帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:陳盈彣
作者(英文):Chen, Ying-Wen
論文名稱(中文):分子干擾對於拓印高分子吸附與感測能力之影響
論文名稱(英文):Molecular Interference on Adsorption and Sensing Ability of Imprinted Polymers
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:林宏洲
徐樹剛
口試委員(英文):Lin, Hong-Zhou
Xu, Shu-Gang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0551712
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:79
中文關鍵詞:分子拓印光子晶體結構類似物分子干擾
外文關鍵詞:molecularly imprinted polymersphotonic crystalsanaloguemolecular Interference
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
拓印高分子已被證實對標的物具高辨識力與感測靈敏度,然而,當標的物與其他化合物共同存在時,卻可能因為干擾標的物與孔洞結合而影響吸附與感測能力,因此本研究分為兩個階段來釐清結構類似物對分子拓印高分子與光子晶體感測器干擾程度與型態。第一階段本研究選擇結構類似的Bisphenol A (BPA)、Bis(2-hydroxyphenyl)methane (2HDPM)、phenol為標的物分別製備三種拓印高分子(B-MIP、H-MIP、P- MIP),並測定拓印高分子於結構類似物干擾下之吸附能力,結果得知MIP可在30分鐘內達吸附平衡,各吸附材均表現良好拓印效果(拓印因子IF=2.91-4.23)與對標的物的吸附選擇力(SF= 2.15-4.21)。根據干擾試驗,結構扭曲不對稱的BPA分子難有良好拓印的孔洞結構,結構類似物容易以競爭方式抑制B-MIP對BPA吸附;結構對稱之2HDPM由於拓印孔洞型態完整,干擾影響以分子間π-π作用力而產生的抑制為主;phenol結構小且簡單,吸附時容易因大分子覆蓋P-MIP表面而降低對phenol之吸附能力。
第二階段以相同配比合成拓印光子晶體感測器(B-IPC、H-IPC、P-IPC),並量測感測器在結構類似物間競爭與抑制下的感測能力,相較於MIP粉體,拓印反蛋白石結構可在更短時間(20分鐘)達感測平衡,且對標的物吸附具更高的選擇性因子 (SF>10),分析範圍可廣至0.2-100 mg/L。不同於MIP粉體,結構類似物對IPC分析標的物的干擾以抑制為主,此結果與IPC系統在製備能有孔洞結構完整性有關。另外,不同於BPA與2HDPM的干擾,當親水性較高的phenol濃度達40 mg/L以上時,phenol間傾向相互吸引,因而降低其對B-IPC與H-IPC感測干擾。
Imprinted photonic crystals have been demonstrated to have high selectivity and sensitivity to targets. However, their sensitivity could be inhibited if other compounds co-exist with targets to interfere the target binding. In this study, the interference extent and mechanisms of structural analogues in the adsorption ability and sensitivity of imprinted powders and photonic crystal sensors were clarified. Three structural analogues, including bisphenol A (BPA), bis(2-hydroxyphenyl)methane (2HDPM) and phenol, were selected as the targets to prepared three types of molecularly imprinted polymers(B-MIP, H-MIP, P-MIP). All the MIPs reached adsorption equilibrium within 30 min and exhibited high imprinting factors (IF=2.91-4.23) and high target selectivity (SF=2.15-4.21). According to the interference tests, structural analogues competed with molecules for the binding sites in the B-MIP because it was more challenging to have high quality of imprinting for the asymmetric BPA molecules. The π-π interaction between the 2HDPM and the analogues was the main cause for the reduced adsorption of the H-MIP for its target, and blocking by the larger analogues was responsible for the decreased adsorption of the P-MIP for phenol.
Imprinted photonic crystals (B-IPC, H-IPC, P-IPC) were fabricated with the chemical compositions for the MIPs. Compared to MIP powders, the IPCs exhibited faster response time (20 min) with higher selectivity (SF>10). In addition, they showed a broad analysis range (0.2-100 mg/L). Different from the MIPs, inhibition resulting from the molecular interactions was the major mechanism that lower the sensitivity of the IPCs. This was associated with higher quality of imprinted cavities created in the tiny-scaled systems. While BPA and 2HDPM intensified the interference with increasing their concentrations, attraction between the hydrophilic phenol in turn declined the interference when its concentration was over 40 mg/L.
摘要 I
誌謝 III
主目錄 IV
表目錄 VII
圖目錄 IX
第一章 前言 1
1.1 研究背景與動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 分子拓印材料 4
2.1.1 分子拓印技術與發展 4
2.1.2 分子拓印材料應用 6
2.2 分子拓印光子晶體感測器 7
2.2.1 感測器 7
2.2.3 蛋白石與反蛋白石光子晶體製備 10
2.2.4 分子拓印光子晶體感測能力 13
2.3 分子干擾 14
2.4 環境荷爾蒙 16
第三章 研究方法 19
3.1 實驗材料 21
3.2 分子拓印材料製備 23
3.3 拓印光子晶體感測器製備 24
3.3.1 二氧化矽膠體粒子製備 24
3.3.2 蛋白石光子晶體製備 25
3.3.3 拓印反蛋白石光子晶體製備 25
3.4 拓印高分子吸附特性分析 26
3.4.1 吸附平衡時間與等溫吸附 27
3.4.2 吸附選擇性 27
3.4.3 結構類似物干擾試驗 28
3.5 拓印光子晶體感測特性分析 28
3.5.1 響應時間與感測線性範圍 28
3.5.2 感測選擇性 29
3.5.3 結構類似物干擾試驗 29
3.5.4 再利用測試 29
3.6 儀器分析 30
3.6.1 高效能液相層析儀(High performance liquid chromatography, HPLC) 30
3.6.2 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 30
3.6.3 紫外光-可見光光譜儀(Portable UV-visible spectrophotometer, UV-Vis) 30
3.6.4 動態光散射分析(Dynamic light scattering, DLS) 31
3.6.5 點光源UV照射裝置 31
第四章 結果與討論 32
4.1 分子拓印高分子 32
4.1.1 特性分析 32
4.1.2 拓印分子添加量影響 34
4.1.3 吸附行為 35
4.1.4 吸附選擇性 39
4.1.5 結構類似物干擾試驗 41
4.1.5.1 B-MIP吸附材料 42
4.1.5.2 H-MIP吸附材料 45
4.1.5.3 P-MIP吸附材料 48
4.2 拓印光子晶體感測器 51
4.2.1 感測特性分析 51
4.2.2 標的分子添加量影響 52
4.2.3 響應時間測試 53
4.2.4 感測選擇性 55
4.2.5 感測線性範圍分析 57
4.2.6 結構類似物干擾試驗 62
4.2.6.1 B-IPC感測系統 62
4.2.6.2 H-IPC感測系統 66
4.2.6.3 P-IPC感測系統 69
4.3 再使用性 72
第五章 結論與建議 73
5.1 結論 73
5.2 未來建議 74
參考文獻 75
附錄 79
1. Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J., Miniaturized solid-phase extraction techniques. TrAC Trends in Analytical Chemistry 2015, 73, 19-38.
2. Hou, J.; Zhang, H.; Yang, Q.; Li, M.; Jiang, L.; Song, Y., Hydrophilic-Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline. Small 2015, 11 (23), 2738-42.
3. Hu, X.; An, Q.; Li, G.; Tao, S.; Liu, J., Imprinted Photonic Polymers for Chiral Recognition. Angewandte Chemie 2006, 118 (48), 8325-8328.
4. Liu, F.; Huang, S.; Xue, F.; Wang, Y.; Meng, Z.; Xue, M., Detection of organophosphorus compounds using a molecularly imprinted photonic crystal. Biosens Bioelectron 2012, 32 (1), 273-7.
5. Su, X.; Li, X.; Li, J.; Liu, M.; Lei, F.; Tan, X.; Li, P.; Luo, W., Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chem 2015, 171, 292-7.
6. Alexiadou, D. K.; Maragou, N. C.; Thomaidis, N. S.; Theodoridis, G. A.; Koupparis, M. A., Molecularly imprinted polymers for bisphenol A for HPLC and SPE from water and milk. J Sep Sci 2008, 31 (12), 2272-82.
7. Xiong, H.; Wu, X.; Lu, W.; Fu, J.; Peng, H.; Li, J.; Wang, X.; Xiong, H.; Chen, L., Switchable zipper-like thermoresponsive molecularly imprinted polymers for selective recognition and extraction of estradiol. Talanta 2018, 176, 187-194.
8. Ge, J.; Yin, Y., Responsive photonic crystals. Angew Chem Int Ed Engl 2011, 50 (7), 1492-522.
9. Lu, W.; Li, H.; Huo, B.; Meng, Z.; Xue, M.; Qiu, L.; Ma, S.; Yan, Z.; Piao, C.; Ma, X., Full-color mechanical sensor based on elastic nanocomposite hydrogels encapsulated three-dimensional colloidal arrays. Sensors and Actuators B: Chemical 2016, 234, 527-533.
10. Griffete, N.; Frederich, H.; Maitre, A.; Schwob, C.; Ravaine, S.; Carbonnier, B.; Chehimi, M. M.; Mangeney, C., Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A. J Colloid Interface Sci 2011, 364 (1), 18-23.
11. Griffete, N.; Frederich, H.; Maitre, A.; Ravaine, S.; Chehimi, M. M.; Mangeney, C., Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing. Langmuir 2012, 28 (1), 1005-12.
12. Huang, J.; Hu, X.; Zhang, W.; Zhang, Y.; Li, G., pH and ionic strength responsive photonic polymers fabricated by using colloidal crystal templating. Colloid and Polymer Science 2007, 286 (1), 113-118.
13. Gao, R.; Cui, X.; Hao, Y.; Zhang, L.; Liu, D.; Tang, Y., A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17beta-estradiol in milk. Food Chem 2016, 194, 1040-7.
14. Li, Y.; Zhao, X.; Li, P.; Huang, Y.; Wang, J.; Zhang, J., Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17beta-estradiol in water. Anal Chim Acta 2015, 884, 106-13.
15. Ning, F.; Qiu, T.; Wang, Q.; Peng, H.; Li, Y.; Wu, X.; Zhang, Z.; Chen, L.; Xiong, H., Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chem 2017, 221, 1797-1804.
16. Ji, W.; Sun, R.; Duan, W.; Wang, X.; Wang, T.; Mu, Y.; Guo, L., Selective solid phase extraction of chloroacetamide herbicides from environmental water samples by amphiphilic magnetic molecularly imprinted polymers. Talanta 2017, 170, 111-118.
17. Liu, Y.; Wang, Y.; Dai, Q.; Zhou, Y., Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal Chim Acta 2016, 936, 168-78.
18. 鍾文卿, 張., 結構類似物干擾對拓印光子晶體感測能力的影響. 2016.
19. Pelekani, S., . 2000.
20. Fischer, E., Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der Deutschen Chemischen Gesellschaft 1894, 27 (3), 2985-2993.
21. Polyakov, M., Adsorption properties and structure of silica gel. Zhur Fiz Khim 1931, 2, 799-805.
22. Pauling, L., A Theory of the Structure and Process of Formation of Antibodies. Journal of the American Chemical Society 1940, 62 (10), 2643-2657.
23. Dickey, F. H., The preparation of specific adsorbents. Proceedings of the National Academy of Sciences of the United States of America 1949, 35 (5), 227.
24. Guo, T. Y.; Xia, Y. Q.; Hao, G. J.; Song, M. D.; Zhang, B. H., Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials 2004, 25 (27), 5905-12.
25. Wu, X.; Wang, X.; Lu, W.; Wang, X.; Li, J.; You, H.; Xiong, H.; Chen, L., Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A. J Chromatogr A 2016, 1435, 30-8.
26. Bossi, A.; Bonini, F.; Turner, A. P.; Piletsky, S. A., Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 2007, 22 (6), 1131-7.
27. Liu, Y.; Zhong, G.; Liu, Z.; Meng, M.; Liu, F.; Ni, L., Facile synthesis of novel photoresponsive mesoporous molecularly imprinted polymers for photo-regulated selective separation of bisphenol A. Chemical Engineering Journal 2016, 296, 437-446.
28. Mindy Lee; Fauchet, P. M., . 2007.
29. Fenzl, C.; Hirsch, T.; Wolfbeis, O. S., Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed Engl 2014, 53 (13), 3318-35.
30. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 1987, 58 (20), 2059-2062.
31. John, S., Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987, 58 (23), 2486-2489.
32. Zhang, W.; Zhang, D.; Fan, T.; Ding, J.; Guo, Q.; Ogawa, H., Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates. Microporous and Mesoporous Materials 2006, 92 (1-3), 227-233.
33. Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C., Opals: status and prospects. Angew Chem Int Ed Engl 2009, 48 (34), 6212-33.
34. Chen, W.; Shea, K. J.; Xue, M.; Qiu, L.; Lan, Y.; Meng, Z., Self-assembly of the polymer brush-grafted silica colloidal array for recognition of proteins. Anal Bioanal Chem 2017, 409 (22), 5319-5326.
35. Seelig, E. W.; Tang, B.; Yamilov, A.; Cao, H.; Chang, R. P. H., Self-assembled 3D photonic crystals from ZnO colloidal spheres. Materials Chemistry and Physics 2003, 80 (1), 257-263.
36. G. Subramanian, V. N. M., J. D. Thorne, D. J. Pine, Ordered Macroporous Materials by ColloidalAssembly A Possible Route to PhotonicBandgap Materials. Advanced Materials 1999, 11(15), 1261-1265.
37. Yun, G.; Balamurugan, M.; Kim, H.-S.; Ahn, K.-S.; Kang, S. H., Role of WO3 Layers Electrodeposited on SnO2 Inverse Opal Skeletons in Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C 2016, 120 (11), 5906-5915.
38. Lu, W.; Asher, S. A.; Meng, Z.; Yan, Z.; Xue, M.; Qiu, L.; Yi, D., Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal. J Hazard Mater 2016, 316, 87-93.
39. Xue, F.; Meng, Z.; Wang, Y.; Huang, S.; Wang, Q.; Lu, W.; Xue, M., A molecularly imprinted colloidal array as a colorimetric sensor for label-free detection of p-nitrophenol. Anal. Methods 2014, 6 (3), 831-837.
40. Kadhem, A.; Xiang, S.; Nagel, S.; Lin, C.-H.; Fidalgo de Cortalezzi, M., Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers 2018, 10 (4), 349.
41. Zhou, Y.; Zhou, T.; Jin, H.; Jing, T.; Song, B.; Zhou, Y.; Mei, S.; Lee, Y. I., Rapid and selective extraction of multiple macrolide antibiotics in foodstuff samples based on magnetic molecularly imprinted polymers. Talanta 2015, 137, 1-10.
42. Shi, X.; Wu, A.; Qu, G.; Li, R.; Zhang, D., Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs. Biomaterials 2007, 28 (25), 3741-9.
43. Ren, J.; Weber, F.; Weigert, F.; Wang, Y.; Choudhury, S.; Xiao, J.; Lauermann, I.; Resch-Genger, U.; Bande, A.; Petit, T., Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale 2019, 11 (4), 2056-2064.
44. Ullah, R.; Ahmad, I.; Zheng, Y., Fourier Transform Infrared Spectroscopy of “Bisphenol A”. Journal of Spectroscopy 2016, 2016, 1-5.
45. Cummins, W.; Duggan, P.; McLoughlin, P., Systematic cross-selectivity study of the factors influencing template receptor interactions in molecularly imprinted nitrogen heterocycles. Biosens Bioelectron 2006, 22 (3), 372-80.
46. Zhang, Y.; Huang, S.; Qian, C.; Wu, Q.; He, J., Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties. Journal of Applied Polymer Science 2016, 133 (11), n/a-n/a.
47. Chen, Q.; Shi, W.; Cheng, M.; Liao, S.; Zhou, J.; Wu, Z., Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Mikrochim Acta 2018, 185 (12), 557.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *