帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:艾諾如
作者(英文):Nurul Alvia Istiqomah
論文名稱(中文):涵浸金屬離子對TiO2-ZrO2二元氧化物在氨吸附中的作用
論文名稱(英文):The Role of Metal Ion Impregnation on TiO2-ZrO2 Binary Oxide in Ammonia Adsorption
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:白曛綾
呂世源
口試委員(英文):Bai, Hsun-ling
Lu, Hsih-yuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0651728
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:47
中文關鍵詞:氨吸附TiO2-ZrO2催化二元氧化物涵浸金屬離子表面酸度
外文關鍵詞:Ammonia adsorptionTiO2-ZrO2 binary oxidesTransition metal impregnationSurface acidity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
四種過渡金屬離子,包括銅(Cu),鎳(Ni),鎢(W)和鋅(Zn),用浸漬法浸漬在多孔TiO2-ZrO2(TZ)二元氧化物上,系統地研究和闡明了這些過渡金屬在表面酸性和氧化物的氨吸附中的作用。 TZ和浸漬粉末(TZM,其中M表示浸漬離子)保持多孔結構和高表面積(174-188m2/g)至600℃。雖然所有浸漬的離子都包含TZ基底的路易斯酸性,但由於四面體Cu和Zn物質與八面體Ti和Zr物質之間的結構不匹配,Cu和Zn物質另外增加了布朗斯台德酸度。具有高配位數的W和Ni的消耗消耗了表面OH基團,因此主要引入路易斯酸性。氨吸附容量為TZCu> TZZn> TZNi> TZW> TZ粉末。 Cu和Zn離子上的額外OH基團是TZCu和TZZn吸附劑的高氨吸附的主要貢獻者。在表面Cu /(Ti + Zr)原子比為6×10-3時,TZCu粉末的氨吸附容量最高,為1.81mmol / g。在該臨界Cu濃度下,Cu-OH基團之間的交叉縮合降低了吸附的活性位點。由於從Cu離子中消除OH基團,TZCu粉末在高溫解吸後的吸附容量降低了26.8%。然而,通過在環境空氣中暴露使用過的吸附劑,能夠回收吸附位點的損失。高氨吸附能力,寬範圍的酸度強度和良好的結構穩定性使浸漬的TZ粉末成為各種工業中有希望的氨去除吸附劑。
Four types of transition metal ions, including copper (Cu), nickel (Ni), tungsten (W), and zinc (Zn), were selected to be impregnated on the porous TiO2-ZrO2 (TZ) binary oxide with an impregnation method and the roles of those transition metals in the surface acidity and ammonia adsorption of the oxides were systematically examined and clarified. The TZ and the impregnated powders (TZM, where M means the impregnated ions) maintained the porous structure and high surface areas (174-188 m2/g) up to 600oC. While all the impregnated ions incrased the Lewis acidity of the TZ substrate, the Cu and Zn species additionally increased the Bronsted acidity as the result of structural mismatch between the tetrahedral Cu and Zn species and the octahedral Ti and Zr species. The W and Ni spcecies, which had high coordination numbers, consumed surface OH groups, thus introducing Lewis acidity primarily. The ammonia adsorption capacity was in the order of TZCu> TZZn> TZNi> TZW> TZ powders. The additional OH groups on the Cu and Zn ions were the major contributor to the high ammonia adsorption of the TZCu and TZZn adsorbents. The TZCu powder showed the highest ammonia adsorption capacity of 1.81 mmol/g at the surface Cu/(Ti+Zr) atomic ratio of 6 10-3. Over this critical Cu concentration, cross condensation between the Cu-OH groups decreased the active sites for the adsorption. The adsorption capacity of the TZCu powder decreased by 26.8% after high-temperatured desorption as the consequence of elimination of OH groups from the Cu ions. However, the loses of adsorption sites were able to be recovered by exposinig the used adsorbent in the ambient air. The high ammonia adsorption capacity, a wide range of acidity strength, and good structural stability enable the impregnated TZ powder to be a promising adsorbent for ammonia removal in variety of industries.
TABLE OF CONTENTS
摘要 i
Abstract ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Objectives 2
CHAPTER 2 LITERATURE REVIEW 4
2.1 Ammonia characteristic and removal methods 4
2.2 Adsorbents for ammonia removal 5
2.3 Surface acidity of binary oxides 9
2.4 Metal ion modification on surface acidity 10
CHAPTER 3 RESEARCH METHOD 13
3.1 Experimental design 13
3.2 Experiment materials 14
3.3 Solid acid synthesis 14
3.3.1 Solid acid substrate 14
3.3.2 Metal ion impregnation modification 15
3.4 Solid acid surface characterization 15
3.4.1 Ammonia Temperature Programmed Desorption (NH3-TPD) 15
3.4.2 N2 Adsorption-Desorption 16
3.4.3 X-ray Powder Diffraction (XRD) 16
3.4.4 X-ray Photoelectron Spectroscopy (XPS) 16
3.4.5 Energy Dispersive X-ray Spectroscopy with Scanning Electron Microscope (SEM-EDX) 17
3.4.6 Fourier-transform Infrared Spectroscopy with Pyridine Probe (Pyridine FTIR) 17
3.4.7 Thermogravimetric analysis (TGA) 17
CHAPTER 4 RESULT AND DISCUSSION 18
4.1 Microstructure 18
4.2 Chemical composition 22
4.3 Ammonia capacity 31
4.4 Adsorption sites 34
4.5 Optimization condition and regenerability 36
CHAPTER 5 CONCLUSION 41
REFERENCES 42
APPENDIX 46

REFERENCES

(1) Gonçalves, M.; Sánchez-García, L.; Oliveira Jardim, E. de; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Ammonia Removal Using Activated Carbons: Effect of the Surface Chemistry in Dry and Moist Conditions. Environ. Sci. Technol. 2011, 45 (24), 10605–10610.
(2) Kang, Y.; Liu, M.; Song, Y.; Huang, X.; Yao, H.; Cai, X.; Zhang, H.; Kang, L.; Liu, X.; Yan, X.; et al. High-Resolution Ammonia Emissions Inventories in China from 1980 to 2012. Atmospheric Chem. Phys. 2016, 16 (4), 2043–2058.
(3) Wang, S.; Nan, J.; Shi, C.; Fu, Q.; Gao, S.; Wang, D.; Cui, H.; Saiz-Lopez, A.; Zhou, B. Atmospheric Ammonia and Its Impacts on Regional Air Quality over the Megacity of Shanghai, China. Sci. Rep. 2015, 5, 15842.
(4) Rezaei, E.; Schlageter, B.; Nemati, M.; Predicala, B. Evaluation of Metal Oxide Nanoparticles for Adsorption of Gas Phase Ammonia. J. Environ. Chem. Eng. 2017, 5 (1), 422–431.
(5) Barin, G.; Peterson, G. W.; Crocellà, V.; Xu, J.; Colwell, K. A.; Nandy, A.; Reimer, J. A.; Bordiga, S.; Long, J. R. Highly Effective Ammonia Removal in a Series of Brønsted Acidic Porous Polymers: Investigation of Chemical and Structural Variations. Chem. Sci. 2017, 8 (6), 4399–4409.
(6) Chaudhary, M.; Shen, P.; Chang, S. The Roles of Phosphate and Tungstate Species in Surface Acidities of TiO2-ZrO2 Binary Oxides – A Comparison Study. Appl. Surf. Sci. 2018, 440, 369–377.
(7) Danks, A. E.; Hall, S. R.; Schnepp, Z. The Evolution of ‘Sol–Gel’ Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3 (2), 91–112.
(8) Tanabe, K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J. A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides. Bull. Chem. Soc. Jpn. - BULL CHEM SOC JPN 1974, 47, 1064–1066.
(9) Theunissen, G. S. A. M.; Winnubst, A. J. A.; Burggraaf, A. J. Surface and Grain Boundary Analysis of Doped Zirconia Ceramics Studied by AES and XPS. J. Mater. Sci. 1992, 27 (18), 5057–5066.
(10) Das, D.; Mishra, H. K.; Dalai, A. K.; Parida, K. M. Isopropylation of Benzene over Sulfated ZrO2–TiO2 Mixed-Oxide Catalyst. Appl. Catal. Gen. 2003, 243 (2), 271–284.
(11) Pirzada, B. M.; Mir, N. A.; Qutub, N.; Mehraj, O.; Sabir, S.; Muneer, M. Synthesis, Characterization and Optimization of Photocatalytic Activity of TiO2/ZrO2 Nanocomposite Heterostructures. Mater. Sci. Eng. B 2015, 193, 137–145.
(12) Cortés-Jácome, M. A.; Toledo, J. A.; Angeles-Chavez, C.; Aguilar, M.; Wang, J. A. Influence of Synthesis Methods on Tungsten Dispersion, Structural Deformation, and Surface Acidity in Binary WO3-ZrO2 System. J. Phys. Chem. B 2005, 109 (48), 22730–22739.
(13) Flego, C.; Carluccio, L.; Rizzo, C.; Perego, C. Synthesis of Mesoporous SiO2–ZrO2 Mixed Oxides by Sol–Gel Method. Catal. Commun. 2001, 2 (2), 43–48.
(14) Zou, H.; Lin, Y. S. Structural and Surface Chemical Properties of Sol–Gel Derived TiO2–ZrO2 Oxides. Appl. Catal. Gen. 2004, 265 (1), 35–42.
(15) Reddy, B.; Khan, A. Recent Advances on TiO2‐ZrO2 Mixed Oxides as Catalysts and Catalyst Supports. Catal. Rev.-Sci. Eng. - CATAL REV-SCI ENG 2005, 47, 257–296.
(16) N. Panchenko, V.; N. Timofeeva, M.; Hwa Jhung, S. Acid-Base Properties and Catalytic Activity of Metal-Organic Frameworks: A View from Spectroscopic and Semiempirical Methods. Catal. Rev. 2016, 58, 1–99.
(17) Bkour, Q.; Im, K.; Marin-Flores, O. G.; Norton, M. G.; Ha, S.; Kim, J. Application of Ti-Doped MoO2 Microspheres Prepared by Spray Pyrolysis to Partial Oxidation of n-Dodecane. Appl. Catal. Gen. 2018, 553, 74–81.
(18) Reddy, B.; Patil, M.; Gunugunuri, K.; T. Reddy, B.; Rao, K. Selective Tert-Butylation of Phenol over Molybdate- and Tungstate-Promoted Zirconia Catalysts. Appl. Catal. Gen. 2007, 332, 183–191.
(19) Barrera, M. C.; Viniegra, M.; Escobar, J.; Vrinat, M.; de los Reyes, J. A.; Murrieta, F.; García, J. Highly Active MoS2 on Wide-Pore ZrO2–TiO2 Mixed Oxides. Catal. Today 2004, 98 (1), 131–139.
(20) Phillips, J. Control and Pollution Prevention Options for Ammonia Emissions; PB-95-241790/XAB; VIGYAN, Inc., Vienna, VA (United States), 1995.
(21) Petit, C.; Karwacki, C.; Peterson, G.; Bandosz, T. J. Interactions of Ammonia with the Surface of Microporous Carbon Impregnated with Transition Metal Chlorides. J. Phys. Chem. C 2007, 111 (34), 12705–12714.
(22) Helminen, J.; Helenius, J.; Paatero, E.; Turunen, I. Comparison of Sorbents and Isotherm Models for NH3-Gas Separation by Adsorption. AIChE J. 2000, 46 (8), 1541–1555.
(23) Petit, C. Factors Affecting the Removal of Ammonia from Air on Carbonaceous Materials: Investigation of Reactive Adsorption Mechanism; Springer Theses; Springer-Verlag: New York, 2012.
(24) Guo, J.; Xu, W. S.; Chen, Y. L.; Lua, A. C. Adsorption of NH3 onto Activated Carbon Prepared from Palm Shells Impregnated with H2SO4. J. Colloid Interface Sci. 2005, 281 (2), 285–290.
(25) Wang, J.; Jiang, W.; Zhang, Z.; Long, D. Mesoporous Carbon Beads Impregnated with Transition Metal Chlorides for Regenerative Removal of Ammonia in the Atmosphere. Ind. Eng. Chem. Res. 2017, 56 (12), 3283–3290.
(26) Helminen, J.; Helenius, J.; Paatero, E.; Turunen, I. Adsorption Equilibria of Ammonia Gas on Inorganic and Organic Sorbents at 298.15 K. J. Chem. Eng. Data 2001, 46 (2), 391–399.
(27) Liu, Z.; Zhang, Z.; Xing, W.; Komarneni, S.; Yan, Z.; Gao, X.; Zhou, X. Tailoring Acidity of HZSM-5 Nanoparticles for Methyl Bromide Dehydrobromination by Al and Mg Incorporation. Nanoscale Res. Lett. 2014, 9 (1), 550.
(28) Sharonov, V. E.; Aristov, Y. I. Ammonia Adsorption by MgCl2, CaCl2 and BaCl2 Confined to Porous Alumina: The Fixed Bed Adsorber. React. Kinet. Catal. Lett. 2005, 85 (1), 183–188.
(29) Uchiyama, S.; Isobe, T.; Matsushita, S.; Nakajima, K.; Hara, M.; Nakajima, A. Preparation of Porous Spherical ZrO 2 –SiO 2 Composite Particles Using Templating and Its Solid Acidity by H 2 SO 4 Treatment. J. Mater. Sci. - J MATER SCI 2012, 47.
(30) Shibata, K.; Kiyoura, T.; Kitagawa, J.; Sumiyoshi, T.; Tanabe, K. Acidic Properties of Binary Metal Oxides. Bull. Chem. Soc. Jpn. - BULL CHEM SOC JPN 1973, 46, 2985–2988.
(31) Deraz, N. M. The Comparative Jurisprudence of Catalysts Preparation Methods: I. Precipitation and Impregnation Methods. J. Ind. Environ. Chem. 2018, 2 (2).
(32) Yin, X.; Han, H.; Gunji, I.; Endou, A.; Cheettu Ammal, S. S.; Kubo, M.; Miyamoto, A. NH3 Adsorption on the Brönsted and Lewis Acid Sites of V2O5 (010): A Periodic Density Functional Study. J. Phys. Chem. B 1999, 103 (22), 4701–4706.
(33) Duan, Y.; Wang, J.; Yu, T.; Shen, M.; Wang, J. The Role and Activity of Various Adsorbed Ammonia Species on Cu/SAPO-34 Catalyst during Passive-SCR Process. RSC Adv. 2015, 5 (19), 14103–14113.
(34) Widoniak, J.; Eiden‐Assmann, S.; Maret, G. Synthesis and Characterisation of Monodisperse Zirconia Particles. Eur. J. Inorg. Chem. 2005, 2005 (15), 3149–3155.
(35) Shukla, S.; Seal, S. Thermodynamic Tetragonal Phase Stability in Sol−Gel Derived Nanodomains of Pure Zirconia. J. Phys. Chem. B 2004, 108 (11), 3395–3399.
(36) Barton, D. G.; Soled, S. L.; Meitzner, G. D.; Fuentes, G. A.; Iglesia, E. Structural and Catalytic Characterization of Solid Acids Based on Zirconia Modified by Tungsten Oxide. J. Catal. 1999, 181 (1), 57–72.
(37) Onsuratoom, S.; Puangpetch, T.; Chavadej, S. Comparative Investigation of Hydrogen Production over Ag-, Ni-, and Cu-Loaded Mesoporous-Assembled TiO2–ZrO2 Mixed Oxide Nanocrystal Photocatalysts. Chem. Eng. J. 2011, 173 (2), 667–675.
(38) Chary, K. V. R.; Sagar, G. V.; Naresh, D.; Seela, K. K.; Sridhar, B. Characterization and Reactivity of Copper Oxide Catalysts Supported on TiO2−ZrO2. J. Phys. Chem. B 2005, 109 (19), 9437–9444.
(39) Zou, W.; Ge, C.; Lu, M.; Wu, S.; Wang, Y.; Sun, J.; Pu, Y.; Tang, C.; Gao, F.; Dong, L. Engineering the NiO/CeO2 Interface to Enhance the Catalytic Performance for CO Oxidation. RSC Adv. 2015, 5 (119), 98335–98343.
(40) Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper Oxide as Efficient Catalyst for Oxidative Dehydrogenation of Alcohols with Air. Catal. Sci. Technol. 2015, 5 (4), 2467–2477.
(41) Potter, D.; Powell, M.; Parkin, I.; Carmalt, C. Aluminium/Gallium, Indium/Gallium, and Aluminium/Indium Co-Doped ZnO Thin Films Deposited via Aerosol Assisted CVD. J. Mater. Chem. C 2018, 6.
(42) Alov, N. V. XPS Study of MoO3 and WO3 Oxide Surface Modification by Low-Energy Ar+ Ion Bombardment. Phys. Status Solidi C 2015, 12 (3), 263–266.
(43) Queiroz, G. A. de; Barbosa, C. M. M. de B.; Queiroz, G. A. de; Barbosa, C. M. M. de B. Study of the Structural and Morphological Properties of Copper Catalysts Supported on Al2O3 and TiO2 Synthesized by the Impregnation Method. Matér. Rio Jan. 2019, 24 (1).
(44) Zhan, H.; Huang, S.; Li, Y.; Lv, J.; Wang, S.; Ma, X. Elucidating the Nature and Role of Cu Species in Enhanced Catalytic Carbonylation of Dimethyl Ether over Cu/H-MOR. Catal. Sci. Technol. 2015, 5 (9), 4378–4389.
(45) Thirupathi, B.; Smirniotis, P. G. Nickel-Doped Mn/TiO2 as an Efficient Catalyst for the Low-Temperature SCR of NO with NH3: Catalytic Evaluation and Characterizations. J. Catal. 2012, 288, 74–83.
(46) Zaki, M. I.; Hasan, M. A.; Al-Sagheer, F. A.; Pasupulety, L. In Situ FTIR Spectra of Pyridine Adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: General Considerations for the Identification of Acid Sites on Surfaces of Finely Divided Metal Oxides. Colloids Surf. Physicochem. Eng. Asp. 2001, 190 (3), 261–274.
(47) Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E. OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19 (1), 160–165.
(48) Almohalla, M.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A. Comparative Study of Three Heteropolyacids Supported on Carbon Materials as Catalysts for Ethylene Production from Bioethanol. Catal. Sci. Technol. 2017, 7 (9), 1892–1901.
(49) Petit, C.; Bandosz, T. Role of Surface Heterogeneity in the Removal of Ammonia from Air on Micro/Mesoporous Activated Carbons Modified with Molybdenum and Tungtsen Oxides. Microporous Mesoporous Mater. - MICROPOROUS MESOPOROUS MAT 2009, 118, 61–67.
(50) Liu, G.; Liu, J.; He, N.; Miao, C.; Wang, J.; Xin, Q.; Guo, H. Silicalite-1 Zeolite Acidification by Zinc Modification and Its Catalytic Properties for Isobutane Conversion. RSC Adv. 2018, 8 (33), 18663–18671.
(51) Grande, C. A. Advances in Pressure Swing Adsorption for Gas Separation https://www.hindawi.com/journals/isrn/2012/982934/ (accessed Aug 3, 2019).
(52) Busca, G.; Pistarino, C. Abatement of Ammonia and Amines from Waste Gases: A Summary. J. Loss Prev. Process Ind. 2003, 16 (2), 157–163.
(53) Sircar, S. Applications of Gas Separation by Adsorption for the Future. Adsorpt. Sci. Technol. 2001, 19 (5), 347–366.
(54) Šetka, M.; Calavia, R.; Vojkůvka, L.; Llobet, E.; Drbohlavová, J.; Vallejos, S. Raman and XPS Studies of Ammonia Sensitive Polypyrrole Nanorods and Nanoparticles. Sci. Rep. 2019, 9 (1), 8465.
(55) Echterhoff, R.; Knözinger, E. FTIR Spectroscopic Characterization of the Adsorption and Desorption of Ammonia on MgO Surfaces. Surf. Sci. 1990, 230 (1), 237–244.
(56) Petit, S.; Righi, D.; Madejova, J.; Decarreau, A. Interpretation of the Infrared NH (Super +) 4 Spectrum of the NH (Super +) 4 -Clays; Application to the Evaluation of the Layer Charge. Clay Miner. 1999, 34 (4), 543–549.
(57) Furtado, A. M. B.; Wang, Y.; Glover, T. G.; LeVan, M. D. MCM-41 Impregnated with Active Metal Sites: Synthesis, Characterization, and Ammonia Adsorption. Microporous Mesoporous Mater. 2011, 142 (2), 730–739.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *