|
REFERENCES
(1) Gonçalves, M.; Sánchez-García, L.; Oliveira Jardim, E. de; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Ammonia Removal Using Activated Carbons: Effect of the Surface Chemistry in Dry and Moist Conditions. Environ. Sci. Technol. 2011, 45 (24), 10605–10610. (2) Kang, Y.; Liu, M.; Song, Y.; Huang, X.; Yao, H.; Cai, X.; Zhang, H.; Kang, L.; Liu, X.; Yan, X.; et al. High-Resolution Ammonia Emissions Inventories in China from 1980 to 2012. Atmospheric Chem. Phys. 2016, 16 (4), 2043–2058. (3) Wang, S.; Nan, J.; Shi, C.; Fu, Q.; Gao, S.; Wang, D.; Cui, H.; Saiz-Lopez, A.; Zhou, B. Atmospheric Ammonia and Its Impacts on Regional Air Quality over the Megacity of Shanghai, China. Sci. Rep. 2015, 5, 15842. (4) Rezaei, E.; Schlageter, B.; Nemati, M.; Predicala, B. Evaluation of Metal Oxide Nanoparticles for Adsorption of Gas Phase Ammonia. J. Environ. Chem. Eng. 2017, 5 (1), 422–431. (5) Barin, G.; Peterson, G. W.; Crocellà, V.; Xu, J.; Colwell, K. A.; Nandy, A.; Reimer, J. A.; Bordiga, S.; Long, J. R. Highly Effective Ammonia Removal in a Series of Brønsted Acidic Porous Polymers: Investigation of Chemical and Structural Variations. Chem. Sci. 2017, 8 (6), 4399–4409. (6) Chaudhary, M.; Shen, P.; Chang, S. The Roles of Phosphate and Tungstate Species in Surface Acidities of TiO2-ZrO2 Binary Oxides – A Comparison Study. Appl. Surf. Sci. 2018, 440, 369–377. (7) Danks, A. E.; Hall, S. R.; Schnepp, Z. The Evolution of ‘Sol–Gel’ Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3 (2), 91–112. (8) Tanabe, K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J. A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides. Bull. Chem. Soc. Jpn. - BULL CHEM SOC JPN 1974, 47, 1064–1066. (9) Theunissen, G. S. A. M.; Winnubst, A. J. A.; Burggraaf, A. J. Surface and Grain Boundary Analysis of Doped Zirconia Ceramics Studied by AES and XPS. J. Mater. Sci. 1992, 27 (18), 5057–5066. (10) Das, D.; Mishra, H. K.; Dalai, A. K.; Parida, K. M. Isopropylation of Benzene over Sulfated ZrO2–TiO2 Mixed-Oxide Catalyst. Appl. Catal. Gen. 2003, 243 (2), 271–284. (11) Pirzada, B. M.; Mir, N. A.; Qutub, N.; Mehraj, O.; Sabir, S.; Muneer, M. Synthesis, Characterization and Optimization of Photocatalytic Activity of TiO2/ZrO2 Nanocomposite Heterostructures. Mater. Sci. Eng. B 2015, 193, 137–145. (12) Cortés-Jácome, M. A.; Toledo, J. A.; Angeles-Chavez, C.; Aguilar, M.; Wang, J. A. Influence of Synthesis Methods on Tungsten Dispersion, Structural Deformation, and Surface Acidity in Binary WO3-ZrO2 System. J. Phys. Chem. B 2005, 109 (48), 22730–22739. (13) Flego, C.; Carluccio, L.; Rizzo, C.; Perego, C. Synthesis of Mesoporous SiO2–ZrO2 Mixed Oxides by Sol–Gel Method. Catal. Commun. 2001, 2 (2), 43–48. (14) Zou, H.; Lin, Y. S. Structural and Surface Chemical Properties of Sol–Gel Derived TiO2–ZrO2 Oxides. Appl. Catal. Gen. 2004, 265 (1), 35–42. (15) Reddy, B.; Khan, A. Recent Advances on TiO2‐ZrO2 Mixed Oxides as Catalysts and Catalyst Supports. Catal. Rev.-Sci. Eng. - CATAL REV-SCI ENG 2005, 47, 257–296. (16) N. Panchenko, V.; N. Timofeeva, M.; Hwa Jhung, S. Acid-Base Properties and Catalytic Activity of Metal-Organic Frameworks: A View from Spectroscopic and Semiempirical Methods. Catal. Rev. 2016, 58, 1–99. (17) Bkour, Q.; Im, K.; Marin-Flores, O. G.; Norton, M. G.; Ha, S.; Kim, J. Application of Ti-Doped MoO2 Microspheres Prepared by Spray Pyrolysis to Partial Oxidation of n-Dodecane. Appl. Catal. Gen. 2018, 553, 74–81. (18) Reddy, B.; Patil, M.; Gunugunuri, K.; T. Reddy, B.; Rao, K. Selective Tert-Butylation of Phenol over Molybdate- and Tungstate-Promoted Zirconia Catalysts. Appl. Catal. Gen. 2007, 332, 183–191. (19) Barrera, M. C.; Viniegra, M.; Escobar, J.; Vrinat, M.; de los Reyes, J. A.; Murrieta, F.; García, J. Highly Active MoS2 on Wide-Pore ZrO2–TiO2 Mixed Oxides. Catal. Today 2004, 98 (1), 131–139. (20) Phillips, J. Control and Pollution Prevention Options for Ammonia Emissions; PB-95-241790/XAB; VIGYAN, Inc., Vienna, VA (United States), 1995. (21) Petit, C.; Karwacki, C.; Peterson, G.; Bandosz, T. J. Interactions of Ammonia with the Surface of Microporous Carbon Impregnated with Transition Metal Chlorides. J. Phys. Chem. C 2007, 111 (34), 12705–12714. (22) Helminen, J.; Helenius, J.; Paatero, E.; Turunen, I. Comparison of Sorbents and Isotherm Models for NH3-Gas Separation by Adsorption. AIChE J. 2000, 46 (8), 1541–1555. (23) Petit, C. Factors Affecting the Removal of Ammonia from Air on Carbonaceous Materials: Investigation of Reactive Adsorption Mechanism; Springer Theses; Springer-Verlag: New York, 2012. (24) Guo, J.; Xu, W. S.; Chen, Y. L.; Lua, A. C. Adsorption of NH3 onto Activated Carbon Prepared from Palm Shells Impregnated with H2SO4. J. Colloid Interface Sci. 2005, 281 (2), 285–290. (25) Wang, J.; Jiang, W.; Zhang, Z.; Long, D. Mesoporous Carbon Beads Impregnated with Transition Metal Chlorides for Regenerative Removal of Ammonia in the Atmosphere. Ind. Eng. Chem. Res. 2017, 56 (12), 3283–3290. (26) Helminen, J.; Helenius, J.; Paatero, E.; Turunen, I. Adsorption Equilibria of Ammonia Gas on Inorganic and Organic Sorbents at 298.15 K. J. Chem. Eng. Data 2001, 46 (2), 391–399. (27) Liu, Z.; Zhang, Z.; Xing, W.; Komarneni, S.; Yan, Z.; Gao, X.; Zhou, X. Tailoring Acidity of HZSM-5 Nanoparticles for Methyl Bromide Dehydrobromination by Al and Mg Incorporation. Nanoscale Res. Lett. 2014, 9 (1), 550. (28) Sharonov, V. E.; Aristov, Y. I. Ammonia Adsorption by MgCl2, CaCl2 and BaCl2 Confined to Porous Alumina: The Fixed Bed Adsorber. React. Kinet. Catal. Lett. 2005, 85 (1), 183–188. (29) Uchiyama, S.; Isobe, T.; Matsushita, S.; Nakajima, K.; Hara, M.; Nakajima, A. Preparation of Porous Spherical ZrO 2 –SiO 2 Composite Particles Using Templating and Its Solid Acidity by H 2 SO 4 Treatment. J. Mater. Sci. - J MATER SCI 2012, 47. (30) Shibata, K.; Kiyoura, T.; Kitagawa, J.; Sumiyoshi, T.; Tanabe, K. Acidic Properties of Binary Metal Oxides. Bull. Chem. Soc. Jpn. - BULL CHEM SOC JPN 1973, 46, 2985–2988. (31) Deraz, N. M. The Comparative Jurisprudence of Catalysts Preparation Methods: I. Precipitation and Impregnation Methods. J. Ind. Environ. Chem. 2018, 2 (2). (32) Yin, X.; Han, H.; Gunji, I.; Endou, A.; Cheettu Ammal, S. S.; Kubo, M.; Miyamoto, A. NH3 Adsorption on the Brönsted and Lewis Acid Sites of V2O5 (010): A Periodic Density Functional Study. J. Phys. Chem. B 1999, 103 (22), 4701–4706. (33) Duan, Y.; Wang, J.; Yu, T.; Shen, M.; Wang, J. The Role and Activity of Various Adsorbed Ammonia Species on Cu/SAPO-34 Catalyst during Passive-SCR Process. RSC Adv. 2015, 5 (19), 14103–14113. (34) Widoniak, J.; Eiden‐Assmann, S.; Maret, G. Synthesis and Characterisation of Monodisperse Zirconia Particles. Eur. J. Inorg. Chem. 2005, 2005 (15), 3149–3155. (35) Shukla, S.; Seal, S. Thermodynamic Tetragonal Phase Stability in Sol−Gel Derived Nanodomains of Pure Zirconia. J. Phys. Chem. B 2004, 108 (11), 3395–3399. (36) Barton, D. G.; Soled, S. L.; Meitzner, G. D.; Fuentes, G. A.; Iglesia, E. Structural and Catalytic Characterization of Solid Acids Based on Zirconia Modified by Tungsten Oxide. J. Catal. 1999, 181 (1), 57–72. (37) Onsuratoom, S.; Puangpetch, T.; Chavadej, S. Comparative Investigation of Hydrogen Production over Ag-, Ni-, and Cu-Loaded Mesoporous-Assembled TiO2–ZrO2 Mixed Oxide Nanocrystal Photocatalysts. Chem. Eng. J. 2011, 173 (2), 667–675. (38) Chary, K. V. R.; Sagar, G. V.; Naresh, D.; Seela, K. K.; Sridhar, B. Characterization and Reactivity of Copper Oxide Catalysts Supported on TiO2−ZrO2. J. Phys. Chem. B 2005, 109 (19), 9437–9444. (39) Zou, W.; Ge, C.; Lu, M.; Wu, S.; Wang, Y.; Sun, J.; Pu, Y.; Tang, C.; Gao, F.; Dong, L. Engineering the NiO/CeO2 Interface to Enhance the Catalytic Performance for CO Oxidation. RSC Adv. 2015, 5 (119), 98335–98343. (40) Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper Oxide as Efficient Catalyst for Oxidative Dehydrogenation of Alcohols with Air. Catal. Sci. Technol. 2015, 5 (4), 2467–2477. (41) Potter, D.; Powell, M.; Parkin, I.; Carmalt, C. Aluminium/Gallium, Indium/Gallium, and Aluminium/Indium Co-Doped ZnO Thin Films Deposited via Aerosol Assisted CVD. J. Mater. Chem. C 2018, 6. (42) Alov, N. V. XPS Study of MoO3 and WO3 Oxide Surface Modification by Low-Energy Ar+ Ion Bombardment. Phys. Status Solidi C 2015, 12 (3), 263–266. (43) Queiroz, G. A. de; Barbosa, C. M. M. de B.; Queiroz, G. A. de; Barbosa, C. M. M. de B. Study of the Structural and Morphological Properties of Copper Catalysts Supported on Al2O3 and TiO2 Synthesized by the Impregnation Method. Matér. Rio Jan. 2019, 24 (1). (44) Zhan, H.; Huang, S.; Li, Y.; Lv, J.; Wang, S.; Ma, X. Elucidating the Nature and Role of Cu Species in Enhanced Catalytic Carbonylation of Dimethyl Ether over Cu/H-MOR. Catal. Sci. Technol. 2015, 5 (9), 4378–4389. (45) Thirupathi, B.; Smirniotis, P. G. Nickel-Doped Mn/TiO2 as an Efficient Catalyst for the Low-Temperature SCR of NO with NH3: Catalytic Evaluation and Characterizations. J. Catal. 2012, 288, 74–83. (46) Zaki, M. I.; Hasan, M. A.; Al-Sagheer, F. A.; Pasupulety, L. In Situ FTIR Spectra of Pyridine Adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: General Considerations for the Identification of Acid Sites on Surfaces of Finely Divided Metal Oxides. Colloids Surf. Physicochem. Eng. Asp. 2001, 190 (3), 261–274. (47) Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E. OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19 (1), 160–165. (48) Almohalla, M.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A. Comparative Study of Three Heteropolyacids Supported on Carbon Materials as Catalysts for Ethylene Production from Bioethanol. Catal. Sci. Technol. 2017, 7 (9), 1892–1901. (49) Petit, C.; Bandosz, T. Role of Surface Heterogeneity in the Removal of Ammonia from Air on Micro/Mesoporous Activated Carbons Modified with Molybdenum and Tungtsen Oxides. Microporous Mesoporous Mater. - MICROPOROUS MESOPOROUS MAT 2009, 118, 61–67. (50) Liu, G.; Liu, J.; He, N.; Miao, C.; Wang, J.; Xin, Q.; Guo, H. Silicalite-1 Zeolite Acidification by Zinc Modification and Its Catalytic Properties for Isobutane Conversion. RSC Adv. 2018, 8 (33), 18663–18671. (51) Grande, C. A. Advances in Pressure Swing Adsorption for Gas Separation https://www.hindawi.com/journals/isrn/2012/982934/ (accessed Aug 3, 2019). (52) Busca, G.; Pistarino, C. Abatement of Ammonia and Amines from Waste Gases: A Summary. J. Loss Prev. Process Ind. 2003, 16 (2), 157–163. (53) Sircar, S. Applications of Gas Separation by Adsorption for the Future. Adsorpt. Sci. Technol. 2001, 19 (5), 347–366. (54) Šetka, M.; Calavia, R.; Vojkůvka, L.; Llobet, E.; Drbohlavová, J.; Vallejos, S. Raman and XPS Studies of Ammonia Sensitive Polypyrrole Nanorods and Nanoparticles. Sci. Rep. 2019, 9 (1), 8465. (55) Echterhoff, R.; Knözinger, E. FTIR Spectroscopic Characterization of the Adsorption and Desorption of Ammonia on MgO Surfaces. Surf. Sci. 1990, 230 (1), 237–244. (56) Petit, S.; Righi, D.; Madejova, J.; Decarreau, A. Interpretation of the Infrared NH (Super +) 4 Spectrum of the NH (Super +) 4 -Clays; Application to the Evaluation of the Layer Charge. Clay Miner. 1999, 34 (4), 543–549. (57) Furtado, A. M. B.; Wang, Y.; Glover, T. G.; LeVan, M. D. MCM-41 Impregnated with Active Metal Sites: Synthesis, Characterization, and Ammonia Adsorption. Microporous Mesoporous Mater. 2011, 142 (2), 730–739.
|