, 116, 37-50. 26. Holthoff, E. L.; Bright, F. V., Molecularly templated materials in chemical sensing. Analytica Chimica Acta 2007, 594 (2), 147-161. 27. Farrington, K.; Regan, F., Molecularly imprinted sol gel for ibuprofen: An analytical study of the factors influencing selectivity. Talanta 2009, 78 (3), 653-659. 28. Wang, H.-F.; Zhu, Y.-Z.; Yan, X.-P.; Gao, R.-Y.; Zheng, J.-Y., A Room Temperature Ionic Liquid (RTIL)-Mediated, Non-Hydrolytic Sol–Gel Methodology to Prepare Molecularly Imprinted, Silica-Based Hybrid Monoliths for Chiral Separation. 2006, 18 (24), 3266-3270. 29. Burak Özkan, M.; Tscheuner, S.; Ozkan, E., Diagnostic accuracy of MIP slice modalities for small pulmonary nodules in paediatric oncology patients revisited: What is additional from the paediatric radiologist approach? The Egyptian Journal of Radiology and Nuclear Medicine 2016, 47 (4), 1629-1637. 30. Derradji, M.; Wang, J.; Liu, W., 3 - X-Functional Phthalonitrile Monomers and Polymers. In Phthalonitrile Resins and Composites, Derradji, M.; Wang, J.; Liu, W., Eds. William Andrew Publishing: 2018; pp 107-174. 31. Qiujin, Z.; Tang, J.; Dai, J.; Gu, X.; Chen, S., Synthesis and characteristics of imprinted 17‐β‐estradiol microparticle and nanoparticle with TFMAA as functional monomer. 2007; Vol. 104, p 1551-1558. 32. Mayes, A. G.; Whitcombe, M. J., Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews 2005, 57 (12), 1742-1778. 33. Anantha-Iyengar, G.; Shanmugasundaram, K.; Nallal, M.; Lee, K.-P.; Whitcombe, M. J.; Lakshmi, D.; Sai-Anand, G., Functionalized conjugated polymers for sensing and molecular imprinting applications. Progress in Polymer Science 2019, 88, 1-129. 34. Chen, L.; Li, B., Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey. Food Chemistry 2013, 141 (1), 23-28. 35. Zheng, X.; Xu, T.; Shi, R.; Lu, N.; Zhang, J.; Jiang, C.; Zhang, C.; Zhou, J., Preparation of hollow porous molecularly imprinted polymers for N-nitrosamine adsorption. Materials Letters 2018, 211, 21-23. 36. Li, Z.; Lei, C.; Wang, N.; Jiang, X.; Zeng, Y.; Fu, Z.; Zou, L.; He, L.; Liu, S.; Ao, X.; Zhou, K.; Chen, S., Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food. Journal of Chromatography B 2018, 1100-1101, 113-121. 37. Wang, S.; Li, Y.; Ding, M.; Wu, X.; Xu, J.; Wang, R.; Wen, T.; Huang, W.; Zhou, P.; Ma, K.; Zhou, X.; Du, S., Self-assembly molecularly imprinted polymers of 17β-estradiol on the surface of magnetic nanoparticles for selective separation and detection of estrogenic hormones in feeds. Journal of Chromatography B 2011, 879 (25), 2595-2600. 38. Peng, H.; Luo, M.; Xiong, H.; Yu, N.; Ning, F.; Fan, J.; Zeng, Z.; Li, J.; Chen, L., Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol. Journal of Chromatography A 2016, 1442, 1-11. 39. Watabe, Y.; Kubo, T.; Nishikawa, T.; Fujita, T.; Kaya, K.; Hosoya, K., Fully automated liquid chromatography–mass spectrometry determination of 17β-estradiol in river water. Journal of Chromatography A 2006, 1120 (1), 252-259. 40. Xiong, H.; Wu, X.; Lu, W.; Fu, J.; Peng, H.; Li, J.; Wang, X.; Xiong, H.; Chen, L., Switchable zipper-like thermoresponsive molecularly imprinted polymers for selective recognition and extraction of estradiol. Talanta 2018, 176, 187-194. 41. Zhu, W.; Peng, H.; Luo, M.; Yu, N.; Xiong, H.; Wang, R.; Li, Y., Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples. Food Chemistry 2018, 261, 87-95. 42. Wan, Y.; Wang, M.; Fu, Q.; Wang, L.; Wang, D.; Zhang, K.; Xia, Z.; Gao, D., Novel dual functional monomers based molecularly imprinted polymers for selective extraction of myricetin from herbal medicines. Journal of Chromatography B 2018, 1097-1098, 1-9. 43. Tran, M.; Turner, E. B.; Segro, S. S.; Fang, L.; Seyyal, E.; Malik, A., Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography. Journal of Chromatography A 2017, 1522, 38-47. 44. Neelon, K.; Roberts, Mary F.; Stec, B., Crystal Structure of a Trapped Catalytic Intermediate Suggests that Forced Atomic Proximity Drives the Catalysis of mIPS. Biophysical Journal 2011, 101 (11), 2816-2824. 45. Uzuriaga-Sánchez, R. J.; Khan, S.; Wong, A.; Picasso, G.; Pividori, M. I.; Sotomayor, M. D. P. T., Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. Food Chemistry 2016, 190, 460-467. 46. Tse Sum Bui, B.; Belmont, A.-S.; Witters, H.; Haupt, K., Molecular recognition of endocrine disruptors by synthetic and natural 17??-estradiol receptors: A comparative study. 2008; Vol. 390, p 2081-8. 47. Waffo, A. F. T.; Yesildag, C.; Caserta, G.; Katz, S.; Zebger, I.; Lensen, M. C.; Wollenberger, U.; Scheller, F. W.; Altintas, Z., Fully electrochemical MIP sensor for artemisinin. Sensors and Actuators B: Chemical 2018, 275, 163-173. 48. Weber, P.; Riegger, B. R.; Niedergall, K.; Tovar, G. E. M.; Bach, M.; Gauglitz, G., Nano-MIP based sensor for penicillin G: Sensitive layer and analytical validation. Sensors and Actuators B: Chemical 2018, 267, 26-33. 49. Lian, L.; Zhang, X.; Hao, J.; Lv, J.; Wang, X.; Zhu, B.; Lou, D., Magnetic solid-phase extraction of fluoroquinolones from water samples using titanium-based metal-organic framework functionalized magnetic microspheres. Journal of Chromatography A 2018, 1579, 1-8. 50. Hashemi, S. H.; Kaykhaii, M.; Keikha, A. J.; Sajjadi, Z., Application of Box-Behnken design in response surface methodology for the molecularly imprinted polymer pipette-tip solid phase extraction of methyl red from seawater samples and its determination by spectrophotometery. Marine Pollution Bulletin 2018, 137, 306-314. 51. Sandle, T., Chapter 16 - Risk Assessment and Investigation for Environmental Monitoring. In Biocontamination Control for Pharmaceuticals and Healthcare, Sandle, T., Ed. Academic Press: 2019; pp 261-285. 52. Cantarella, M.; Carroccio, S. C.; Dattilo, S.; Avolio, R.; Castaldo, R.; Puglisi, C.; Privitera, V., Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chemical Engineering Journal 2019, 367, 180-188. 53. Wang, J.; Huyan, Y.; Yang, Z.; Zhang, H.; Zhang, A.; Kou, X.; Zhang, Q.; Zhang, B., Preparation of surface protein imprinted thermosensitive polymer monolithic column and its specific adsorption for BSA. Talanta 2019, 200, 526-536. 54. Abolghasemi-Fakhri, L.; Ghanbarzadeh, B.; Dehghannya, J.; Abbasi, F.; Adun, P., Styrene monomer migration from polystyrene based food packaging nanocomposite: Effect of clay and ZnO nanoparticles. Food and Chemical Toxicology 2019, 129, 77-86. 55. Kingsley, K.; Shevchuk, O.; Demchuk, Z.; Voronov, S.; Voronov, A., The features of emulsion copolymerization for plant oil-based vinyl monomers and styrene. Industrial Crops and Products 2017, 109, 274-280. 56. Sharma, A. K.; Pasini, D., Fluorinated styrene-based monomers for cyclopolymerizations. Journal of Fluorine Chemistry 2011, 132 (11), 956-960. 57. Lee, S.-H.; Doong, R.-a., Adsorption and selective recognition of 17ß-estradiol by molecularly imprinted polymers. 2012; Vol. 19. 58. Spivak, D. A., Optimization, evaluation, and characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews 2005, 57 (12), 1779-1794. 59. Shivraj; Siddlingeshwar, B.; Thomas, A.; Kirilova, E. M.; Divakar, D. D.; Alkheraif, A. A., Experimental and theoretical insights on the effect of solvent polarity on the photophysical properties of a benzanthrone dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 218, 221-228. 60. Inglezakis, V. J.; Poulopoulos, S. G.; Kazemian, H., Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous and Mesoporous Materials 2018, 272, 166-176. 61. Ali, I.; Alothman, Z. A.; Alwarthan, A., Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. Journal of Molecular Liquids 2017, 241, 123-129. 62. Xiao, L.; Zhang, Z.; Wu, C.; Han, L.; Zhang, H., Molecularly imprinted polymer grafted paper-based method for the detection of 17β-estradiol. Food Chemistry 2017, 221, 82-86. 63. Wen, T.; Wang, M.; Luo, M.; Yu, N.; Xiong, H.; Peng, H., A nanowell-based molecularly imprinted electrochemical sensor for highly sensitive and selective detection of 17β-estradiol in food samples. Food Chemistry 2019, 297, 124968. 64. Han, Q.; Shen, X.; Zhu, W.; Zhu, C.; Zhou, X.; Jiang, H., Magnetic sensing film based on Fe3O4@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol. Biosensors and Bioelectronics 2016, 79, 180-186. 65. Zaib, Q.; Khan, I. A.; Saleh, N. B.; Flora, J. R. V.; Park, Y.-G.; Yoon, Y., Removal of Bisphenol A and 17β-Estradiol by Single-Walled Carbon Nanotubes in Aqueous Solution: Adsorption and Molecular Modeling. Water, Air, & Soil Pollution 2012, 223 (6), 3281-3293. 66. Gao, R.; Cui, X.; Hao, Y.; Zhang, L.; Liu, D.; Tang, Y., A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chemistry 2016, 194, 1040-1047. 67. Dong, X.; He, L.; Hu, H.; Liu, N.; Gao, S.; Piao, Y., Removal of 17β-estradiol by using highly adsorptive magnetic biochar nanoparticles from aqueous solution. Chemical Engineering Journal 2018, 352, 371-379.
|