帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:游昇穆
作者(英文):You, Sheng-Mu
論文名稱(中文):金屬有機框架材料作為光感劑修飾奈米微陣列二氧化鈦陽 極應用於光電化學之水裂解反應
論文名稱(英文):Metal Organic Frameworks as efficient photosensitizers for TiO2 Nanoarray anodes and application to water splitting in PEC cell
指導教授(中文):張淑閔
Pierre Millet
董瑞安
指導教授(英文):Chang, Sue-Min
Pierre Millet
Doong, Ruey-An
口試委員:GIORGI Marie-Laurence
Christian Beauger
林坤儀
徐雍鎣
張淑閔
Pierre Millet
口試委員(英文):GIORGI Marie-Laurence
Christian Beauger
Lin, Kun-Yi
Hsu, Ying-Jung
Chang, Sue-Min
Pierre Millet
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0551724
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:132
中文關鍵詞:金屬有機框架材料奈米微陣列二氧化鈦水裂解氫/氧釋放反應光電化學電化學沉積法
外文關鍵詞:Metal organic frameworkTiO2 nanoarraywater splittingoxygen evolution reactionphoto-electrochemical catalysiselectrochemical catalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來面臨石化燃料的儲量正在減少及其無限制的使用造成地球表面溫度和氣候的嚴峻變化,而水分解產生的氫的形式貯存太陽能是目前緩解全球變暖的理想方法之一。“金屬有機骨架”(MOF)的新興材料已開始被應用於光電催化劑,尤其是藉由光電化學途徑將水解離,它們極高的孔隙率以及多變的化學和結構可塑性,使其促進太陽光的吸收並提升光電化學離解水的潛在能力;利用控制MOF中所使用的不同鏈接結構或利用摻雜元素而調整能隙能量、有利於功能化各種基底材料、調節其耐腐蝕性與持久性,因此這類複合材料是催化、電催化或光電催化非常感興趣的電極材料之一;另一方面,例如以納米管或奈米纖維形式的奈米結構的二氧化鈦(二氧化鈦奈米微陣列(TNA))是非常適合構造用於在水介質中析出氧氣的光電化學之陽極材料,而這類材料的應用已經在文獻中進行了廣泛的討論,因此在我們的研究中,我們製造了由過渡金屬(Ni,Co,Fe)的MOF沉積在TNA(納米管或奈米纖維的微陣列結構)上製成的複合材料。我們使用了電沉積的電化學方法(循環伏安法),這使我們能夠將金屬氫氧化物以1.0 V的固定電勢均勻沉積在TNA上,然後通過與有機鏈結配體(1,3,5-苯三甲酸,BTC,1,4-苯二甲酸,BDC和咪唑,2MZ)進行水熱法轉化成為MOF結構。最後,我們所獲得的複合材料表現出卓越的光電催化活性和優異的光電化學耐久性,根據我們的結果與探討這些複合材料已成功地使用在光電催化電極並應用於氧釋放反應(OER)。
The continued use of fossil fuel reserves since the industrial revolution has led to their scarcity; it has also created deep climatic imbalances, measurable by the amplitude of the atmospheric temperature cycles. Storing incident solar energy in the form of hydrogen produced by photoelectrochemical dissociation of water suggests the possibility of combating global warming. The materials of the "Metal Organic Framework" (MOF) family are semiconductor-type photoelectrocatalysts, which are advantageous for this type of application. Their extremely high porosity and their great variability in chemical composition and structure allow their properties of absorption of solar radiation and of catalysis to be adjusted. By controlling the chemical composition and the doping of the linker used in the MOF, it is possible to adjust the energy of the band gap, to promote the functionalization on a wide variety of substrates or to adjust their corrosion resistance in various chemical environments. They are therefore materials of great interest for catalysis, electrocatalysis or photo-electro-catalysis. For its part, nanostructured TiO2, for example in the form of a micrometric thickness mat of nanotubes (TDNT) or nanorods (TDNR) forming TiO2 nano-arrays (TNA), is commonly used in the manufacture of photoanodes for the evolution of gaseous oxygen (OER) in an aqueous medium. During our thesis, we fabricated composite materials consisting of MOF of transition metals (Ni, Co, Fe) deposited on TNAs. For this, we used an electrochemical method of electrodeposition. This allowed us to deposit metal hydroxides on TNAs at fixed potential and then transform them by chemical reaction with organic ligands (BTC, BDC, and 2MZ) thermochemically. These photoelectrodes exhibit both a high level of photoelectrochemical performance and high stability against photo-corrosion. The reaction mechanisms were analyzed by photoelectrochemical impedance spectroscopy. The different steps have been identified and the values of the kinetic parameters have been determined over a wide range of potential. These composite materials have been used with success as the active phase of photoanodes for the OER. These photo-anodes have significant electrocatalytic activity and excellent photoelectrochemical durability.
ABSTRACT ......................................................................................................................... - I -
DECLARATION..........................................................................................................- III -
ACKNOWLEDGEMENTS .........................................................................................- IV -
TABLE OF CONTENTS.............................................................................................. - VI -
FIGURES AND TABLES INDEX .................................................................................. - IV -
ABBREVIATIONS....................................................................................................- XIII -
MOTIVATION ............................................................................................................- XIV
OBJECTIVES AND METHODOLOGY.....................................................................- XV1

INTRODUCTION ................................................................................................. - 1 -
1.1. WATER SPLITTING...........................................................................................- 1 -
Photo-electrochemical water splitting (PEC-WS) ................................................... - 5 -
1.2. METAL ORGANIC FRAMEWORK.......................................................................- 8 -
1.3. TITANIUM DIOXIDE NANOARRAY (TNAS)......................................................- 11 -
1.3.1 TiO2 nanotube arrays (TNTAs)..................................................................- 14 -
1.3.2 TiO2 nanorod arrays (TDNR) ....................................................................- 15 -
1.4. MOF/TNTA NANOCOMPOSITES....................................................................- 16 -

2. METHODOLOGY AND MATERIALS...............................................................- 20 -
2.1. CHEMICALS AND MATERIALS........................................................................- 20 -
2.2. SYNTHESIS OF VARIOUS MOFS......................................................................- 20 -
2.2.1 Cu-BTC-MOF...........................................................................................- 20 -
2.2.2 Fabrication of Cu-BTC-MOF-Ole and Boron doped Cu-BTC-MOF........- 21 -
2.2.3 Synthesis of Cu-Gly-MOF.........................................................................- 21 -
2.2.4 Synthesis of Ni-MOF.................................................................................- 21 -
2.3. SYNTHESIS OF TIO2 NANOARRAY..................................................................- 22 -
2.3.1 Production of TNTAs/Ti electrodes............................................................- 22 -
2.3.2 Production of TDNRs/FTO electrodes.......................................................- 23 -
2.4. SYNTHESIS OF MOF/TNA COMPOSITE.........................................................- 24 -
2.4.1 Formation of Ni-MOF on TDNRs/FTO ....................................................- 24 -
2.4.2 Formation of ZIF-67 MOF coating on TDNR ..........................................- 26 -
2.4.3 Formation of ZIF-67 MOF deposited on TDNR/FTO...............................- 27 -
2.4.4 Formation of FeNi-MOF on TNTA...........................................................- 28 -
2.5. ANALYTICAL TECHNIQUES FOR CHARACTERISTICS.....................................- 29 -
2.5.1 X-Ray Diffraction (XRD)...........................................................................- 29 -
2.5.2 Hard X-ray Absorption Spectroscopy.........................................................- 29 -
2.5.3 X-ray photoelectron spectroscopy (XPS)....................................................- 30 -
2.5.4 Brunauer−Emmett−Teller specific surface area analyzer (BET) ..............- 30 -
2.5.5 Scanning Electron Microscope (SEM)......................................................- 30 -
2.5.6 Transmission Electron Microscope (TEM)................................................- 31 -
2.5.7 Fourier transform infrared spectroscopy (FTIR) ......................................- 31 -
2.5.8 UV-Vis spectroscopy ..................................................................................- 31 -
2.5.9 Experiments for Electrochemical studies ..................................................- 31 -
2.5.10 Experiments for Photo-electrochemical measurements.........................- 32 -

3. FABRICATION OF MOFS BASED ON TRANSITION METALS WITH DIFFERENT LIGANDS FOR (PHOTO-) ELECTROCHEMICAL WATER SPLITTING ..................................................................................................................- 34 -
3.1 OBJECTIVE....................................................................................................- 34 -
3.2 INTRODUCTION .............................................................................................- 35 -
3.3 PHYSICAL CHARACTERIZATION....................................................................- 36 -
3.4 STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION .........................- 39 -
3.5 ELECTROCHEMICAL ANALYSIS .....................................................................- 43 -
3.6 CONCLUSIONS ...............................................................................................- 45 -

4. PHOTO-ELECTRO-OXIDATION OF WATER ON MATS OF TIO2 NANORODS
SURFACE MODIFIED BY NANOPARTICLES OF NI MOF....................................- 47 -
4.1 OBJECTIVE....................................................................................................- 47 -
4.2 INTRODUCTION .............................................................................................- 48 -
4.3 STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION .........................- 51 -
4.4 PHYSICAL CHARACTERIZATION....................................................................- 57 -
4.5 PEC ANALYSIS...............................................................................................- 62 -
4.6 CONCLUSION.................................................................................................- 66 -
4.7 SUPPORTING INFORMATION..........................................................................- 68 -

5. THE PERFORMANCE OF CALCINED RUTILE TIO2 NANORODS ARRAY
COATED BY A THIN LAYER NI-MOF AS PHOTOSENSITIZER APPLIED DURING
PEC WATER SPLITTING ...........................................................................................- 73 -
5.1 OBJECTIVE....................................................................................................- 73 -
5.2 INTRODUCTION .............................................................................................- 74 -
5.3 STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION .........................- 76 -
5.4 PHYSICAL CHARACTERIZATION....................................................................- 78 -
5.5 PEC ANALYSIS...............................................................................................- 81 -
5.6 CONCLUSION.................................................................................................- 85 -
6. FE/NI BIMETALLIC ORGANIC FRAMEWORK DEPOSITED ON TIO2
NANOTUBE ARRAY FOR ENHANCING HIGHER AND STABLE ACTIVITY OF
OXYGEN EVOLUTION REACTION.........................................................................- 87 -
6.1 OBJECTIVE....................................................................................................- 87 -
6.2 ARTICLE PUBLISHED IN NANOMATERIALS 2020, 10(9), 1688..............................- 87 -

CONCLUSION ...........................................................................................................- 101 -
REFERENCES............................................................................................................- 107 -
APPENDIX..................................................................................................................- 120 -
Electrochemically capacitive deionization of copper (II) using 3D hierarchically reduced
graphene oxide architectures ...................................................................................... -121 -
AUTOBIOGRAPHY ...................................................................................................... -132 -
1. Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (43), 15729-15735.
2. Du, P.; Eisenberg, R., Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy & Environmental Science 2012, 5 (3).
3. Wang, Y.; Kong, B.; Zhao, D.; Wang, H.; Selomulya, C., Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26-55.
4. Kubacka, A.; Fernandez-Garcia, M.; Colon, G., Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 2012, 112 (3), 1555-614.
5. Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z., Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory. Angew. Chem.-Int. Edit. 2015, 54 (1), 52-65.
6. Norskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Norskov, J. K., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152 (3), J23-J26.
7. Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science 2015, 8 (5), 1404-1427.
8. Ghosh, S.; Basu, R. N., Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale 2018, 10 (24), 11241-11280.
9. Yi, S.-S.; Zhang, X.-B.; Wulan, B.-R.; Yan, J.-M.; Jiang, Q., Non-noble metals applied to solar water splitting. Energy & Environmental Science 2018, 11 (11), 3128-3156.
10. Maduraiveeran, G.; Sasidharan, M.; Jin, W., Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science 2019, 106.
11. Jin, W.; Maduraiveeran, G., Recent advances of porous transition metal-based nanomaterials for electrochemical energy conversion and storage applications. Materials Today Energy 2019, 13, 64-84.
12. Wang, W.; Xu, X.; Zhou, W.; Shao, Z., Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Adv Sci (Weinh) 2017, 4 (4), 1600371.
13. Skorupskii, G.; Trump, B. A.; Kasel, T. W.; Brown, C. M.; Hendon, C. H.; Dincă, M., Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks. Nature Chemistry 2019.
14. Lei, L.; Huang, D.; Zeng, G.; Cheng, M.; Jiang, D.; Zhou, C.; Chen, S.; Wang, W., A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties. Coordination Chemistry Reviews 2019, 399.
15. Wang, F.; Shifa, T. A.; Zhan, X.; Huang, Y.; Liu, K.; Cheng, Z.; Jiang, C.; He, J., Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale 2015, 7 (47), 19764-88.
16. Nasir, M. S.; Yang, G.; Ayub, I.; Wang, S.; Wang, L.; Wang, X.; Yan, W.; Peng, S.; Ramakarishna, S., Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Applied Catalysis B: Environmental 2019, 257.
17. Zhou, B.-X.; Ding, S.-S.; Zhang, B.-J.; Xu, L.; Chen, R.-S.; Luo, L.; Huang, W.-Q.; Xie, Z.; Pan, A.; Huang, G.-F., Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Applied Catalysis B: Environmental 2019, 254, 321-328.
18. Zeng, K.; Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science 2010, 36 (3), 307-326.
19. Duan, H.; Li, D.; Tang, Y.; He, Y.; Ji, S.; Wang, R.; Lv, H.; Lopes, P. P.; Paulikas, A. P.; Li, H.; Mao, S. X.; Wang, C.; Markovic, N. M.; Li, J.; Stamenkovic, V. R.; Li, Y., High-Performance Rh2P Electrocatalyst for Efficient Water Splitting. Journal of the American Chemical Society 2017, 139 (15), 5494-5502.
20. Seo, H.; Cho, K. H.; Ha, H.; Park, S.; Hong, J. S.; Jin, K.; Nam, K. T., Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition. Journal of the Korean Ceramic Society 2017, 54 (1), 1-8.
21. Alfaifi, B. Y.; Ullah, H.; Alfaifi, S.; Tahir, A. A.; Mallick, T. K., Photoelectrochemical solar water splitting: From basic principles to advanced devices. Veruscript Functional Nanomaterials 2018, 2.
22. Tom Bosserez, J. R., Jan van Humbeeck, Sophia Haussener, Johan Martens, Design of Compact Photoelectrochemical Cells for Water Splitting. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles 2015, 70 (5), 877-889.
23. Newman, J., Scaling with Ohm's Law; Wired vs. Wireless Photoelectrochemical Cells. J. Electrochem. Soc. 2013, 160 (3), F309-F311.
24. Yang, W.; Moon, J., Recent Advances in Earth-Abundant Photocathodes for Photoelectrochemical Water Splitting. ChemSusChem 2019, 12 (9), 1889-1899.
25. Yang, W.; Moon, J., Rapid advances in antimony triselenide photocathodes for solar hydrogen generation. Journal of Materials Chemistry A 2019, 7 (36), 20467-20477.
26. Lee, J.; Kwak, J. H.; Choe, W., Evolution of form in metal-organic frameworks. Nat Commun 2017, 8, 14070.
27. Yuan, S.; Zou, L.; Qin, J. S.; Li, J.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T.; Zhou, H. C., Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat Commun 2017, 8, 15356.
28. Mason, J. A.; Veenstra, M.; Long, J. R., Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 2014, 5 (1), 32-51.
29. Liu, S.; Sun, L.; Xu, F.; Zhang, J.; Jiao, C.; Li, F.; Li, Z.; Wang, S.; Wang, Z.; Jiang, X.; Zhou, H.; Yang, L.; Schick, C., Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy & Environmental Science 2013, 6 (3).
30. Hu, Y. H.; Zhang, L., Hydrogen storage in metal-organic frameworks. Adv Mater 2010, 22 (20), E117-30.
31. Vlasova, E. A.; Yakimov, S. A.; Naidenko, E. V.; Kudrik, E. V.; Makarov, S. V., Application of metal-organic frameworks for purification of vegetable oils. Food Chem 2016, 190, 103-109.
32. Wang, R.; Guo, W.; Li, X.; Liu, Z.; Liu, H.; Ding, S., Highly efficient MOF-based self-propelled micromotors for water purification. RSC Advances 2017, 7 (67), 42462-42467.
33. Nenoff, T. M., Hydrogen purification: MOF membranes put to the test. Nat Chem 2015, 7 (5), 377-8.
34. Li, J. R.; Sculley, J.; Zhou, H. C., Metal-organic frameworks for separations. Chem Rev 2012, 112 (2), 869-932.
35. Doonan, C. J.; Sumby, C. J., Metal-organic framework catalysis. CrystEngComm 2017, 19 (29), 4044-4048.
36. Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R., Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 2017, 46 (1), 126-157.
37. Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K., Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev 2017, 46 (11), 3242-3285.
38. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal-organic framework materials as chemical sensors. Chem Rev 2012, 112 (2), 1105-25.
39. Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M., The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials 2017, 2 (8).
40. Zhu, B.; Xia, D.; Zou, R., Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coordination Chemistry Reviews 2018, 376, 430-448.
41. Meyer, K.; Ranocchiari, M.; van Bokhoven, J. A., Metal organic frameworks for photo-catalytic water splitting. Energy & Environmental Science 2015, 8 (7), 1923-1937.
42. Duan, J.; Chen, S.; Zhao, C., Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 2017, 8, 15341.
43. Chaikittisilp, W.; Torad, N. L.; Li, C.; Imura, M.; Suzuki, N.; Ishihara, S.; Ariga, K.; Yamauchi, Y., Synthesis of Nanoporous Carbon–Cobalt-Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks. Chemistry – A European Journal 2014, 20 (15), 4217-4221.
44. Cardenas-Morcoso, D.; Ifraemov, R.; García-Tecedor, M.; Liberman, I.; Gimenez, S.; Hod, I., A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A 2019, 7 (18), 11143-11149.
45. Matsuda, S.; Kato, A., Titanium oxide based catalysts - a review. Applied Catalysis 1983, 8 (2), 149-165.
46. Bourikas, K.; Kordulis, C.; Lycourghiotis, A., Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem Rev 2014, 114 (19), 9754-823.
47. Gao, M.; Zhu, L.; Ong, W. L.; Wang, J.; Ho, G. W., Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catalysis Science & Technology 2015, 5 (10), 4703-4726.
48. Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2000, 1 (1), 1-21.
49. Kegel, J.; Povey, I. M.; Pemble, M. E., Zinc oxide for solar water splitting: A brief review of the material's challenges and associated opportunities. Nano Energy 2018, 54, 409-428.
50. Hassan, M. A.; Johar, M. A.; Yu, S. Y.; Ryu, S.-W., Facile Synthesis of Well-Aligned ZnO Nanowires on Various Substrates by MOCVD for Enhanced Photoelectrochemical Water-Splitting Performance. ACS Sustainable Chemistry & Engineering 2018, 6 (12), 16047-16054.
51. Zhang, Z.; Wang, P., Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 2012, 22 (6), 2456-2464.
52. Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M., Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability. Energy & Environmental Science 2012, 5 (9).
53. Fiorenza, R.; Bellardita, M.; D’Urso, L.; Compagnini, G.; Palmisano, L.; Scirè, S., Au/TiO2-CeO2 Catalysts for Photocatalytic Water Splitting and VOCs Oxidation Reactions. Catalysts 2016, 6 (8).
54. You, D.; Pan, B.; Jiang, F.; Zhou, Y.; Su, W., CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity. Applied Surface Science 2016, 363, 154-160.
55. A, M.; J, M.; Ashokkumar, M.; Arunachalam, P., A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Applied Catalysis A: General 2018, 555, 47-74.
56. Zhang, J.; Liu, Z.; Liu, Z., Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting. ACS Appl Mater Interfaces 2016, 8 (15), 9684-91.
57. Kernani, R.; Mameri, N.; Lounici, H., The use of TiO2 as catalyst in thin film fixed bed reactor for the treatment of landfill water. Mediterranean Journal of Chemistry 2014, 3 (1), 780-788.
58. Radzi, A. A. S. M.; Safaei, J.; Teridi, M. A. M., Photoelectrochemical enhancement from deposition of BiVO4 photosensitizer on different thickness layer TiO2 photoanode for water splitting application. Nano-Structures & Nano-Objects 2019, 18.
59. Jeong, K.; Deshmukh, P. R.; Park, J.; Sohn, Y.; Shin, W. G., ZnO-TiO2 Core–Shell Nanowires: A Sustainable Photoanode for Enhanced Photoelectrochemical Water Splitting. ACS Sustainable Chemistry & Engineering 2018, 6 (5), 6518-6526.
60. Li, S.; Zhang, G.; Guo, D.; Yu, L.; Zhang, W., Anodization Fabrication of Highly Ordered TiO2 Nanotubes. 2009; Vol. 113, p 12759-12765.
61. Liu, G.; Wang, K.; Hoivik, N.; Jakobsen, H., Progress on free-standing and flow-through TiO2 nanotube membranes. Solar Energy Materials and Solar Cells 2012, 98, 24-38.
62. Diebold, U., The surface science of titanium dioxide. Surface Science Reports 2003, 48 (5), 53-229.
63. Lv, M.; Zheng, D.; Ye, M.; Sun, L.; Xiao, J.; Guo, W.; Lin, C., Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells. Nanoscale 2012, 4 (19), 5872-9.
64. Seger, B.; Lu, G. Q.; Wang, L., Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics. Journal of Materials Chemistry 2012, 22 (21).
65. Paris, A. R.; Bocarsly, A. B., Ni–Al Films on Glassy Carbon Electrodes Generate an Array of Oxygenated Organics from CO2. ACS Catalysis 2017, 7 (10), 6815-6820.
66. Zhan, G.; Zeng, H. C., Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters. Chem Commun (Camb) 2016, 53 (1), 72-81.
67. Cai, G.; Zhang, W.; Jiao, L.; Yu, S.-H.; Jiang, H.-L., Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting. Chem 2017, 2 (6), 791-802.
68. Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B.; Huang, L.; Wu, N., Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Research 2019, 12 (3), 643-650.
69. Wu, M. K.; Chen, C.; Zhou, J. J.; Yi, F. Y.; Tao, K.; Han, L., MOF–derived hollow double–shelled NiO nanospheres for high–performance supercapacitors. Journal of Alloys and Compounds 2018, 734, 1-8.
70. Hu, H.; Han, L.; Yu, M.; Wang, Z.; Lou, X. W., Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy & Environmental Science 2016, 9 (1), 107-111.
71. Burheim, O. S., Chapter 8 - Hydrogen for Energy Storage. In Engineering Energy Storage, Burheim, O. S., Ed. Academic Press: 2017; pp 147-192.
72. Belver, C.; Bedia, J.; Gómez-Avilés, A.; Peñas-Garzón, M.; Rodriguez, J. J., Chapter 22 - Semiconductor Photocatalysis for Water Purification. In Nanoscale Materials in Water Purification, Thomas, S.; Pasquini, D.; Leu, S.-Y.; Gopakumar, D. A., Eds. Elsevier: 2019; pp 581-651.
73. Bosch, M.; Yuan, S.; Rutledge, W.; Zhou, H.-C., Stepwise Synthesis of Metal–Organic Frameworks. Accounts of Chemical Research 2017, 50 (4), 857-865.
74. Cai, Z.; Yao, Q.; Chen, X.; Wang, X., Chapter 14 - Nanomaterials With Different Dimensions for Electrocatalysis. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Wang, X.; Chen, X., Eds. Elsevier: 2019; pp 435-464.
75. Ahn, I. K.; Joo, W.; Lee, J. H.; Kim, H. G.; Lee, S. Y.; Jung, Y.; Kim, J. Y.; Lee, G. B.; Kim, M.; Joo, Y. C., Metal-organic Framework-driven Porous Cobalt Disulfide Nanoparticles Fabricated by Gaseous Sulfurization as Bifunctional Electrocatalysts for Overall Water Splitting. Scientific Reports 2019, 9, 10.
76. Saraf, M.; Rajak, R.; Mobin, S. M., A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. Journal of Materials Chemistry A 2016, 4 (42), 16432-16445.
77. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V., The Hydrogen Economy. Physics Today 2004, 57 (12), 39-44.
78. Becquerel, A. E., Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Comptes Rendus L’Academie des Sci. 1839, 9.
79. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
80. Lyu, F.; Wang, Q.; Choi, S. M.; Yin, Y., Noble-Metal-Free Electrocatalysts for Oxygen Evolution. Small 2019, 15 (1), e1804201.
81. Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews 2015, 44 (15), 5148-5180.
82. Mohan, S.; Mao, Y., Dependence of (Photo)electrochemical Properties on Geometry Factors of Hydrothermally Synthesized Delafossite Copper Gallium Oxide CuGaO2toward Oxygen Evolution Reaction. Journal of The Electrochemical Society 2018, 165 (10), H607-H613.
83. Silipas, T. D.; Indrea, E.; Dreve, S.; Suciu, R.-C.; Rosu, M. C.; Danciu, V.; Cosoveanu, V.; Popescu, V., TiO2– based systems for photoelectrochemical generation of solar hydrogen. Journal of Physics: Conference Series 2009, 182.
84. Shen, S.; Chen, J.; Wang, M.; Sheng, X.; Chen, X.; Feng, X.; Mao, S. S., Titanium dioxide nanostructures for photoelectrochemical applications. Progress in Materials Science 2018, 98, 299-385.
85. Carne-Sanchez, A.; Imaz, I.; Stylianou, K. C.; Maspoch, D., Metal-organic frameworks: from molecules/metal ions to crystals to superstructures. Chemistry 2014, 20 (18), 5192-201.
86. Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H., Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J Am Chem Soc 2014, 136 (41), 14385-8.
87. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z., Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 2014, 136 (39), 13925-31.
88. Li, Z.; Shao, M.; Zhou, L.; Zhang, R.; Zhang, C.; Wei, M.; Evans, D. G.; Duan, X., Directed Growth of Metal-Organic Frameworks and Their Derived Carbon-Based Network for Efficient Electrocatalytic Oxygen Reduction. Adv Mater 2016, 28 (12), 2337-44.
89. Wang, Y.; Li, L.; Liang, H.; Xing, Y.; Yan, L.; Dai, P.; Gu, X.; Zhao, G.; Zhao, X., Superstructure of a Metal-Organic Framework Derived from Microdroplet Flow Reaction: An Intermediate State of Crystallization by Particle Attachment. ACS Nano 2019, 13 (3), 2901-2912.
90. Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L., Metal–organic frameworks: Structures and functional applications. Materials Today 2018.
91. Gao, X.; Cui, R.; Ji, G.; Liu, Z., Size and surface controllable metal–organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale 2018, 10 (13), 6205-6211.
92. Chen, J.; Liu, J.; Xie, J.-Q.; Ye, H.; Fu, X.-Z.; Sun, R.; Wong, C.-P., Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range. Nano Energy 2019, 56, 225-233.
93. Wang, L.; Wu, Y.; Cao, R.; Ren, L.; Chen, M.; Feng, X.; Zhou, J.; Wang, B., Fe/Ni Metal-Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Appl Mater Interfaces 2016, 8 (26), 16736-43.
94. Wang, Q.; Astruc, D., State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews 2019.
95. Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J. J.; Belver, C., A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts 2019, 9 (1).
96. Chen, Y.-Z.; Zhang, R.; Jiao, L.; Jiang, H.-L., Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews 2018, 362, 1-23.
97. Gao, Q.; Xu, J.; Bu, X.-H., Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews 2019, 378, 17-31.
98. He, Y.; Chen, F.; Li, B.; Qian, G.; Zhou, W.; Chen, B., Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews 2018, 373, 167-198.
99. Wang, X.; Zhou, J.; Fu, H.; Li, W.; Fan, X.; Xin, G.; Zheng, J.; Li, X., MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2014, 2 (34), 14064-14070.
100. Senthil Raja, D.; Lin, H.-W.; Lu, S.-Y., Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy 2019, 57, 1-13.
101. El Rouby, W. M. A.; Antuch, M.; You, S. M.; Beaunier, P.; Millet, P., Novel nano-architectured water splitting photoanodes based on TiO2-nanorod mats surface sensitized by ZIF-67 coatings. International Journal of Hydrogen Energy 2019, 44 (59), 30949-30964.
102. El Rouby, W. M. A.; Antuch, M.; You, S.-M.; Millet, P., Surface sensitization of TiO2 nanorod mats by electrodeposition of ZIF-67 for water photo-oxidation. Electrochimica Acta 2020, 339, 135882.
103. Zhan, W. W.; Kuang, Q.; Zhou, J. Z.; Kong, X. J.; Xie, Z. X.; Zheng, L. S., Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J Am Chem Soc 2013, 135 (5), 1926-33.
104. Singh, M. K.; Agarwal, A.; Gopal, R.; Swarnkar, R. K.; Kotnala, R. K., Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. Journal of Materials Chemistry 2011, 21 (30), 11074-11079.
105. Arrozi, U. S. F.; Bon, V.; Kutzscher, C.; Senkovska, I.; Kaskel, S., Towards highly active and stable nickel-based metal–organic frameworks as ethylene oligomerization catalysts. Dalton Transactions 2019, 48 (10), 3415-3421.
106. Gao, C.-Y.; Yang, Y.; Liu, J.; Sun, Z.-M., A NiII-cluster-based MOF as an efficient heterogeneous catalyst for the chemical transformation of CO2. Dalton Transactions 2019, 48 (4), 1246-1250.
107. Zhu, D.; Guo, C.; Liu, J.; Wang, L.; Du, Y.; Qiao, S. Z., Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem Commun (Camb) 2017, 53 (79), 10906-10909.
108. Huang, K.; Xu, Y.; Wang, L.; Wu, D., Heterogeneous catalytic wet peroxide oxidation of simulated phenol wastewater by copper metal–organic frameworks. RSC Advances 2015, 5 (41), 32795-32803.
109. Yang, G.; Zhang, Z.; Zhang, S.; Yu, L.; Zhang, P., Synthesis and characterization of highly stable dispersions of copper nanoparticles by a novel one-pot method. Materials Research Bulletin 2013, 48 (4), 1716-1719.
110. Nagamuthu, S.; Ryu, K.-S., Synthesis of Ag/NiO Honeycomb Structured Nanoarrays as the Electrode Material for High Performance Asymmetric Supercapacitor Devices. Scientific Reports 2019, 9 (1), 4864.
111. Santara, B.; Giri, P. K.; Imakita, K.; Fujii, M., Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 2013, 5 (12), 5476-5488.
112. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297 (5590), 2243-2245.
113. Cheng, X.; Li, Z.; Wu, J., Colossal permittivity in ceramics of TiO2 Co-doped with niobium and trivalent cation. Journal of Materials Chemistry A 2015, 3 (11), 5805-5810.
114. Randles, J. E. B., Kinetics of rapid electrode reactions. Discussions of the Faraday Society 1947, 1 (0), 11-19.
115. Li, A. L.; Wang, Z. L.; Yin, H.; Wang, S. Y.; Yan, P. L.; Huang, B. K.; Wang, X. L.; Li, R. G.; Zong, X.; Han, H. X.; Li, C., Understanding the anatase-rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chemical Science 2016, 7 (9), 6076-6082.
116. Lin, Y.; Zhou, S.; Liu, X.; Sheehan, S.; Wang, D., TiO2/TiSi2 Heterostructures for High-Efficiency Photoelectrochemical H2O Splitting. Journal of the American Chemical Society 2009, 131 (8), 2772-2773.
117. Chu, L.; Li, L.; Su, J.; Tu, F.; Liu, N.; Gao, Y., A General Method for Preparing Anatase TiO2 Treelike-Nanoarrays on Various Metal Wires for Fiber Dye-Sensitized Solar Cells. Scientific Reports 2014, 4 (1), 4420.
118. Zhang, W.; Xie, Y.; Xiong, D.; Zeng, X.; Li, Z.; Wang, M.; Cheng, Y.-B.; Chen, W.; Yan, K.; Yang, S., TiO2 Nanorods: A Facile Size- and Shape-Tunable Synthesis and Effective Improvement of Charge Collection Kinetics for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6 (12), 9698-9704.
119. Nakata, K.; Fujishima, A., TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012, 13 (3), 169-189.
120. Guo, Q.; Zhou, C.; Ma, Z.; Yang, X., Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Advanced Materials 2019, 31 (50), 1901997.
121. Banerjee, S.; Dionysiou, D. D.; Pillai, S. C., Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental 2015, 176-177, 396-428.
122. Wagemaker, M.; Kentgens, A. P. M.; Mulder, F. M., Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 2002, 418 (6896), 397-399.
123. Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y., Ti-based compounds as anode materials for Li-ion batteries. Energy & Environmental Science 2012, 5 (5), 6652-6667.
124. Ohko, Y.; Tatsuma, T.; Fujii, T.; Naoi, K.; Niwa, C.; Kubota, Y.; Fujishima, A., Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nature Materials 2003, 2 (1), 29-31.
125. Wang, Y.; Sun, C.; Zhao, X.; Cui, B.; Zeng, Z.; Wang, A.; Liu, G.; Cui, H., The Application of Nano-TiO2 Photo Semiconductors in Agriculture. Nanoscale Research Letters 2016, 11 (1), 529.
126. Liang, Z.; Hou, H.; Fang, Z.; Gao, F.; Wang, L.; Chen, D.; Yang, W., Hydrogenated TiO2 Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2019, 11 (21), 19167-19175.
127. Liu, B.; Yang, J.; Wang, J.; Zhao, X.; Nakata, K., High sub-band gap response of TiO2 nanorod arrays for visible photoelectrochemical water oxidation. Applied Surface Science 2019, 465, 192-200.
128. Nam, Y.; Lim, J. H.; Ko, K. C.; Lee, J. Y., Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. Journal of Materials Chemistry A 2019, 7 (23), 13833-13859.
129. Lee, S.; Cho, I.-S.; Lee, J. H.; Kim, D. H.; Kim, D. W.; Kim, J. Y.; Shin, H.; Lee, J.-K.; Jung, H. S.; Park, N.-G.; Kim, K.; Ko, M. J.; Hong, K. S., Two-Step Sol−Gel Method-Based TiO2 Nanoparticles with Uniform Morphology and Size for Efficient Photo-Energy Conversion Devices. Chemistry of Materials 2010, 22 (6), 1958-1965.
130. Akhtar, M. S.; Umar, A.; Sood, S.; Jung, I.; Hegazy, H. H.; Algarni, H., Rapid Growth of TiO₂ Nanoflowers via Low-Temperature Solution Process: Photovoltaic and Sensing Applications. Materials (Basel) 2019, 12 (4), 566.
131. Li, M.; Jiang, Y.; Ding, R.; Song, D.; Yu, H.; Chen, Z., Hydrothermal Synthesis of Anatase TiO2 Nanoflowers on a Nanobelt Framework for Photocatalytic Applications. Journal of Electronic Materials 2013, 42 (6), 1290-1296.
132. Yu, Y.; Zhang, P.; Guo, L.; Chen, Z.; Wu, Q.; Ding, Y.; Zheng, W.; Cao, Y., The Design of TiO2 Nanostructures (Nanoparticle, Nanotube, and Nanosheet) and Their Photocatalytic Activity. The Journal of Physical Chemistry C 2014, 118 (24), 12727-12733.
133. Guo, D.; Lai, L.; Cao, A.; Liu, H.; Dou, S.; Ma, J., Nanoarrays: design, preparation and supercapacitor applications. RSC Advances 2015, 5 (69), 55856-55869.
134. Ji, Q.; Hou, Y.; Wei, S.; Liu, Y.; Du, P.; Luo, L.; Li, W. P., Excellent Energy Storage Performance in Bilayer Composites Combining Aligned TiO2 Nanoarray and Random TiO2 Nanowires with Poly(vinylidene fluoride). The Journal of Physical Chemistry C 2020, 124 (5), 2864-2871.
135. Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y., Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters 2011, 11 (7), 3026-3033.
136. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials 2017, 16 (2), 220-224.
137. Sun, L.; Campbell, M. G.; Dincă, M., Electrically Conductive Porous Metal–Organic Frameworks. Angewandte Chemie International Edition 2016, 55 (11), 3566-3579.
138. Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K.-H.; Deep, A., An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. Journal of Materials Chemistry A 2018, 6 (31), 14992-15009.
139. Yang, Y.; Liu, Y.; Fang, X.; Miao, W.; Chen, X.; Sun, J.; Ni, B. J.; Mao, S., Heterogeneous Electro-Fenton catalysis with HKUST-1-derived Cu@C decorated in 3D graphene network. Chemosphere 2020, 243, 125423.
140. Cardoso, J. C.; Stulp, S.; de Brito, J. F.; Flor, J. B. S.; Frem, R. C. G.; Zanoni, M. V. B., MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Applied Catalysis B: Environmental 2018, 225, 563-573.
141. Yao, M.-S.; Tang, W.-X.; Wang, G.-E.; Nath, B.; Xu, G., MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance. Advanced Materials 2016, 28 (26), 5229-5234.
142. Li, C.-H.; Huang, C.-L.; Chuah, X.-F.; Senthil Raja, D.; Hsieh, C.-T.; Lu, S.-Y., Ti-MOF derived TixFe1−xOy shells boost Fe2O3 nanorod cores for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal 2019, 361, 660-670.
143. Zhang, Y.; Lan, D.; Wang, Y.; Cao, H.; Jiang, H., MOF-5 decorated hierarchical ZnO nanorod arrays and its photoluminescence. Physica E: Low-dimensional Systems and Nanostructures 2011, 43 (6), 1219-1223.
144. Li, K.; de Rancourt de Mimérand, Y.; Jin, X.; Yi, J.; Guo, J. Metal Oxide (ZnO and TiO2) and Fe-Based Metal-Organic-Framework Nanoparticles on 3D-Printed Fractal Polymer Surfaces for Photocatalytic Degradation of Organic Pollutants. ACS Applied Nano Materials 2020, 3 (3), 2830– 2845.
145. Cheng, W.; Zhao, X.; Su, H.; Tang, F.; Che, W.; Zhang, H.; Liu, Q., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nature Energy 2019, 4 (2), 115-122.
146. Zhu, L.; Lu, Q.; Lv, L.; Wang, Y.; Hu, Y.; Deng, Z.; Lou, Z.; Hou, Y.; Teng, F., Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances 2017, 7 (33), 20084-20092.
147. Xu, X.; Li, L.; Yu, F.; Peng, H.; Fang, X.; Wang, X., Mesoporous high surface area NiO synthesized with soft templates: Remarkable for catalytic CH4 deep oxidation. Molecular Catalysis 2017, 441, 81-91.
148. Liang, Y. C.; Xu, N. C.; Chiang, K. J., Surface Morphology-Dependent Functionality of Titanium Dioxide-Nickel Oxide Nanocomposite Semiconductors. Nanomaterials (Basel) 2019, 9 (12).
149. Sutiono, H.; Tripathi, A. M.; Chen, H.-M.; Chen, C.-H.; Su, W.-N.; Chen, L.-Y.; Dai, H.; Hwang, B.-J., Facile Synthesis of [101]-Oriented Rutile TiO2 Nanorod Array on FTO Substrate with a Tunable Anatase–Rutile Heterojunction for Efficient Solar Water Splitting. ACS Sustainable Chemistry & Engineering 2016, 4 (11), 5963-5971.
150. Huang, C.; Bian, J.; Zhang, R.-Q., Role of Cl Ion Desorption in Photocurrent Enhancement of the Annealed Rutile Single-Crystalline TiO2 Nanorod Arrays. The Journal of Physical Chemistry C 2017, 121 (34), 18892-18899.
151. Gong, J.; Lai, Y.; Lin, C., Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. Electrochimica Acta 2010, 55 (16), 4776-4782.
152. Xie, Z.; Shuang, S.; Ma, L.; Zhu, F.; Liu, X.; Zhang, Z., Annealing effect on the photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays. RSC Advances 2017, 7 (81), 51382-51390.
153. Zhang, T.; Rahman, Z. U.; Wei, N.; Liu, Y.; Liang, J.; Wang, D., In situ growth of single-crystal TiO2 nanorod arrays on Ti substrate: Controllable synthesis and photoelectro-chemical water splitting. Nano Research 2017, 10 (3), 1021-1032.
154. Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z., Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays. Small 2009, 5 (1), 104-111.
155. Mahadik, M. A.; An, G. W.; David, S.; Choi, S. H.; Cho, M.; Jang, J. S., Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation. Applied Surface Science 2017, 426, 833-843.
156. Krbal, M.; Sopha, H.; Pohl, D.; Benes, L.; Damm, C.; Rellinghaus, B.; Kupčík, J.; Bezdička, P.; Šubrt, J.; Macak, J. M., Self-organized TiO2 nanotubes grown on Ti substrates with different crystallographic preferential orientations: Local structure of TiO2 nanotubes vs. photo-electrochemical response. Electrochimica Acta 2018, 264, 393-399.
157. Cui, H.; Zhao, W.; Yang, C.; Yin, H.; Lin, T.; Shan, Y.; Xie, Y.; Gu, H.; Huang, F., Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. Journal of Materials Chemistry A 2014, 2 (23), 8612-8616.
158. Zhang, Z.; Hossain, M. F.; Takahashi, T., Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. International Journal of Hydrogen Energy 2010, 35 (16), 8528-8535.
159. Cho, I. S.; Choi, J.; Zhang, K.; Kim, S. J.; Jeong, M. J.; Cai, L.; Park, T.; Zheng, X.; Park, J. H., Highly Efficient Solar Water Splitting from Transferred TiO2 Nanotube Arrays. Nano Letters 2015, 15 (9), 5709-5715.
160. Cheng, X.; Zhang, Y.; Bi, Y., Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays. Nano Energy 2019, 57, 542-548.
161. Zhang, T.; Lin, P.; Wei, N.; Wang, D., Enhanced Photoelectrochemical Water-Splitting Property on TiO2 Nanotubes by Surface Chemical Modification and Wettability Control. ACS Applied Materials & Interfaces 2020, 12 (17), 20110-20118.
162. Vinogradov, A. V.; Zaake-Hertling, H.; Hey-Hawkins, E.; Agafonov, A. V.; Seisenbaeva, G. A.; Kessler, V. G.; Vinogradov, V. V., The first depleted heterojunction TiO2–MOF-based solar cell. Chemical Communications 2014, 50 (71), 10210-10213.
163. Zhang, L.; Cui, P.; Yang, H.; Chen, J.; Xiao, F.; Guo, Y.; Liu, Y.; Zhang, W.; Huo, F.; Liu, B., Metal–Organic Frameworks as Promising Photosensitizers for Photoelectrochemical Water Splitting. Advanced Science 2016, 3 (1), 1500243.
164. Yoon, J. W.; Kim, D. H.; Kim, J.-H.; Jang, H. W.; Lee, J.-H., NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental 2019, 244, 511-518.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *