帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:周佳穎
作者(英文):Chou, Chia-Yin
論文名稱(中文):單牙與雙牙配位基對銅離子拓印複合材料吸附特性的影響
論文名稱(英文):Effects of Monodentate and Bidentate Ligands on Adsorption Characteristics of Cu-Ion-Imprinted Polymers
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-min
口試委員:黃郁棻
黃建良
口試委員(英文):Hwang, Yu-Fen
Hwang, Jian-Liang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0551701
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:有機-無機複合材料離子拓印Cu2+離子錯合選擇性
外文關鍵詞:organic-inorganic hybridsionic imprintingCu2+ ioncomplexselectivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:61
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以雙牙基[3-(2-aminoethylamino)propyl] trimethoxysilane (AATPS)和單牙基(3-aminopropyl)triethoxysilane (APTES)為功能性單體製備Cu(II)離子有機-無機複合拓印材料(ionic imprinting polymer, IIP),研究中藉由分析複合物在不同Cu/氨基比例時的材料特性與對Cu(II)離子吸附能力的影響,探討雙牙基與單牙基在拓印過程中與金屬配位的能力與對材料拓印程度的影響,並藉由對不同離子吸附能力的比較,釐清離子拓印材料選擇性的關鍵。結果顯示當TEOS:MEMO:H2O:ethanol莫耳比例固定在15:10:102:200時,Cu: AAPTS = 1:1及 Cu: APTES= 0.5:1能使IIP-AAPTS與IIP-APTES分別有3.0和1.20 mg/g的最佳吸附量,且根據等溫吸附實驗,IIP-AAPTS與IIP-APTES在pH=5時的最高吸附量分別為27.55 與17.48 mg/g,兩系統中雖然Cu(II)離子對氨基的比例同為2,但AAPTS與Cu(II)離子的錯合行為能夠產生較完整的孔洞提供強吸附位置,因此吸附量較高。對Zn(II)、Ni(II)、Pb(II)、與Hg(II)的吸附選擇性分析中發現,IIP-AAPTS與IIP-APTES拓印材料對Cu(II)離子的吸附選擇性係數(k)分別為89.3與17.5以上,兩者分別在Cu/AAPTS為0.5-1.0與Cu/APTES為0.5時有最高選擇性,吸附能力依序為Cu(II)> Hg(II) > Zn(II) > Ni(II)> Pb (II),選擇性的依據主要為離子半徑與配體及離子間的錯合能力。以上結果可知,相較於單牙基的APTES,雙牙基的AAPTS能與Cu(II)的產生穩定錯合物,因此以此為功能性單體的離子拓印材料在吸附能力和選擇性上有較優異的表現。
3-(2-aminoethylamino)propyl]trimethoxysilane (AATPS) and 3-aminopropyltriethoxysilane (APTES) were used as functional monomers to prepare Cu-imprinted-organic-inorganic polymers (IIP) while MEMO and TEOS were used as the organic and inorganic cross-linkers, respectively. Adsorption behaviors of the IIPs at different Cu(II)/amino-groups ratios were examined to investigate the complexation between the bidentate/monodentate ligands and the Cu(II) ions and the resulting imprinting extents in the IIPS. In addition, the keys controlling the selectivity of the IIPs were clarified by comparing the adsorption capacities with those for different ions. The results showed that the IIPs exhibited the highest adsorption capability at the Cu: AAPTS = 1:1 and Cu: APTES = 0.5:1 when TEOS: MEMO :H2O:ethanol were controlled at 15:10:102:200. Although the Cu/amino-groups ratios in the two systems were equal, stronger complexation between the AAPTS and the Cu(II) ions resulted in stronger adsorption sites and thus leaded the IIP-AAPTS to perform higher adsorption ability (3.0 mg/g) than APTES-based system (1.2 mg/g). Both the IIP-AAPTS and IIP-APTES had the optimal adsorption performance at pH=5 and the highest adsorption amounts were 27.55 and 17.48 mg/g, respectively. Relative to the adsorptions for Zn(II), Ni(II), Pb(II), and Hg(II) ions, the IIP-AAPTS and IIP-APTES compounds at the Cu/AAPTS=0.5-1.0 and the Cu/APTES= 0.5, respectively, showed the highest selectivity factors (k) of 89.3 and 17.5, respectively, for Cu(II) ions. The selectivity order was Cu(II)> Hg(II) > Zn(II). > Ni(II)> Pb (II), and it is controlled by ionic radii and the complex ability between the ligands and the ions. These results reveal that the bidentate AAPTS can interact with Cu(II) ions to form a more stable complex than monodentate APTES, thus is more suitable to be used as the functional monomer to prepare IIPs exhibiting high adsorption capacity and selectivity.
目錄
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
第一章、前言 1
1.1研究背景與動機 1
1.2研究目的 3
第二章、文獻回顧 4
2.1銅的概述 4
2.1.1銅離子污染 4
2.1.2銅的物化特性 6
2.2拓印技術概念 8
2.2.1 拓印方式 9
2.2.2拓印材料的製備 10
2.3離子拓印材料 11
2.3.1離子拓印材料的基礎 13
2.3.2離子拓印材料的特性 16
2.3.3影響吸附能力的因子 20
2.3.4 選擇性因子 22
2.4離子拓印材料應用 24
第三章、材料研究與方法 25
3.1 實驗架構 25
3.2 離子拓印材料組成成分 26
3.3 拓印高分子合成方法 28
3.4 離子拓印材料表面特性分析 30
3.4.1等溫氮氣吸脫附分析(Nitrogen adsorption-desorption isotherm Measurement) 30
3.4.2熱重分析儀(Thermal gravimetric analysis, TGA) 30
3.4.3場發射掃描式電子顯微鏡及能量散佈光譜儀(SEM-EDS) 32
3.4.4傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 33
3.5吸附實驗 34
3.5.1 Cu(II)離子溶液配置 34
3.5.2 pH實驗 34
3.5.3吸附動力實驗 35
3.5.4等溫吸附實驗 36
3.5.5 Scatchard分析 37
3.5.6感應耦合電漿原子發射質譜儀(Inductively Coupled Plasma,ICP-MS) 37
3.6 選擇性測試 38
第四章、結果與討論 39
4.1 離子拓印複合材的製備 39
4.2 離子拓印複合材的鑑定 40
4.2.1離子拓印複合材型態 40
4.2.2離子拓印複合材特性 41
4.2.3離子拓印複合材料的組成 42
4.3吸附實驗 50
4.3.1 pH調整吸附實驗 50
4.3.2 Cu(II)吸附實驗 51
4.3.3動力吸附實驗 53
4.3.4等溫吸附實驗 56
4.3.5 Scatchard分析 59
4.4選擇性試驗 61
第五章 結論 69
參考文獻 70
附錄 76
1. Yosi Shacham-Diamand, V. D., Matthew Angyal Electroless copper deposition for ULSI. Thin Solid Films 1995, 162, 93-103.
2. Pittet, D.; Allegranzi, B.; Boyce, J.; Experts, W. H. O. W. A. f. P. S. F. G. P. S. C. C. G. o., The World Health Organization guidelines on hand hygiene in health care and their consensus recommendations. Infection Control & Hospital Epidemiology 2009, 30 (7), 611-622.
3. Hande, P. E.; Samui, A. B.; Kulkarni, P. S., Highly selective monitoring of metals by using ion-imprinted polymers. Environ Sci Pollut Res Int 2015, 22 (10), 7375-404.
4. Sanchez, C.; Gómez-Romero, P., Functional hybrid materials. Wiley-VCH: 2004.
5. Holthoff, E. L.; Bright, F. V., Molecularly templated materials in chemical sensing. Analytica chimica acta 2007, 594 (2), 147-161.
6. Lofgreen, J. E.; Ozin, G. A., Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chemical Society Reviews 2014, 43 (3), 911-933.
7. Marx, S.; Liron, Z., Molecular imprinting in thin films of organic− inorganic hybrid sol− gel and acrylic polymers. Chemistry of materials 2001, 13 (10), 3624-3630.
8. Yun-Kai Lu†‡, X.-P. Y., An Imprinted Organic−Inorganic Hybrid Sorbent for Selective Separation of Cadmium from Aqueous Solution. analytical chemistry 2004.
9. Feng, X.; Fryxell, G.; Wang, L.-Q.; Kim, A. Y.; Liu, J.; Kemner, K., Functionalized monolayers on ordered mesoporous supports. Science 1997, 276 (5314), 923-926.
10. Concepcion, M.; Lizada, C.; Yang, S. F., A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Analytical biochemistry 1979, 100 (1), 140-145.
11. Sigel, H.; Martin, R. B., Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chemical Reviews 1982, 82 (4), 385-426.
12. Hanzel, R.; Rajec, P., Sorption of cobalt on modified silica gel materials. Journal of Radioanalytical and nuclear chemistry 2000, 246 (3), 607-615.
13. Blitz, I. P.; Blitz, J. P.; Gun’ko, V. M.; Sheeran, D. J., Functionalized silicas: Structural characteristics and adsorption of Cu (II) and Pb (II). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 307 (1), 83-92.
14. Algarra, M.; Jiménez, M. V.; Rodríguez-Castellón, E.; Jiménez-López, A.; Jiménez-Jiménez, J., Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41. Chemosphere 2005, 59 (6), 779-786.
15. Liu, J.-q.; Wulff, G., Functional mimicry of the active site of carboxypeptidase A by a molecular imprinting strategy: cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity. Journal of the American Chemical Society 2004, 126 (24), 7452-7453.
16. Hao, S.; Verlotta, A.; Aprea, P.; Pepe, F.; Caputo, D.; Zhu, W., Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions. Microporous and Mesoporous Materials 2016, 236, 250-259.
17. Lee, H.; Yi, J., Removal of copper ions using functionalized mesoporous silica in aqueous solution. Separation Science and Technology 2001, 36 (11), 2433-2448.
18. Birlik, E.; Ersöz, A.; Denizli, A.; Say, R., Preconcentration of copper using double-imprinted polymer via solid phase extraction. Analytica Chimica Acta 2006, 565 (2), 145-151.
19. Ozmen, M.; Can, K.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M., Adsorption of Cu (II) from aqueous solution by using modified Fe 3 O 4 magnetic nanoparticles. Desalination 2010, 254 (1), 162-169.
20. Luo, X.; Luo, S.; Zhan, Y.; Shu, H.; Huang, Y.; Tu, X., Novel Cu (II) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol–gel process. Journal of hazardous materials 2011, 192 (3), 949-955.
21. Kaplan, J. H.; Lutsenko, S., Copper transport in mammalian cells: special care for a metal with special needs. J Biol Chem 2009, 284 (38), 25461-5.
22. Duan, J.-X.; Li, X.; Zhang, C.-C., The synthesis and adsorption performance of polyamine Cu2+ imprinted polymer for selective removal of Cu2+. Polymer Bulletin 2017, 74 (9), 3487-3504.
23. Gaetke, L. M.; Chow, C. K., Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189 (1), 147-163.
24. Hasan, S.; Ghosh, T. K.; Viswanath, D. S.; Boddu, V. M., Dispersion of chitosan on perlite for enhancement of copper (II) adsorption capacity. Journal of Hazardous Materials 2008, 152 (2), 826-837.
25. He, S.; Zhao, C.; Yao, P.; Yang, S., Synthesis of Silica-Supported Multidentate Ligands Adsorbents for the Removal of Heavy Metal Ions. Environmental Engineering Science 2015, 32 (7), 593-601.
26. Nugent, W. A.; Mayer, J. M., Metal-ligand multiple bonds: the chemistry of transition metal complexes containing oxo, nitrido, imido, alkylidene, or alkylidyne ligands. Wiley-Interscience: 1988.
27. Saylan, Y.; Yilmaz, F.; Ozgur, E.; Derazshamshir, A.; Yavuz, H.; Denizli, A., Molecular Imprinting of Macromolecules for Sensor Applications. Sensors (Basel) 2017, 17 (4).
28. Mayes, A.; Whitcombe, M., Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced drug delivery reviews 2005, 57 (12), 1742-1778.
29. Shamsipur, M.; Fasihi, J.; Khanchi, A.; Hassani, R.; Alizadeh, K.; Shamsipur, H., A stoichiometric imprinted chelating resin for selective recognition of copper(II) ions in aqueous media. Anal Chim Acta 2007, 599 (2), 294-301.
30. Wuff, G.; Sarhan, A., The use of polymers with enzyme-analogous structures for the resolution of racemate. J. Angew. Chem. Int. Ed 1972, 11, 341-345.
31. Lok, C.; Son, R., Application of molecularly imprinted polymers in food sample analysis—a perspective. International Food Research Journal 2009, 16 (2), 127-140.
32. Karsten Haupt, K. M., Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev 2000, 100, 2495 − 2504.
33. Gómez-Romero, P.; Sanchez, C., Hybrid materials. Functional properties. From Maya Blue to 21st century materials. New journal of chemistry 2005, 29 (1), 57-58.
34. Hagrman, P. J.; Hagrman, D.; Zubieta, J., Organic–Inorganic Hybrid Materials: From “Simple” Coordination Polymers to Organodiamine‐Templated Molybdenum Oxides. Angewandte Chemie International Edition 1999, 38 (18), 2638-2684.
35. Purwanto, A.; Yusmaniar; Ferdiani, F.; Damayanti, R. In Synthesis and adsorption of silica gel modified 3-aminopropyltriethoxysilane (APTS) from corn cobs against Cu (II) in water, AIP Conference Proceedings, AIP Publishing: 2017; p 020032.
36. Wang, J.; Ding, L.; Wei, J.; Liu, F., Adsorption of copper ions by ion-imprinted simultaneous interpenetrating network hydrogel: Thermodynamics, morphology and mechanism. Applied Surface Science 2014, 305, 412-418.
37. Rao, T. P.; Kala, R.; Daniel, S., Metal ion-imprinted polymers--novel materials for selective recognition of inorganics. Anal Chim Acta 2006, 578 (2), 105-16.
38. Masahiro Yoshida, K. U., Masahiro Goto,* andShintaro Furusaki, Required Properties for Functional Monomers To Produce a Metal Template Effect by a Surface Molecular Imprinting Technique. Macromolecules 1999, 1237–1243.
39. Shamsipur, M.; Besharati-Seidani, A., Synthesis of a novel nanostructured ion-imprinted polymer for very fast and highly selective recognition of copper (II) ions in aqueous media. Reactive and Functional Polymers 2011, 71 (2), 131-139.
40. Ashouri, N.; Mohammadi, A.; Shekarchi, M.; Hajiaghaee, R.; Adib, N.; Akbari-Adergani, B., A nanostructure ion-imprinted polymer for the selective separation and determination of copper ions in aqueous solutions. Desalination and Water Treatment 2015, 1-10.
41. Wu, G.; Song, G.; Wu, D.; Shen, Y.; Wang, Z.; He, C., Synthesis of ion-imprinted mesoporous silica gel sorbent for selective adsorption of copper ions in aqueous media. Microchimica Acta 2010, 171 (1-2), 203-209.
42. Nishide, H.; Deguchi, J.; Tsuchida, E., Selective adsorption of metal ions on crosslinked poly (vinylpyridine) resin prepared with a metal ion as a template. Chemistry letters 1976, 5 (2), 169-174.
43. Ohga, K.; Kurauchi, Y.; Yanase, H., Adsorption of Cu2+ or Hg2+ ion on resins prepared by crosslinking metal-complexed chitosans. Bulletin of the Chemical Society of Japan 1987, 60 (1), 444-446.
44. Walas, S.; Tobiasz, A.; Gawin, M.; Trzewik, B.; Strojny, M.; Mrowiec, H., Application of a metal ion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper. Talanta 2008, 76 (1), 96-101.
45. Singh, D. K.; Mishra, S., Synthesis, characterization and removal of Cd (II) using Cd (II)-ion imprinted polymer. Journal of hazardous materials 2009, 164 (2), 1547-1551.
46. Mody, H. M.; Bajaj, H. C.; Jasra, R. V., Adsorption of Cu2+ on amino functionalized silica gel with different loading. Industrial & Engineering Chemistry Research 2009, 48 (19), 8954-8960.
47. Kang, C.; Li, W.; Tan, L.; Li, H.; Wei, C.; Tang, Y., Highly ordered metal ion imprinted mesoporous silica particles exhibiting specific recognition and fast adsorption kinetics. Journal of Materials Chemistry A 2013, 1 (24), 7147-7153.
48. Li, F.; Jiang, H.; Zhang, S., An ion-imprinted silica-supported organic–inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium (II) from aqueous solution. Talanta 2007, 71 (4), 1487-1493.
49. Kumar, G. P.; Kumar, P. A.; Chakraborty, S.; Ray, M., Uptake and desorption of copper ion using functionalized polymer coated silica gel in aqueous environment. Separation and Purification Technology 2007, 57 (1), 47-56.
50. Zacaria Reddad, C. G., *Yves Andres, andPierre Le Cloirec, Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies. Environ. Sci. Technol. 2002.
51. Jannik Bjerrum, E. J. N., Metal-ammine formation in aqueous solution. Acta Chemica Scandinavica 1948, 297-318.
52. Hutson, J. R. Evaluation of transplacental pharmacology and toxicology from bench to bedside. University of Toronto (Canada), 2014.
53. Zhou, Z.; Kong, D.; Zhu, H.; Wang, N.; Wang, Z.; Wang, Q.; Liu, W.; Li, Q.; Zhang, W.; Ren, Z., Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(II) ions from aqueous solution. J Hazard Mater 2018, 341, 355-364.
54. Kong, X.-f.; Yang, B.; Xiong, H.; Zhou, Y.; Xue, S.-g.; Xu, B.-q.; Wang, S.-x., Selective removal of heavy metal ions from aqueous solutions with surface functionalized silica nanoparticles by different functional groups. Journal of Central South University 2014, 21 (9), 3575-3579.
55. Bajwa, S. Z.; Dumler, R.; Lieberzeit, P. A., Molecularly imprinted polymers for conductance sensing of Cu2+ in aqueous solutions. Sensors and Actuators B: Chemical 2014, 192, 522-528.
56. Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry 1990, 62 (19), 2145-2148.
57. Sarafraz-Yazdi, A.; Razavi, N., Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC Trends in Analytical Chemistry 2015, 73, 81-90.
58. Buhani; Narsito; Nuryono; Sri Kunarti, E.; Suharso, Adsorption competition of Cu(II) ion in ionic pair and multi-metal solution by ionic imprinted amino-silica hybrid adsorbent. Desalination and Water Treatment 2014, 1-13.
59. Baghel, A.; Boopathi, M.; Singh, B.; Pandey, P.; Mahato, T. H.; Gutch, P. K.; Sekhar, K., Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper. Biosens Bioelectron 2007, 22 (12), 3326-34.
60. Kai-Hsun Tseng, S.-M. C., Fabrication and Characterizations of Imprinted Organic-Inorganic Hybrids Exhibiting High Adsorption and Recognition Capability. 2014, 79.
61. Rashid, S.; Shen, C.; Chen, X.; Li, S.; Chen, Y.; Wen, Y.; Liu, J., Enhanced catalytic ability of chitosan–Cu–Fe bimetal complex for the removal of dyes in aqueous solution. RSC Advances 2015, 5 (110), 90731-90741.
62. Kong, D.; Wang, N.; Qiao, N.; Wang, Q.; Wang, Z.; Zhou, Z.; Ren, Z., Facile Preparation of Ion-Imprinted Chitosan Microspheres Enwrapping Fe3O4 and Graphene Oxide by Inverse Suspension Cross-Linking for Highly Selective Removal of Copper(II). ACS Sustainable Chemistry & Engineering 2017, 5 (8), 7401-7409.
63. Bhattacharya, P.; Conroy, N.; Rao, A. M.; Powell, B. A.; Ladner, D. A.; Ke, P. C., PAMAM dendrimer for mitigating humic foulant. RSC Advances 2012, 2 (21), 7997-8001.
64. Ren, Z.; Zhu, X.; Du, J.; Kong, D.; Wang, N.; Wang, Z.; Wang, Q.; Liu, W.; Li, Q.; Zhou, Z., Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution. Applied Surface Science 2018, 435, 574-584.
65. Trent William Jay Albrecht, J. A.-M., Daniel Fornasiero Effect of pH, Concentration and Temperature on Copper and Zinc Hydroxide Formation Precipitation in Solution. CHEMECA 2011: Engineering A Better World 2011, 2011-2110.
66. Liu, H.; Yang, F.; Zheng, Y.; Kang, J.; Qu, J.; Chen, J. P., Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. water research 2011, 45 (1), 145-154.
67. Diniz, K. M.; Segatelli, M. G.; Tarley, C. R. T., Synthesis and adsorption studies of novel hybrid mesoporous copolymer functionalized with protoporphyrin for batch and on-line solid-phase extraction of Cd2+ ions. Reactive and Functional Polymers 2013, 73 (6), 838-846.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *