帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:艾帕娜
作者(英文):APARNA KASHINATH KHARADE
論文名稱(中文):TiO2表面特性及物化特性對CO2轉換碳氫化合物的關係
論文名稱(英文):Correlations of Physicochemical and Surface Properties of TiO2-Based Photocatalysts to CO2-to-Hydrocarbon Conversions
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-min
口試委員:張淑閔
刁維光
楊家銘
徐雍鎣
林彥谷
口試委員(英文):Chang, Sue-min
Diau, Eric Wei-Guang
Yang, Chia-Min
Hsu, Yung-Jung
Lin, Yan-Gu
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0481707
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:119
中文關鍵詞:表面氫氧官能基表面缺陷氧空缺磷化二氧化鈦非晶性二氧化鈦光催化還原二氧化碳
外文關鍵詞:Surface OH groupsSurface defectsOxygen vacanciesAmorphous TiO2Phosphated TiO2Photocatalytic CO2 reduction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
利用光觸媒通過光子活化,將CO2轉變為碳氫化合物的光催化還原CO2已被認為是一種有前景的生物模擬方法,並用於減量CO2。人工光合作用不僅促進碳循環中的CO2轉變,且同時產生高價值燃料(CH4、CO和甲醇等)。為開發人造光催化劑以提高CO2轉化效率,已作出了許多努力。本研究以探討整體結晶度的表面性質對於CO2還原的影響,並全面了解表面控制活性和選擇性。本研究的第一部分已證明,以溶膠-凝膠法所製備的無定形TiO2在液相還原CO2系統中,其光催化活性高於熱還原銳鈦礦納米晶體。高密度的OH基團(12.45 /nm2) 和高表面積 (274 m2/g) 導致非晶態TiO2顆粒具有極高的反應活性。在所有系統中雖然CH4為主要產物,但仍測量了次要產物,包括CH4、CO、C2H4 和C2H6。經過10小時放射線照射後,無定形TiO2的產量達到17.88 µmol/g,分別為熱還原銳鈦礦納米晶體和市售P25的16倍和9倍。豐富的OH基團表面不僅將CO2分子轉化為碳酸氫鹽/碳酸鹽物質,以改善CO2的化學吸附 (2.94 mmol/g),並捕獲空穴,形成Ti-O-O-Ti產物,並在CO2還原中提供質子。這樣的協同作用促進了界面電荷轉移,進而提高量子效率。齒狀碳酸鹽和 •CO2- 兩種活性物種,在羥基化表面上生成CH4和CO產物的過程中,進行CO32- Ti-OOCH2 Ti-O-CH3 CH4和 •CO2- CO22- Ti-COOH CO。高度以化學性吸附的碳酸鹽表面,以進行CO2的還原為主而不是產生H2。然而隨著煅燒溫度升高,OH基團和表面積皆顯著降低。此時,在所得的銳鈦礦晶體中產生氧空位作為替代活性位點。儘管對於吸附的CO2物種,氧空位表現出比OH基更高的轉化活性,但是活性位點的數量不足仍導致結晶粉末的效率低於無定形粉末的效率。通過將雜離子摻入TiO2晶格中引入表面缺陷,以降低電子電洞再結合機率,從而提高光催化活性。結果顯示,高溫下將磷酸鹽摻入TiO2中會導致表面缺陷的產生,如氧空位和Ti3+。溶膠-凝膠法所製備的磷酸化TiO2 (PT-700)在氣相還原方面表現出更高的光催化活性,CO的產率為30.57 µmol/g,約為市售P25的5倍。表面缺陷(Ti3+/氧空位)改善了CO2的化學吸附 (0.22 mmol/g)。此外,P5+離子和表面缺陷可協同改善界面電荷轉移。根據漫反射紅外光譜 (DRIFT) 在黑暗和光照條件下,表面缺陷可藉由形成CO過程中所產生的CO2 - 和 HCOO- 中間物種,來改善的CO2的化學性吸附。我們探討了表面缺陷和P5+ 離子對表面反應的貢獻,包括CO2 化學吸附、電荷捕獲、磷酸鹽TiO2 光催化物的電荷轉移等介面反應。從動力學的觀點來看,磷酸鹽和焦磷酸鹽物質可以穩定更多的電子並清除電洞,使CO2 有強烈及更穩定的化學性吸附。反應的中間產物是另一個控制產物選擇性和反應性的重要因素。在這項研究中,以溶膠-凝膠法製備的磷酸化TiO2 (PT-500)顯示出最高的光催化活性,CO2產率為25.11 μmol/g,在液相反應中的比商用P25高約6倍。含有高度碳酸鹽類的表面,其主要反應為CO2的還原,而非產生H2 。此外,在CO2還原反應中的選擇性,Ti3+ 和氧空缺十分重要,並導致在液相反應中有更高的CO + CH4選擇性(57.61%)。 P5+ 離子可以幫助穩定電子,表面缺陷可以捕獲電子並實現有效的電荷分離,這有助於改善液相中的光催化活性。
Photocatalytic CO2 reduction that utilizes photocatalysts to convert CO2 into hydrocarbons via photon activation has been considered as a promising bio-mimic approach for CO2 mitigation. This artificial photosynthesis can not only promote CO2 transition in the natural carbon cycle but also generate value added fuels (CH4, CO, methanol, etc.) at the same time. Numerous efforts have been made to develop artificial photocatalysts to increase the CO2 conversion efficiency. In this thesis, we studied the influence of surface properties over the bulk crystallinity on CO2 reduction and comprehensively understand the surface-controlled activity and selectivity. The first part of this study, sol-gel-derived amorphous TiO2 powders have been demonstrated to exhibit superior photocatalytic activity than their thermally-induced anatase nano-crystals for CO2 reduction in aqueous phase. The high density of OH groups (12.45 /nm2) and high surface area (274 m2/g) were responsible for the extraordinarily high reactivity of the amorphous TiO2 particles. While CH4 was identified as the major products in all the systems, minor products including CO, C2H4, and C2H6 were also measured. After 10-hr irradiation, the accumulated production yield in the amorphous TiO2-based system reached 17.88 µmol/g, which is 16 and 9 times higher than the their thermally derived anatase crystals and commercially P25 powders. The abundant surface OH groups not only converted CO2 molecule into bicarbonate/ carbonate species to improve CO2 chemisorption (2.94 mmol/g) but also trapped holes to form Ti-O-O-Ti species and provide protons for CO2 reduction. The effects synergistically promoted interfacial charge transfer, thus improving the quantum efficiencies. Bidentate carbonate and •CO2- were two active species that were able to underwent CO32- Ti-OOCH2 Ti-O-CH3 CH4 and •CO2- CO22- Ti-COOH CO sequences on the hydroxylated surface to produce CH4 and CO products, respectively. High coverage of the chemisorbed carbonate species selected CO¬2 reduction rather than H2 evolution. The OH groups and the surface area, however, dramatically decreased at the elevated calcination temperatures. In turn, oxygen vacancies were produced as the alternative active sites in the resulting anatase crystals. Although the oxygen vacancies exhibited higher transformation activity than the OH groups for the adsorbed CO2 species, insufficient amounts of the active sites still caused the efficiency of crystalline powders to be lower than that of the amorphous powder. The introduction of surface defects via the incorporation of hetero-ions into TiO2 lattice enhanced the photocatalytic activity as a results of retardation of electron-hole recombination. It was demonstrated that incorporated phosphate into TiO2 at high temperature resulted in creation of surface defects as oxygen vacancies and Ti3+. Sol-gel derived phosphated TiO2 (PT-700) have been exhibited higher photocatalytic activity for the reduction of CO2 at gaseous phase with production yield 30.57 µmol/g of CO, which is about 5 times higher than commercial P25 catalyst. Surface defects (Ti3+/oxygen vacancies) improved the CO2 chemisorption/adsorption (0.22 mmol/g). In addition, P5+ ions and surface defects synergistically improved interfacial charge transfer. According to diffuse reflectance infrared spectra (DRIFT), surface defects could improve CO2 chemisorption both in dark and under light illumination by generating CO2- and HCOO- intermediate species for CO formation. We explored the contribution of surface defects and P5+ ion to the surface reactivity, interfacial reaction including CO2 chemisorption, charge trapping, charge transfer on phosphated TiO2 photocatalyst. On kinetic point of view, phosphate and pyrophosphate species can stabilize more electron and scavenges hole, which allows CO2 to chemisorbed strongly and stabilized more CO2 chemisorption. The reaction medium is another important factor which control the product selectivity and reactivity. In this study, sol-gel derived phosphated TiO2 (PT-500) sample shows the highest photocatalytic activity with a CO yield of 25.11 μmol/g, which is ∼6 times higher than that of commercial P25 in an aqueous system. High coverage of the surface with the carbonaceous species selected CO2 reduction over H2 evolution as the dominant reaction. Moreover, Ti3+ and oxygen vacancies were essential for selection of CO2 reduction, and results in greater CO+CH4 selectivity (57.61%) in aqueous phase. P5+ ions can help in charge carrier stabilization, and surface defects can trap the charge carrier and facilities efficient charge separation, which is responsible for improved photocatalytic activity in the aqueous phase.
Chapter 1. Introduction 1
1.1. Background and Motivation 1
1.2. Research objectives 3
Chapter 2. Literature Review 5
2.1. Photocatalytic CO2 reduction 5
2.1.1. Basic CO2 reduction 5
2.1.2. Types of photocatalysts 7
2.1.3. Influences of band position on CO2 reduction 7
2.1.4. Particle size and crystallinity 9
2.1.5. Surface properties 10
2.2. Reaction medium 13
2.2.1. Aqueous phase reaction 13
2.2.2. Gaseous phase reaction 13
2.2.3. Hole scavenger 13
2.3. Reaction Mechanism 14
2.3.1. CO2 reduction to different products 14
2.3.2. Reaction pathways 15
2.4. TiO2-based photocatalysts for CO2 reduction 20
2.4.1. Metal and non-metal doping 21
2.4.2. Heterojunction construction 23
2.4.3. Surface modification with basic sites 24
2.4.4. Carbon based TiO2 modification . 25
2.4.5. Metal organic framework modification . 27
2.5. Conclusions, Challenges and Limitation for CO2 Reduction 27
Chapter 3. Experimental Section 29
3.1. Sol-derived TiO2 photocatalysts 30
3.1.1. Materials 30
3.1.2. Preparation of sol-gel derived TiO2 material 31
3.1.3. Materials characterizations (TiO2) 31 3.1.4. Apparent Quantum Efficiency (AQEs) Calculation 33
3.1.5. Turnover Number (TON) Calculation . 34
3.1.6. Quantification of H2O2 species . 34
3.1.7. Photocatalytic CO2 reduction in aqueous phase 35
3.1.8. Photocatalytic Degradation of BPA 36
3.2. Sol-gel derived Phosphated TiO2 36
3.2.1. Materials 36
3.2.2. Preparation of phosphate TiO2 photocatalysts 38
3.2.3. Characterization of Phosphated TiO2 38
3.2.4 Apparent Quantum Efficiency (AQE) 41
3.2.5 Photocatalytic CO2 reduction in gaseous phase 41
Chapter 4. Highly Active Sol-Gel-Derived Amorphous TiO2 for CO2 Reduction-Contributions of Abundant OH Groups 43
4.1 Introduction 43
4.2. Results and Discussion 44
4.2.1. Crystalline structure and Microstructure (XRD, TEM image and BET) 44
4.2.2. Optical properties and Band Gap 45
4.2.3. Surface Properties (XPS, CO2-TPD) 46
4.2.4. CO2 Photocatalytic Activities 49
4.2.5 Interfacial Charge Transfer (EPR) 53
4.2.6 Identification of Intermediates Species (DRIFT) 54
4.2.7 Role of Surface Properties in Kinetics and Mechanism . 56
4.3 Conclusion 61
Appendix A- Sol-gel derived TiO2 samples 62
Chapter 5. Photocatalytic CO2 Reduction on Phosphated TiO2 Photocatalysts in a Gas System 74
5.1 Introduction . 74
5.2. Results and Discussion 75
5.2.1. Microstructure (XRD and BET) 75
5.2.2. Optical Properties (UV-vis spectroscopy) 78
5.2.3. Surface properties (FTIR) 78
5.2.4. CO2 adsorption (CO2-TPD) 79
5.2.5 Surface Chemical Properties (XPS) 81
5.2.6. Photoluminescence (PL) Spectra 83
5.2.8. Interfacial Charge Transfer (EPR measurement) 88
5.2.9 Chemisorbed Species After CO2 Reduction 91
5.2.10. Identification of Intermediate Species (DRIFT) 95
5.3 Conclusion 98
Appendix B- Sol-gel derived phosphated TiO2 samples in gas system 99
Chapter 6. Photocatalytic CO2 Reduction using Phosphated TiO2 Catalysts in Aqueous Medium 100
6.1 Introduction . 100
6.2 Results and Discussion 101
6.2.1 Photocatalytic Activity in Aqueous Phase 101
6.2.2 Effect of Reaction Medium 103
6.2.3 Role of Surface Properties 104
6.3 Summary 104
Appendix C- Sol-gel derived phosphated TiO2 samples in Aqueous system 105
Chapter 7. Conclusion and Perspectives 106
References 108
1. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372-7408.
2. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids. Energy Environ. Sci. 2012, 5, 9217-9233.
3. Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical reviews 2014, 114, 9987-10043.
4. Shi, H.; Chen, G.; Zhang, C.; Zou, Z. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. Acs Catalysis 2014, 4, 3637-3643.
5. Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons Toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel. J. Am. Chem. Soc. 2010, 132, 14385-14387.
6. Chen, L.; Zhang, M.; Yang, J.; Li, Y.; Sivalingam, Y.; Shi, Q.; Xie, M.; Han, W. Synthesis of BiVO4 quantum dots/reduced graphene oxide composites for CO2 reduction. Materials Science in Semiconductor Processing 2019, 102, 104578.
7. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society 2017, 139, 5660-5663.
8. Mao, J.; Li, K.; Peng, T. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology 2013, 3, 2481-2498.
9. Li, K.; Peng, B.; Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis 2016, 6, 7485-7527.
10. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638.
11. Colombo, D. P.; Bowman, R. M. Does Interfacial Charge Transfer Compete with Charge Carrier Recombination? A femtosecond Diffuse Reflectance Investigation of TiO2 Nanoparticles. J. Phys. Chem. 1996, 100, 18445-18449.
12. Chang, S.-m.; Liu, W.-s. The Roles of Surface-Doped Metal Ions (V, Mn, Fe, Cu, Ce, and W) in the Interfacial Behavior of TiO2 Photocatalysts. Appl. Catal. B: Environ. 2014, 156-157, 466-475.
13. Chang, S.-m.; Liu, W.-s. Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl. Catal. B: Environ. 2011, 101, 333-342.
14. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y. Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catal. 2012, 2, 1817-1828.
15. Pan, J.; Wu, X.; Wang, L.; Liu, G.; Lu, G. Q. M.; Cheng, H.-M. Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chemical Communications 2011, 47, 8361-8363.
16. Ohtani, B.; Ogawa, Y.; Nishimoto, S.-i. Photocatalytic activity of amorphous− anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. The Journal of Physical Chemistry B 1997, 101, 3746-3752.
17. Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. Journal of the American Chemical Society 2011, 133, 16414-16417.
18. Zywitzki, D.; Jing, H.; Tuysuz, H.; Chan, C. K. High Surface Area, Amorphous Titania with Reactive Ti3+ through a Photo-Assisted Synthesis Method for Photocatalytic H2 Generation. J. Mater. Chem. A 2017, 5, 10957-10967.
19. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts. Catal. Today. 1998, 44, 327-332.
20. Li, J.; Zhang, M.; Guan, Z.; Li, Q.; He, C.; Yang, J. Synergistic Effect of Surface and Bulk Single-Electron-Trapped Oxygen Vacancy of TiO2 in the Photocatalytic Reduction of CO2. Appl. Catal. B: Environ. 2017, 206, 300-307.
21. Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601-3614.
22. Ji, Y.; Luo, Y. New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2 (101) Surface: The Essential Role of Oxygen Vacancy. J. Am. Chem. Soc. 2016, 138, 15896-15902.
23. Yu, H.; Yan, S.; Zhou, P.; Zou, Z. CO2 photoreduction on hydroxyl-group-rich mesoporous single crystal TiO2. Applied Surface Science 2018, 427, 603-607.
24. Fu, J.; Cao, S.; Yu, J.; Low, J.; Lei, Y. Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment. Dalton Transactions 2014, 43, 9158-9165.
25. Zhang, Z.; Maggard, P. A. Investigation of Photocatalytically-Active Hydrated Forms of Amorphous Titania, TiO2·nH2O. J. Photochem. Photobiol. A: Chem. 2007, 186, 8-13.
26. Bhattacharyya, K.; Danon, A.; K. Vijayan, B.; Gray, K. A.; Stair, P. C.; Weitz, E. Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: An in situ FT-IR study. The Journal of Physical Chemistry C 2013, 117, 12661-12678.
27. Chaudhary, M.; Shen, P.-f.; Chang, S.-m. The roles of phosphate and tungstate species in surface acidities of TiO2-ZrO2 binary oxides–A comparison study. Applied Surface Science 2018, 440, 369-377.
28. Ramadan, A. R.; Yacoub, N.; Amin, H.; Ragai, J. The effect of phosphate anions on surface and acidic properties of TiO2 hydrolyzed from titanium ethoxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 352, 118-125.
29. He, Z.; Wen, L.; Wang, D.; Xue, Y.; Lu, Q.; Wu, C.; Chen, J.; Song, S. Photocatalytic reduction of CO2 in aqueous solution on surface-fluorinated anatase TiO2 nanosheets with exposed {001} facets. Energy & fuels 2014, 28, 3982-3993.
30. Xu, Y.; Zhao, W.; Feng, M.; Sang, H. Preparation of p-doped TiO2 nanotubes and the effect of glycerol aqueous solution on hydrogen production of photocatalytic. Environ. Chem. 2014, 33, 129-134.
31. Peng, Y.; He, J.; Liu, Q.; Sun, Z.; Yan, W.; Pan, Z.; Wu, Y.; Liang, S.; Cheng, W.; Wei, S. Impurity concentration dependence of optical absorption for phosphorus-doped anatase TiO2. The Journal of Physical Chemistry C 2011, 115, 8184-8188.
32. Yang, K.; Dai, Y.; Huang, B. Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations. The journal of physical chemistry C 2007, 111, 12086-12090.
33. Feng, X.; Wang, P.; Hou, J.; Qian, J.; Ao, Y.; Wang, C. Significantly enhanced visible light photocatalytic efficiency of phosphorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: Synergistic effect and intermediates analysis. Journal of hazardous materials 2018, 351, 196-205.
34. Hou, J.; Cao, S.; Wu, Y.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction. Nano Energy 2017, 32, 359-366.
35. Zhang, K.; Park, J. H. Surface localization of defects in black TiO2: enhancing photoactivity or reactivity. The Journal of Physical Chemistry Letters 2017, 8, 199-207.
36. Chang, S.-m.; Hou, C.-y.; Lo, P.-h.; Chang, C.-t. Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Applied Catalysis B: Environmental 2009, 90, 233-241.
37. Wang, M.; Shen, M.; Jin, X.; Tian, J.; Li, M.; Zhou, Y.; Zhang, L.; Li, Y.; Shi, J. Oxygen vacancy generation and stabilization in CeO2–x by Cu introduction with improved CO2 photocatalytic reduction activity. ACS Catalysis 2019, 9, 4573-4581.
38. Lin, L.-Y.; Kavadiya, S.; He, X.; Wang, W.-N.; Karakocak, B. B.; Lin, Y.-C.; Berezin, M. Y.; Biswas, P. Engineering stable Pt nanoparticles and oxygen vacancies on defective TiO2 via introducing strong electronic metal-support interaction for efficient CO2 photoreduction. Chemical Engineering Journal 2020, 389, 123450.
39. Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95, 735-758.
40. Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis 2018, 8, 3602-3635.
41. Ye, L.; Liu, X.; Zhao, Q.; Xie, H.; Zan, L. Dramatic visible light photocatalytic activity of MnOx–BiOI heterogeneous photocatalysts and the selectivity of the cocatalyst. Journal of Materials Chemistry A 2013, 1, 8978-8983.
42. Zhu, S.; Liang, S.; Bi, J.; Liu, M.; Zhou, L.; Wu, L.; Wang, X. Photocatalytic reduction of CO2 with H2O to CH4 over ultrathin SnNb2O6 2D nanosheets under visible light irradiation. Green Chemistry 2016, 18, 1355-1363.
43. Wang, S.; Wang, X. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Applied Catalysis B: Environmental 2015, 162, 494-500.
44. Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. Journal of Materials Chemistry A 2016, 4, 10744-10766.
45. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Journal of the American Chemical Society 2017, 139, 5660-5663.
46. Xie, Y. P.; Liu, G.; Yin, L.; Cheng, H.-M. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. Journal of Materials Chemistry 2012, 22, 6746-6751.
47. Niu, P.; Yang, Y.; Yu, J. C.; Liu, G.; Cheng, H.-M. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chemical Communications 2014, 50, 10837-10840.
48. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89, 494-502.
49. Banerjee, A. N. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol Sci Appl 2011, 4, 35-65.
50. Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S. C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25, 1-29.
51. Haggerty, J. E. S.; Schelhas, L. T.; Kitchaev, D. A.; Mangum, J. S.; Garten, L. M.; Sun, W.; Stone, K. H.; Perkins, J. D.; Toney, M. F.; Ceder, G.; Ginley, D. S.; Gorman, B. P.; Tate, J. High-fraction brookite films from amorphous precursors. Scientific Reports 2017, 7, 15232.
52. Pipornpong, W.; Wanbayor, R.; Ruangpornvisuti, V. Adsorption CO2 on the Perfect and Oxygen Vacancy Defect Surfaces of Anatase TiO2 and its Photocatalytic Mechanism of Conversion to CO. Appl. Surf. Sci. 2011, 257, 10322-10328.
53. Liu, L.; Zhao, C.; Li, Y. Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2–x Nanoparticles at Room Temperature. J. Phys. Chem. C 2012, 116, 7904-7912.
54. Yu, H.; Yan, S.; Zhou, P.; Zou, Z. CO2 Photoreduction on Hydroxyl-Group-Rich Mesoporous Single Crystal TiO2. Appl. Surf. Sci. 2018, 427, 603-607.
55. Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T. Which is an Intermediate Species for Photocatalytic Conversion of CO2 by H2O as the Electron Donor: CO2 Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions? J. Phys. Chem. C 2017, 121, 8711-8721.
56. Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S. A. C. Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Applied Materials & Interfaces 2014, 6, 16449-16465.
57. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122.
58. Zhou, Y.; Tian, Z.; Zhao, Z.; Liu, Q.; Kou, J.; Chen, X.; Gao, J.; Yan, S.; Zou, Z. High-Yield Synthesis of Ultrathin and Uniform Bi2WO6 Square Nanoplates Benefitting from Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel under Visible Light. ACS Applied Materials & Interfaces 2011, 3, 3594-3601.
59. Guo, S.-Q.; Zhen, M.-M.; Sun, M.-Q.; Zhang, X.; Zhao, Y.-P.; Liu, L. Controlled fabrication of hierarchical WO3·H2O hollow microspheres for enhanced visible light photocatalysis. RSC Advances 2015, 5, 16376-16385.
60. Mori, K.; Yamashita, H.; Anpo, M. Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances 2012, 2, 3165-3172.
61. Liu, B.-J.; Torimoto, T.; Matsumoto, H.; Yoneyama, H. Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry 1997, 108, 187-192.
62. Corma, A.; Garcia, H. Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis 2013, 308, 168-175.
63. Xie, S.; Wang, Y.; Zhang, Q.; Deng, W.; Wang, Y. MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis 2014, 4, 3644-3653.
64. `ihor, M.; Kp í, K.; Praus, P.; Kozak, O.; Obalová, L. In Influence of Reaction Medium on CO2 Photocatalytic Reduction Yields over ZnS-MMT, 2012.
65. Fan, J.; Liu, E.-z.; Tian, L.; Hu, X.-y.; He, Q.; Sun, T. Synergistic Effect of N and Ni 2 + on Nanotitania in Photocatalytic Reduction of CO2. Journal of Environmental Engineering 2011, 137, 171-176.
66. Pan, Y.-X.; You, Y.; Xin, S.; Li, Y.; Fu, G.; Cui, Z.; Men, Y.-L.; Cao, F.-F.; Yu, S.-H.; Goodenough, J. B. Photocatalytic CO2 Reduction by Carbon-Coated Indium-Oxide Nanobelts. Journal of the American Chemical Society 2017, 139, 4123-4129.
67. Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials 2014, 57, 70-100.
68. Chang, X.; Wang, T.; Gong, J. CO2 Photo-reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environ. Sci. 2016, 9, 2177-2196.
69. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P. Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania. J. Am. Chem. Soc. 2011, 133, 3964-3971.
70. Ikeue, K.; Yamashita, H.; Anpo, M.; Takewaki, T. Photocatalytic Reduction of CO2 with H2O on Ti−β Zeolite Photocatalysts:  Effect of the Hydrophobic and Hydrophilic Properties. The Journal of Physical Chemistry B 2001, 105, 8350-8355.
71. Li, Y. F.; Soheilnia, N.; Greiner, M.; Ulmer, U.; Wood, T.; Jelle, A. A.; Dong, Y.; Yin Wong, A. P.; Jia, J.; Ozin, G. A. Pd@HyWO3–x Nanowires Efficiently Catalyze the CO2 Heterogeneous Reduction Reaction with a Pronounced Light Effect. ACS Applied Materials & Interfaces 2019, 11, 5610-5615.
72. Xing, M.; Zhou, Y.; Dong, C.; Cai, L.; Zeng, L.; Shen, B.; Pan, L.; Dong, C.; Chai, Y.; Zhang, J.; Yin, Y. Modulation of the Reduction Potential of TiO2–x by Fluorination for Efficient and Selective CH4 Generation from CO2 Photoreduction. Nano Letters 2018, 18, 3384-3390.
73. Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core–Shell Structure. Angewandte Chemie International Edition 2013, 52, 5776-5779.
74. Neaţu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. J. Am. Chem. Soc. 2014, 136, 15969-15976.
75. Meng, A.; Wu, S.; Cheng, B.; Yu, J.; Xu, J. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance. Journal of Materials Chemistry A 2018, 6, 4729-4736.
76. Maruska, H. P.; Ghosh, A. K. Transition-metal dopants for extending the response of titanate photoelectrolysis anodes. Solar Energy Materials 1979, 1, 237-247.
77. Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chemical Reviews 2014, 114, 9824-9852.
78. Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42.
79. Teh, C. M.; Mohamed, A. R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. Journal of Alloys and Compounds 2011, 509, 1648-1660.
80. Liu, L.; Gao, F.; Zhao, H.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental 2013, 134-135, 349-358.
81. Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry 2011, 21, 13452-13457.
82. Xu, H.; Ouyang, S.; Liu, L.; Wang, D.; Kako, T.; Ye, J. Porous-structured Cu2O/TiO2 nanojunction material toward efficient CO2 photoreduction. Nanotechnology 2014, 25, 165402.
83. Wei, Y.; Jiao, J.; Zhao, Z.; Zhong, W.; Li, J.; Liu, J.; Jiang, G.; Duan, A. 3D ordered macroporous TiO2-supported Pt@CdS core–shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. Journal of Materials Chemistry A 2015, 3, 11074-11085.
84. Meng, X.; Ouyang, S.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chemical Communications 2014, 50, 11517-11519.
85. Liao, Y.; Cao, S.-W.; Yuan, Y.; Gu, Q.; Zhang, Z.; Xue, C. Efficient CO2 Capture and Photoreduction by Amine-Functionalized TiO2. Chemistry – A European Journal 2014, 20, 10220-10222.
86. Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2 for Improved Solar Fuel Production. Nano Letters 2011, 11, 2865-2870.
87. Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686.
88. Gui, M. M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A. R. Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Solar Energy Materials and Solar Cells 2014, 122, 183-189.
89. Li, R.; Zhang, W.; Zhou, K. Metal–Organic-Framework-Based Catalysts for Photoreduction of CO2. Advanced Materials 2018, 30, 1705512.
90. Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H.-L.; Jiang, J.; Zhang, Q.; Xie, Y.; Xiong, Y. Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials 2014, 26, 4783-4788.
91. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. Journal of the American Chemical Society 2011, 133, 3964-3971.
92. Daskalaki, V. M.; Panagiotopoulou, P.; Kondarides, D. I. Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming. Chemical Engineering Journal 2011, 170, 433-439.
93. Xiong, Z.; Lei, Z.; Li, Y.; Dong, L.; Zhao, Y.; Zhang, J. A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2018, 36, 24-47.
94. Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale. 2013, 5, 3601-3614.
95. Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xin, Z.; Wang, J.; Ke, X.-k.; Sheng, G.; Yan, S.; Zou, Z. Oxygen-Vacancy-Activated CO2 Splitting over Amorphous Oxide Semiconductor Photocatalyst. ACS Catal. 2018, 8, 516-525.
96. Fu, J.; Cao, S.; Yu, J.; Low, J.; Lei, Y. Enhanced Photocatalytic CO2-Reduction Activity of Electrospun Mesoporous TiO2 Nanofibers by Solvothermal Treatment. Dalton Trans. 2014, 43, 9158-9165.
97. Ghuman, K. K.; Wood, T. E.; Hoch, L. B.; Mims, C. A.; Ozin, G. A.; Singh, C. V. Illuminating CO2 Reduction on Frustrated Lewis Pair Surfaces: Investigating the Role of Surface Hydroxides and Oxygen Vacancies on Nanocrystalline In2O3−x(OH)y. Phys. Chem. Chem. Phys. 2015, 17, 14623-14635.
98. Fan, C.; Chen, C.; Wang, J.; Fu, X.; Ren, Z.; Qian, G.; Wang, Z. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Scientific reports 2015, 5, 11712.
99. Di Paola, A.; Bellardita, M.; Palmisano, L.; Barbieriková, Z.; Brezová, V. Influence of Crystallinity and OH Surface Density on the Photocatalytic Activity of TiO2 Powders. J. Photochem. Photobiol. A: Chem. 2014, 273, 59-67.
100. Peng, L.; Qisui, W.; Xi, L.; Chaocan, Z. Investigation of the States of Water and OH Groups on the Surface of Silica. Colloids Surf. A 2009, 334, 112-115.
101. Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E. OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19, 160-165.
102. Wang, X.; Shen, M.; Song, L.; Su, Y.; Wang, J. Surface Basicity on Bulk Modified Phosphorus Alumina through Different Synthesis Methods. Phys. Chem. Chem. Phys. 2011, 13, 15589-15596.
103. Nguyen Thanh, D.; Kikhtyanin, O.; Ramos, R.; Kothari, M.; Ulbrich, P.; Munshi, T.; Kubička, D. Nanosized TiO2 —A Promising Catalyst for the Aldol Condensation of Furfural with Acetone in Biomass Upgrading. Catal. Today. 2016, 277, 97-107.
104. Chen, E.; Bevilacqua, M.; Tavagnacco, C.; Montini, T.; Yang, C.-M.; Fornasiero, P. High surface area N/O co-doped carbon materials: Selective electrocatalysts for O2 reduction to H2O2. Catalysis Today 2019.
105. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69-96.
106. Hirakawa, T.; Nosaka, Y. Properties of O2•- and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions. Langmuir 2002, 18, 3247-3254.
107. Nakamura, R.; Okamura, T.; Ohashi, N.; Imanishi, A.; Nakato, Y. Molecular Mechanisms of Photoinduced Oxygen Evolution, PL Emission, and Surface Roughening at Atomically Smooth (110) and (100) n-TiO2 (Rutile) Surfaces in Aqueous Acidic Solutions. J. Am. Chem. Soc. 2005, 127, 12975-12983.
108. Krylova, G.; Na, C. Photoinduced Crystallization and Activation of Amorphous Titanium Dioxide. J. Phys. Chem. C 2015, 119, 12400-12407.
109. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J. EPR Study of the Surface Characteristics of Nanostructured TiO2 under UV Irradiation. Langmuir 2001, 17, 5368-5374.
110. Masakazu, A.; Takahito, S.; Yutaka, K. ESR and Photoluminescence Evidence for the Photocatalytic Formation of Hydroxyl Radicals on Small TiO2 Particles. Chem. Lett. 1985, 14, 1799-1802.
111. Chiesa, M.; Paganini, M. C.; Livraghi, S.; Giamello, E. Charge Trapping in TiO2 Polymorphs as Seen by Electron Paramagnetic Resonance Spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 9435-9447.
112. Li, G.; Dimitrijevic, N. M.; Chen, L.; Nichols, J. M.; Rajh, T.; Gray, K. A. The Important Role of Tetrahedral Ti4+ Sites in the Phase Transformation and Photocatalytic Activity of TiO2 Nanocomposites. J. Am. Chem. Soc. 2008, 130, 5402-5403.
113. Kumar, C. P.; Gopal, N. O.; Wang, T. C.; Wong, M.-S.; Ke, S. C. EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. J. Phys. Chem. B 2006, 110, 5223-5229.
114. Fittipaldi, M.; Gatteschi, D.; Fornasiero, P. The Power of EPR Techniques in Revealing Active Sites in Heterogeneous Photocatalysis: The Case of Anion Doped TiO2. Catal. Today. 2013, 206, 2-11.
115. Thompson, T. L.; Yates, J. T. TiO2-Based Photocatalysis: Surface Defects, Oxygen and Charge Transfer. Top. Catal. 2005, 35, 197-210.
116. Xiaoxin, Z.; Jikai, L.; Juan, S.; Fan, Z.; Jiesheng, C.; Pingyun, F. Facile Synthesis of Thermal- and Photostable Titania with Paramagnetic Oxygen Vacancies for Visible-Light Photocatalysis. Chem. Eur. J. 2013, 19, 2866-2873.
117. Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xin, Z.; Wang, J.; Ke, X.-k.; Sheng, G.; Yan, S.; Zou, Z. Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst. ACS Catalysis 2018, 8, 516-525.
118. Coenen, K.; Gallucci, F.; Mezari, B.; Hensen, E.; van Sint Annaland, M. An in-situ IR Study on the Adsorption of CO2 and H2O on Hydrotalcites. J. CO2 Util. 2018, 24, 228-239.
119. Herburger, A.; Ončák, M.; Siu, C.-K.; Demissie, E. G.; Heller, J.; Tang, W. K.; Beyer, M. K. Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO2.−(H2O)n (n=2–61) in the C−O Stretch Region. Chem. Eur. J. 2019, 25, 10165-10171.
120. Pan, Q.; Peng, J.; Wang, S.; Wang, S. In situ FTIR Spectroscopic Study of the CO2 Methanation Mechanism on Ni/Ce0.5Zr0.5O2. Catal. Sci. Technol. 2014, 4, 502-509.
121. Khosa, M.; Mazhar, M.; Ali, S.; Molloy, K.; Dastgir, S.; Shaheen, F. Synthesis, Spectroscopic (FT-IR, 1H, 13C, Mass Spectrometry), and Biological Investigation of Five-Coordinated Germanium-Substituted Tricyclohexyl Antimony Dipropionates: Crystal Structure of Tricyclohexylantimony Dibromide. Turk. J. Chem. 2006, 30, 731-743.
122. Wu, J. C. S.; Huang, C.-W. In situ DRIFTS Study of Photocatalytic CO2 Reduction under UV Irradiation. Front. Chem. Eng. 2010, 4, 120-126.
123. Paparo, A.; Okuda, J. Carbonite, the Dianion of Carbon Dioxide and its Metal Complexes. J. Organomet. Chem. 2018, 869, 270-274.
124. Han, C.; Zhang, R.; Ye, Y.; Wang, L.; Ma, Z.; Su, F.; Xie, H.; Zhou, Y.; Wong, P. K.; Ye, L. Chainmail Co-catalyst of NiO Shell-Encapsulated Ni for Improving Photocatalytic CO2 Reduction over g-C3N4. J. Mater. Chem. A 2019, 7, 9726-9735.
125. Raskó, J.; Kecskés, T.; Kiss, J. Adsorption and Reaction of Formaldehyde on TiO2-Supported Rh Catalysts Studied by FTIR and Mass Spectrometry. J. Catal. 2004, 226, 183-191.
126. Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc. 2011, 133, 16414-16417.
127. Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Mechanism of Water Photooxidation Reaction at Atomically Flat TiO2 (Rutile) (110) and (100) Surfaces: Dependence on Solution pH. J. Am. Chem. Soc. 2007, 129, 11569-78.
128. Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Smith, L. J.; O'Hare, D.; Zhang, T. Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water. Adv. Mater. 2015, 27, 7824-7831.
129. Akhter, P.; Hussain, M.; Saracco, G.; Russo, N. Novel Nanostructured-TiO2 Materials for the Photocatalytic Reduction of CO2 Greenhouse Gas to Hydrocarbons and Syngas. Fuel 2015, 149, 55-65.
130. Gonell, F.; Puga, A. V.; Julián-López, B.; García, H.; Corma, A. Copper-Doped Titania Photocatalysts for Simultaneous Reduction of CO2 and Production of H2 from Aqueous Sulfide. Appl. Catal. B: Environ. 2016, 180, 263-270.
131. Xiong, J.; Song, P.; Di, J.; Li, H. Ultrathin Structured Photocatalysts: A Versatile Platform for CO2 Reduction. Appl. Catal. B: Environ. 2019, 256, 117788.
132. Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Product Selectivity of Photocatalytic CO2 Reduction Reactions. Mater. Today. 2019.
133. Ye, L.; Mao, J.; Peng, T.; Zan, L.; Zhang, Y. Opposite Photocatalytic Activity Orders of Low-Index Facets of Anatase TiO2 for Liquid Phase Dye Degradation and Gaseous Phase CO2 Photoreduction. Phys. Chem. Chem. Phys. 2014, 16, 15675-15680.
134. Meng, X.; Ouyang, S.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. Photocatalytic CO2 Conversion over Alkali Modified TiO2 without Loading Noble Metal Cocatalyst. Chem. Commun. 2014, 50, 11517-11519.
135. Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced Photocatalytic CO2-Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. J. Am. Chem. Soc. 2014, 136, 8839-8842.
136. Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y. Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light. ACS Catal. 2016, 6, 1097-1108.
137. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 Particle Size on the Photocatalytic Reduction of CO2. Appl. Catal. B: Environ. 2009, 89, 494-502.
138. He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S. Enhancement of Photocatalytic Reduction of CO2 to CH4 over TiO2 Nanosheets by Modifying with Sulfuric Acid. Appl. Surf. Sci. 2016, 364, 416-427.
139. Abdullah, H.; Khan, M. M. R.; Ong, H. R.; Yaakob, Z. Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. Journal of CO2 Utilization 2017, 22, 15-32.
140. Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. Acs Catalysis 2016, 6, 1097-1108.
141. Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angewandte Chemie 2018, 130, 6162-6167.
142. Wu, P.; Zeng, Y.; Wang, C. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods. Biomaterials 2004, 25, 1123-1130.
143. Yu, H.-F. Phase development and photocatalytic ability of gel-derived P-doped TiO2. Journal of Materials Research 2007, 22, 2565-2572.
144. Reidy, D.; Holmes, J.; Morris, M. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. Journal of the European Ceramic Society 2006, 26, 1527-1534.
145. Li, F.; Jiang, Y.; Xia, M.; Sun, M.; Xue, B.; Liu, D.; Zhang, X. Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. The Journal of Physical Chemistry C 2009, 113, 18134-18141.
146. Bhaumik, A.; Inagaki, S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. Journal of the American Chemical Society 2001, 123, 691-696.
147. Zheng, R.; Lin, L.; Xie, J.; Zhu, Y.; Xie, Y. State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. The Journal of Physical Chemistry C 2008, 112, 15502-15509.
148. Xie, K.; Umezawa, N.; Zhang, N.; Reunchan, P.; Zhang, Y.; Ye, J. Self-doped SrTiO3− δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy & Environmental Science 2011, 4, 4211-4219.
149. Pokrovski, K.; Jung, K. T.; Bell, A. T. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia. Langmuir 2001, 17, 4297-4303.
150. Zhu, C.; Wei, X.; Li, W.; Pu, Y.; Sun, J.; Tang, K.; Wan, H.; Ge, C.; Zou, W.; Dong, L. Crystal-Plane Effects of CeO2 {110} and CeO2 {100} on Photocatalytic CO2 Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups. ACS Sustainable Chemistry & Engineering 2020, 8, 14397-14406.
151. Xia, Y.; Jiang, Y.; Li, F.; Xia, M.; Xue, B.; Li, Y. Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Applied Surface Science 2014, 289, 306-315.
152. Baunack, S.; Oswald, S.; Scharnweber, D. Depth distribution and bonding states of phosphorus implanted in titanium investigated by AES, XPS and SIMS. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 1998, 26, 471-479.
153. Xu, Y.; Wu, S.; Wan, P.; Sun, J.; Hood, Z. D. Introducing Ti3+ defects based on lattice distortion for enhanced visible light photoreactivity in TiO2 microspheres. RSC advances 2017, 7, 32461-32467.
154. Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 2003, 15, 2280-2286.
155. Canepa, P.; Gonella, G.; Pinto, G.; Grachev, V.; Canepa, M.; Cavalleri, O. Anchoring of Aminophosphonates on Titanium Oxide for Biomolecular Coupling. The Journal of Physical Chemistry C 2019, 123, 16843-16850.
156. Gopal, N. O.; Lo, H.-H.; Ke, T.-F.; Lee, C.-H.; Chou, C.-C.; Wu, J.-D.; Sheu, S.-C.; Ke, S.-C. Visible light active phosphorus-doped TiO2 nanoparticles: an EPR evidence for the enhanced charge separation. The Journal of Physical Chemistry C 2012, 116, 16191-16197.
157. Xiang, Q.; Lv, K.; Yu, J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental 2010, 96, 557-564.
158. Sarkar, A.; Khan, G. G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 2019, 11, 3414-3444.
159. Sarkar, A.; Karmakar, K.; Singh, A. K.; Mandal, K.; Khan, G. G. Surface functionalized H2Ti3O7 nanowires engineered for visible-light photoswitching, electrochemical water splitting, and photocatalysis. Physical Chemistry Chemical Physics 2016, 18, 26900-26912.
160. Bhosale, S. S.; Kharade, A. K.; Jokar, E.; Fathi, A.; Chang, S.-m.; Diau, E. W.-G. Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas–Solid Interface. Journal of the American Chemical Society 2019, 141, 20434-20442.
161. Yu, H.; Li, J.; Zhang, Y.; Yang, S.; Han, K.; Dong, F.; Ma, T.; Huang, H. Three-in-One Oxygen Vacancies: Whole Visible-Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO2 Photoreduction. Angewandte Chemie International Edition 2019, 58, 3880-3884.
162. Santara, B.; Giri, P. K.; Imakita, K.; Fujii, M. Evidence for Ti Interstitial Induced Extended Visible Absorption and Near Infrared Photoluminescence from Undoped TiO2 Nanoribbons: An In Situ Photoluminescence Study. The Journal of Physical Chemistry C 2013, 117, 23402-23411.
163. Zhu, Q.; Peng, Y.; Lin, L.; Fan, C.-M.; Gao, G.-Q.; Wang, R.-X.; Xu, A.-W. Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. Journal of Materials Chemistry A 2014, 2, 4429-4437.
164. Nishikawa, M.; Sakamoto, H.; Nosaka, Y. Reinvestigation of the Photocatalytic Reaction Mechanism for Pt-Complex-Modified TiO2 under Visible Light Irradiation by Means of ESR Spectroscopy and Chemiluminescence Photometry. The Journal of Physical Chemistry A 2012, 116, 9674-9679.
165. Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. Preparation of highly visible-light active N-doped TiO2 photocatalyst. Journal of Materials Chemistry 2010, 20, 5301-5309.
166. Liu, H.; Ma, H. T.; Li, X. Z.; Li, W. Z.; Wu, M.; Bao, X. H. The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 2003, 50, 39-46.
167. Nakaoka, Y.; Nosaka, Y. ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A: Chemistry 1997, 110, 299-305.
168. Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xin, Z.; Wang, J.; Ke, X.-k.; Sheng, G.; Yan, S.; Zou, Z. Oxygen-Vacancy-Activated CO2 Splitting over Amorphous Oxide Semiconductor Photocatalyst. ACS Catalysis 2018, 8, 516-525.
169. Hou, J.; Cheng, H.; Takeda, O.; Zhu, H. Three-Dimensional Bimetal-Graphene-Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide. Angewandte Chemie International Edition 2015, 54, 8480-8484.
170. Wang, H.; Zhang, W.; Lu, L.; Liu, D.; Liu, D.; Li, T.; Yan, S.; Zhao, S.; Zou, Z. Dual-metal hydroxide with ordering frustrated Lewis pairs for photoactivating CO2 to CO. Applied Catalysis B: Environmental 2021, 283, 119639.
171. Chastain, J.; King Jr, R. C. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation 1992, 40, 221.
172. Lu, L.; Wang, B.; Wang, S.; Shi, Z.; Yan, S.; Zou, Z. La2O3-Modified LaTiO2N Photocatalyst with Spatially Separated Active Sites Achieving Enhanced CO2 Reduction. Advanced Functional Materials 2017, 27, 1702447.
173. Fukuda, N.; Kanazawa, M.; Tsuru, K.; Tsuchiya, A.; Sunarso; Toita, R.; Mori, Y.; Nakashima, Y.; Ishikawa, K. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia. Scientific Reports 2018, 8, 16887.
174. Li, Y.; Gao, Y. Interplay between Water and TiO2 Anatase (101) Surface with Subsurface Oxygen Vacancy. Physical Review Letters 2014, 112, 206101.
175. Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Science Advances 2017, 3, e1701290.
176. Wu, W.; Bhattacharyya, K.; Gray, K.; Weitz, E. Photoinduced Reactions of Surface-Bound Species on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FTIR Study. The Journal of Physical Chemistry C 2013, 117, 20643-20655.
177. Yang, C.-C.; Yu, Y.-H.; van der Linden, B.; Wu, J. C. S.; Mul, G. Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? J. Am. Chem. Soc. 2010, 132, 8398-8406.
178. Chong, R.; Fan, Y.; Du, Y.; Liu, L.; Chang, Z.; Li, D. Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. International Journal of Hydrogen Energy 2018, 43, 22329-22339.
179. Diallo-Garcia, S.; Osman, M. B.; Krafft, J.-M.; Casale, S.; Thomas, C.; Kubo, J.; Costentin, G. Identification of Surface Basic Sites and Acid–Base Pairs of Hydroxyapatite. The Journal of Physical Chemistry C 2014, 118, 12744-12757.
180. Yin, G.; Huang, X.; Chen, T.; Zhao, W.; Bi, Q.; Xu, J.; Han, Y.; Huang, F. Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions: Preparation, Characterization, and Reaction Mechanism of CO2 Reduction. ACS Catalysis 2018, 8, 1009-1017.
181. Morterra, C.; Chiorino, A.; Boccuzzi, F.; Fisicaro, E. A Spectroscopic Study of Anatase Properties. Zeitschrift für Physikalische Chemie 1981, 124, 211-222.
182. Li, Y.; Walsh, A. G.; Li, D.; Do, D.; Ma, H.; Wang, C.; Zhang, P.; Zhang, X. W-Doped TiO2 for photothermocatalytic CO2 reduction. Nanoscale 2020, 12, 17245-17252.
183. Samantaray, S. K.; Mohapatra, P.; Parida, K. Physico-chemical characterisation and photocatalytic activity of nanosized SO42−/TiO2 towards degradation of 4-nitrophenol. Journal of Molecular Catalysis A: Chemical 2003, 198, 277-287.
184. Zhu, Y.; Li, J.; Dong, C.-L.; Ren, J.; Huang, Y.-C.; Zhao, D.; Cai, R.; Wei, D.; Yang, X.; Lv, C. Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Applied Catalysis B: Environmental 2019, 255, 117764.
185. Colón, G.; Sanchez-Espana, J.; Hidalgo, M.; Navío, J. Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry 2006, 179, 20-27.
186. Sorcar, S.; Thompson, J.; Hwang, Y.; Park, Y. H.; Majima, T.; Grimes, C. A.; Durrant, J. R.; In, S.-I. High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C 1 to C 2 products. Energy & Environmental Science 2018, 11, 3183-3193.
187. Wu, J. C.; Lin, H.-M.; Lai, C.-L. Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General 2005, 296, 194-200.
188. Yu, B.; Zhou, Y.; Li, P.; Tu, W.; Li, P.; Tang, L.; Ye, J.; Zou, Z. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 2016, 8, 11870-11874.
189. Sharma, A.; Lee, B.-K. Photocatalytic reduction of carbon dioxide to methanol using nickel-loaded TiO2 supported on activated carbon fiber. Catalysis Today 2017, 298, 158-167.
190. Chen, S.; Wang, H.; Kang, Z.; Jin, S.; Zhang, X.; Zheng, X.; Qi, Z.; Zhu, J.; Pan, B.; Xie, Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nature communications 2019, 10, 1-8.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *