帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:鍾昆霖
作者(英文):Chung, Kun-Lin
論文名稱(中文):銅離子負載二氧化矽之製備與銨離子吸附研究
論文名稱(英文):Preparation of Cu2+-loaded Silica for Adsorption of Ammonium Ions
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:黃志彬
胡景堯
口試委員(英文):Huang, Chihpin
Hu, Ching-Yao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0551719
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:58
中文關鍵詞:銨離子吸附銅負載APTES錯合
外文關鍵詞:NH4+ removalCu-loadingAPTEScomplexation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於氨基與銅離子具有很高的錯合常數kf值(1.1×〖10〗^13),本研究以氨基修飾的二氧化矽(SiO2-N)為基材製備銅離子負載的複合物,以作為高效能銨離子(NH4+)吸附劑,研究顯示,基材上隨著銅離子負載濃度提升,表面與整體的N/Cu元素比例降低。吸附實驗顯示銅離子負載二氧化矽(SiO2-NCu)吸附量為未負載銅離子之氨基修飾二氧化矽膠體(SiO2-N)的3.8倍,最大NH4+離子吸附量可達21.07 mg/g,等溫吸附表現符合Langmuir模式,且吸附反應在1分鐘內即達平衡,顯示銅離子在SiO2-NCu材料中為一有效的NH4+吸附位址,且由於NH4+離子吸附前後,表面與整體的Cu/Si元素比例均無明顯改變,顯示銅離子能高度穩定地固著在基材表面,XPS的Cu 2p圖譜說明,高濃度的CuCl2,會使材料表面的銅離子大多以Cu+方式存在,吸附時伴隨氧化還原的進行。銅負載複合羧酸基(-COOH)與氨基的二氧化矽(SiO2-HybridCu)顆粒大小為 SiO2-NCu的5.5倍,吸附量僅為SiO2-NCu的0.67倍,儘管-COOH 額外提供SiO2-HybridCu靜電吸附NH4+離子的位址,但相較於SiO2-NCu(表面Cu/Si= 0.10),較低的銅附載量(表面Cu/Si= 0.04)仍限制其吸附表現。
In this study, copper-loaded composite was prepared using amino-functionalized silicon dioxide (SiO2-N) as the adsorbent for ammonium ions (NH4+) adsorption based on the high formation constant (1.1×〖10〗^13) between amino functional group and copper ions. The SEM-EDX and XPS were used to determine the N/Cu atomic ratio. From the analysis, it was found that the atomic ratio of N/Cu decreased as the copper ions concentration increases. The adsorption results showed that the adsorption capacity of NH4+ ions for copper-loaded silicon dioxide (SiO2-NCu) is 3.8 times higher than the non-loaded SiO2-N. The maximum adsorption capacity of NH4+ obtained from Langmuir isotherm model was 21.07 mg/g, suggesting that the copper ion is an effective adsorption site for NH4+. In addition to that, the SiO2-NCu has a fast kinetic and reach equilibrium adsorption within 1 min. From the result of SEM-EDX and XPS, the atomic ratio of Cu/Si was remained similar after NH4+ adsorption, indicating that the well complexation between copper ions and amino groups on the surface of adsorbent. The Cu 2p spectrum of XPS suggested that the high loading of Cu ions resulted in the surface of adsorbent was mostly complexed with copper(I). The particle size of amino-functionalized and carboxylic acid-functionalized(-COOH) silicon dioxide(SiO2-Hybrid) was 5.5 times bigger than SiO2-NCu. From the XPS analysis, the SiO2-Hybrid has a lower Cu/Si ratio (0.04) compared to the SiO2-NCu (Cu/Si = 0.10). Although -COOH functional group provides additional electrostatic interaction site for NH4+ adsorption, the adsorption capacity of SiO2-HybridCu is only 0.67 times of SiO2-NCu, suggesting that the amount of copper loading control the adsorption capacity of composites.
摘要 I
Abstract II
致謝 III
主目錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 現有NH4+吸附劑及吸附機制 5
2.2 重金屬吸附NH3/NH4+ 10
2.3 環境影響因子 12
2.3.1 初始濃度 12
2.3.2 pH值 12
2.3.3 反應時間 13
2.4吸附熱力學 13
2.5 吸附動力學 15
2.5.1 擬一階方程式(pseudo-first-order kinetic model) 15
2.5.2 擬二階方程式(pseudo-second-order kinetic model) 16
第三章 材料與方法 17
3.1 實驗架構 17
3.2 實驗材料 18
3.3 銅負載氨基二氧化矽(SiO2-NCu)合成方法 19
3.4 銅負載複合官能基二氧化矽(SiO2-HybridCu)製備方法 20
3.5材料特性分析 22
3.5.1等溫氮氣吸脫附分析 22
3.5.2奈米粒徑及電位分析儀 23
3.5.3高解析場發射掃描式電子顯微鏡及能量散佈光譜儀(SEM-EDX) 23
3.5.4 X光光電子能譜儀(XPS) 23
3.5.5傅立葉轉換紅外光譜分析(FTIR) 24
3.5.6熱重分析儀 24
3.5.7感應耦合電漿原子發射質譜儀(ICP-MS) 24
3.6 NH4+吸附溶液實驗 25
3.6.1 NH4+溶液配置 25
3.6.2 離子層析儀分析條件 25
3.6.3 pH實驗 25
3.6.4 吸附動力實驗 26
3.6.5 等溫吸附實驗 26
第四章 結果與討論 27
4.1 吸附實驗 27
4.1.1 不同銅離子濃度製備SiO2-NCu之吸附量 27
4.1.2 pH值對吸附量的影響 29
4.1.3 吸附動力與等溫吸附 32
4.2 銅離子負載氨基二氧化矽材料特性鑑定 36
4.3銅離子負載複合官能基二氧化矽材料 42
4.3.1銅離子負載複合官能基二氧化矽材料特性鑑定 42
4.3.2 銅離子負載複合官能基二氧化矽材料之吸附實驗 49
第五章 結論與建議 51
5.1 結論 51
5.2 建議 51
參考文獻 52
附錄A QA/QC 57
1. He, C.; Wang, K.; Yang, Y.; Amaniampong, P. N.; Wang, J.-Y., Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping. Environmental science & technology 2015, 49 (11), 6872-6880.
2. Egli, K.; Bosshard, F.; Werlen, C.; Lais, P.; Siegrist, H.; Zehnder, A.; Van der Meer, J., Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microbial ecology 2003, 45 (4), 419-432.
3. Tünay, O.; Kabdasli, I.; Orhon, D.; Kolçak, S., Ammonia removal by magnesium ammonium phosphate precipitation in industrial wastewaters. Water Science and Technology 1997, 36 (2-3), 225-228.
4. Widiastuti, N.; Wu, H.; Ang, H. M.; Zhang, D., Removal of ammonium from greywater using natural zeolite. Desalination 2011, 277 (1-3), 15-23.
5. Zhao, Y.; Zhang, B.; Zhang, X.; Wang, J.; Liu, J.; Chen, R., Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions. Journal of Hazardous Materials 2010, 178 (1-3), 658-664.
6. Wang, X. l.; Qiao, B.; Li, S. m.; Li, J. s., Using natural Chinese zeolite to remove ammonium from rainfall runoff following urea fertilization of a paddy rice field. Environmental Science and Pollution Research 2016, 23 (6), 5342-5351.
7. Long, X. L.; Cheng, H.; Xin, Z. L.; Xiao, W. D.; Li, W.; Yuan, W. K., Adsorption of ammonia on activated carbon from aqueous solutions. Environmental Progress 2008, 27 (2), 225-233.
8. Mia, S.; Dijkstra, F. A.; Singh, B., Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environmental science & technology 2017, 51 (15), 8359-8367.
9. Rat‐Valdambrini, M.; Belkacemi, K.; Hamoudi, S., Removal of ammonium cations from aqueous solution using arene‐sulphonic acid functionalised SBA‐15 as adsorbent. The Canadian Journal of Chemical Engineering 2012, 90 (1), 18-25.
10. Atia, A. A.; Donia, A. M.; Abou-El-Enein, S. A.; Yousif, A. M., Studies on uptake behaviour of copper (II) and lead (II) by amine chelating resins with different textural properties. Separation and Purification Technology 2003, 33 (3), 295-301.
11. Negm, N. A.; El Sheikh, R.; El-Farargy, A. F.; Hefni, H. H.; Bekhit, M., Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. Journal of Industrial and Engineering Chemistry 2015, 21, 526-534.
12. Yang, G.-X.; Jiang, H., Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water research 2014, 48, 396-405.
13. Manu, V.; Mody, H. M.; Bajaj, H. C., Effect of thermal treatment of silica gels on their amino functionalization and subsequent adsorption properties for Cu2+ from aqueous solution of copper sulfate. Ind. Eng. Chem. Res 2010, 49 (17), 8184-8191.
14. Faghihian, H.; Nourmoradi, H.; Shokouhi, M., Removal of copper (II) and nickel (II) from aqueous media using silica aerogel modified with amino propyl triethoxysilane as an adsorbent: equilibrium, kinetic, and isotherms study. Desalination and Water Treatment 2014, 52 (1-3), 305-313.
15. Singhon, R.; Husson, J.; Knorr, M.; Euvrard, M., Preparation of silica-supported biosorbents for copper (II) removal. Journal of Dispersion Science and Technology 2011, 32 (12), 1735-1741.
16. Barpaga, D.; LeVan, M. D., Functionalization of carbon silica composites with active metal sites for NH3 and SO2 adsorption. Microporous and Mesoporous Materials 2016, 221, 197-203.
17. Chen, Q.; Zhou, K.; Chen, Y.; Wang, A.; Liu, F., Removal of ammonia from aqueous solutions by ligand exchange onto a Cu (II)-loaded chelating resin: kinetics, equilibrium and thermodynamics. RSC Advances 2017, 7 (21), 12812-12823.
18. Huang, H. M.; Xiao, X. M.; Yan, B.; Yang, L. P., Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials 2010, 175 (1-3), 247-252.
19. Malekian, R.; Abedi-Koupai, J.; Eslamian, S. S.; Mousavi, S. F.; Abbaspour, K. C.; Afyuni, M., Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Applied Clay Science 2011, 51 (3), 323-329.
20. Lin, L.; Lei, Z. F.; Wang, L.; Liu, X.; Zhang, Y.; Wan, C. L.; Lee, D. J.; Tay, J. H., Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Separation and Purification Technology 2013, 103, 15-20.
21. Liang, Z.; Ni, J. R., Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process. Journal of Hazardous Materials 2009, 166 (1), 52-60.
22. Alshameri, A.; Yan, C. J.; Al-Ani, Y.; Dawood, A. S.; Ibrahim, A.; Zhou, C. Y.; Wang, H. Q., An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: Kinetics, isotherms, and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers 2014, 45 (2), 554-564.
23. Lee, W.; Yoon, S.; Choe, J. K.; Lee, M.; Choi, Y., Anionic surfactant modification of activated carbon for enhancing adsorption of ammonium ion from aqueous solution. Science of the Total Environment 2018, 639, 1432-1439.
24. Petit, C.; Kante, K.; Bandosz, T. J., The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon 2010, 48 (3), 654-667.
25. Ahmed, Z.; Kim, K. P.; Shin, J., Kinetic, thermodynamic, and equilibrium studies for adsorption of ammonium ion on modified polyurethane. Desalination and Water Treatment 2016, 57 (32), 14849-14857.
26. Vignoli, C. N.; Bahe, J.; Marques, M. R. C., Evaluation of ion exchange resins for removal and recuperation of ammonium-nitrogen generated by the evaporation of landfill leachate. Polymer Bulletin 2015, 72 (12), 3119-3134.
27. 謝.,張.,氨基修飾二氧化矽之製備與銨離子吸附研究 2018
28. Vu, M. T.; Chao, H. P.; Trinh, T. V.; Le, T. T.; Lin, C. C.; Tran, H. N., Removal of ammonium from groundwater using NaOH-treated activated carbon derived from corncob wastes: Batch and column experiments. Journal of Cleaner Production 2018, 180, 560-570.
29. Yang, G. X.; Jiang, H., Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research 2014, 48, 396-405.
30. Manu, V.; Mody, H. M.; Bajaj, H. C., Effect of Thermal Treatment of Silica Gels on Their Amino Functionalization and Subsequent Adsorption Properties for Cu2+ from Aqueous Solution of Copper Sulfate. Industrial & Engineering Chemistry Research 2010, 49 (17), 8184-8191.
31. Lin, Y. F.; Chen, H. W.; Lin, K. L.; Chen, B.; Chiou, C., Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution. Journal of Environmental Sciences 2011, 23 (1), 44-50.
32. Zuo, X. J., Preparation and Evaluation of Novel Thiourea/Chitosan Composite Beads for Copper(II) Removal in Aqueous Solutions. Industrial & Engineering Chemistry Research 2014, 53 (3), 1249-1255.
33. Bjerrum, J., CITATION CLASSIC - METAL AMMINE FORMATION IN AQUEOUS-SOLUTION - THEORY OF THE REVERSIBLE STEP REACTIONS. Current Contents/Physical Chemical & Earth Sciences 1982, (32), 20-20.
34. Furtado, A. M. B.; Wang, Y.; Glover, T. G.; LeVan, M. D., MCM-41 impregnated with active metal sites: Synthesis, characterization, and ammonia adsorption. Microporous and Mesoporous Materials 2011, 142 (2-3), 730-739.
35. Feng, Z. M.; Sun, T., A novel selective hybrid cation exchanger for low-concentration ammonia nitrogen removal from natural water and secondary wastewater. Chemical Engineering Journal 2015, 281, 295-302.
36. Thornton, A.; Pearce, P.; Parsons, S. A., Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. Journal of Hazardous Materials 2007, 147 (3), 883-889.
37. Vassileva, P.; Voikova, D., Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. Journal of Hazardous Materials 2009, 170 (2-3), 948-953.
38. Angar, Y.; Djelali, N. E.; Kebbouche-Gana, S., Investigation of ammonium adsorption on Algerian natural bentonite. Environmental Science and Pollution Research 2017, 24 (12), 11078-11089.
39. Chen, Y.; Chen, W.; Chen, Q. Z.; Peng, C. H.; He, D. W.; Zhou, K. G., Removal of ammonia-nitrogen in wastewater using a novel poly ligand exchanger-Zn(II)-loaded chelating resin. Water Science and Technology 2019, 79 (1), 126-136.
40. McKay, G., ADSORPTION OF DYESTUFFS FROM AQUEOUS-SOLUTIONS WITH ACTIVATED CARBON .1. EQUILIBRIUM AND BATCH CONTACT-TIME STUDIES. Journal of Chemical Technology and Biotechnology 1982, 32 (8), 759-772.
41. Javadian, H.; Koutenaei, B. B.; Shekarian, E.; Sorkhrodi, F. Z.; Khatti, R.; Toosi, M., Application of functionalized nano HMS type mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb (II) from aqueous media and industrial wastewater. Journal of Saudi Chemical Society 2017, 21, S219-S230.
42. Wibowo, E.; Rokhmat, M.; Sutisna; Khairurrijal; Abdullah, M., Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination 2017, 409, 146-156.
43. Huang, Y. D.; Gao, X. D.; Gu, Z. Y.; Li, X. M., Amino-terminated SiO2 aerogel towards highly-effective lead (II) adsorbent via the ambient drying process. Journal of Non-Crystalline Solids 2016, 443, 39-46.
44. Barczak, M.; Oszust, M.; Michalak, K.; Gdula, K.; Pasieczna-Patkowska, S.; Zieba, E.; Dabrowski, A., Functionalized SBA-15 organosilicas as sorbents of mercury(II), cadmium(II) and copper(II). Glass Physics and Chemistry 2014, 40 (1), 41-48.
45. Hao, S. Y.; Chang, H.; Xiao, Q.; Zhong, Y. J.; Zhu, W. D., One-Pot Synthesis and CO2 Adsorption Properties of Ordered Mesoporous SBA-15 Materials Functionalized with APTMS. Journal of Physical Chemistry C 2011, 115 (26), 12873-12882.
46. Qu, Q. S.; Gu, Q.; Gu, Z. L.; Shen, Y. Q.; Wang, C. Y.; Hu, X. Y., Efficient removal of heavy metal from aqueous solution by sulfonic acid functionalized nonporous silica microspheres. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2012, 415, 41-46.
47. Lee, J. Y.; Chen, C. H.; Cheng, S., Adsorption of Acid Dyes by Functionalized SBA-15 Mesoporous Silica of Different Pore Lengths. Journal of the Chinese Chemical Society 2015, 62 (6), 483-494.
48. Liu, D.; Yu, W. B.; Deng, L. L.; Yuan, W. W.; Ma, L. Y.; Yuan, P.; Du, P. X.; He, H. P., Possible mechanism of structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups. Journal of Colloid and Interface Science 2016, 461, 64-68.
49. Kwon, J.; Ducere, J. M.; Alphonse, P.; Bahrami, M.; Petrantoni, M.; Veyan, J. F.; Tenailleau, C.; Esteve, A.; Rossi, C.; Chabal, Y. J., Interfacial Chemistry in Al/CuO Reactive Nanomaterial and Its Role in Exothermic Reaction. Acs Applied Materials & Interfaces 2013, 5 (3), 605-613.
50. Kar, A. K.; Srivastava, R., An efficient and sustainable catalytic reduction of carbon-carbon multiple bonds, aldehydes, and ketones using a Cu nanoparticle decorated metal organic framework. New Journal of Chemistry 2018, 42 (12), 9557-9567.
51. Zou, X. W.; Fan, H. Q.; Tian, Y. M.; Zhang, M. G.; Yan, X. Y., Chemical bath deposition of Cu2O quantum dots onto ZnO nanorod arrays for application in photovoltaic devices. Rsc Advances 2015, 5 (30), 23401-23409.
52. Swadzba-Kwasny, M.; Chancelier, L.; Ng, S.; Manyar, H. G.; Hardacre, C.; Nockemann, P., Facile in situ synthesis of nanofluids based on ionic liquids and copper oxide clusters and nanoparticles. Dalton Transactions 2012, 41 (1), 219-227.
53. Chang, S. M.; Doong, R. A., The effect of chemical states of dopants on the microstructures and band gaps of metal-doped ZrO2 thin films at different temperatures. Journal of Physical Chemistry B 2004, 108 (46), 18098-18103.
54. Xu, Q. Y.; Zeng, M.; Feng, Z. J.; Yin, D.; Huang, Y. W.; Chen, Y.; Yan, C. J.; Li, R. R.; Gu, Y., Understanding the effects of carboxylated groups of functionalized graphene oxide on the curing behavior and intermolecular interactions of benzoxazine nanocomposites. Rsc Advances 2016, 6 (37), 31484-31496.
55. Yadav, S.; Kaur, I., Low temperature processed graphene thin film transparent electrodes for supercapacitor applications. Rsc Advances 2016, 6 (82), 78702-78713.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *