|
1. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372-7408. 2. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids. Energy Environ. Sci. 2012, 5, 9217-9233. 3. Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical reviews 2014, 114, 9987-10043. 4. Shi, H.; Chen, G.; Zhang, C.; Zou, Z. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. Acs Catalysis 2014, 4, 3637-3643. 5. Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons Toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel. J. Am. Chem. Soc. 2010, 132, 14385-14387. 6. Chen, L.; Zhang, M.; Yang, J.; Li, Y.; Sivalingam, Y.; Shi, Q.; Xie, M.; Han, W. Synthesis of BiVO4 quantum dots/reduced graphene oxide composites for CO2 reduction. Materials Science in Semiconductor Processing 2019, 102, 104578. 7. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society 2017, 139, 5660-5663. 8. Mao, J.; Li, K.; Peng, T. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology 2013, 3, 2481-2498. 9. Li, K.; Peng, B.; Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis 2016, 6, 7485-7527. 10. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638. 11. Colombo, D. P.; Bowman, R. M. Does Interfacial Charge Transfer Compete with Charge Carrier Recombination? A femtosecond Diffuse Reflectance Investigation of TiO2 Nanoparticles. J. Phys. Chem. 1996, 100, 18445-18449. 12. Chang, S.-m.; Liu, W.-s. The Roles of Surface-Doped Metal Ions (V, Mn, Fe, Cu, Ce, and W) in the Interfacial Behavior of TiO2 Photocatalysts. Appl. Catal. B: Environ. 2014, 156-157, 466-475. 13. Chang, S.-m.; Liu, W.-s. Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl. Catal. B: Environ. 2011, 101, 333-342. 14. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y. Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catal. 2012, 2, 1817-1828. 15. Pan, J.; Wu, X.; Wang, L.; Liu, G.; Lu, G. Q. M.; Cheng, H.-M. Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chemical Communications 2011, 47, 8361-8363. 16. Ohtani, B.; Ogawa, Y.; Nishimoto, S.-i. Photocatalytic activity of amorphous− anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. The Journal of Physical Chemistry B 1997, 101, 3746-3752. 17. Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. Journal of the American Chemical Society 2011, 133, 16414-16417. 18. Zywitzki, D.; Jing, H.; Tuysuz, H.; Chan, C. K. High Surface Area, Amorphous Titania with Reactive Ti3+ through a Photo-Assisted Synthesis Method for Photocatalytic H2 Generation. J. Mater. Chem. A 2017, 5, 10957-10967. 19. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts. Catal. Today. 1998, 44, 327-332. 20. Li, J.; Zhang, M.; Guan, Z.; Li, Q.; He, C.; Yang, J. Synergistic Effect of Surface and Bulk Single-Electron-Trapped Oxygen Vacancy of TiO2 in the Photocatalytic Reduction of CO2. Appl. Catal. B: Environ. 2017, 206, 300-307. 21. Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601-3614. 22. Ji, Y.; Luo, Y. New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2 (101) Surface: The Essential Role of Oxygen Vacancy. J. Am. Chem. Soc. 2016, 138, 15896-15902. 23. Yu, H.; Yan, S.; Zhou, P.; Zou, Z. CO2 photoreduction on hydroxyl-group-rich mesoporous single crystal TiO2. Applied Surface Science 2018, 427, 603-607. 24. Fu, J.; Cao, S.; Yu, J.; Low, J.; Lei, Y. Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment. Dalton Transactions 2014, 43, 9158-9165. 25. Zhang, Z.; Maggard, P. A. Investigation of Photocatalytically-Active Hydrated Forms of Amorphous Titania, TiO2·nH2O. J. Photochem. Photobiol. A: Chem. 2007, 186, 8-13. 26. Bhattacharyya, K.; Danon, A.; K. Vijayan, B.; Gray, K. A.; Stair, P. C.; Weitz, E. Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: An in situ FT-IR study. The Journal of Physical Chemistry C 2013, 117, 12661-12678. 27. Chaudhary, M.; Shen, P.-f.; Chang, S.-m. The roles of phosphate and tungstate species in surface acidities of TiO2-ZrO2 binary oxides–A comparison study. Applied Surface Science 2018, 440, 369-377. 28. Ramadan, A. R.; Yacoub, N.; Amin, H.; Ragai, J. The effect of phosphate anions on surface and acidic properties of TiO2 hydrolyzed from titanium ethoxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 352, 118-125. 29. He, Z.; Wen, L.; Wang, D.; Xue, Y.; Lu, Q.; Wu, C.; Chen, J.; Song, S. Photocatalytic reduction of CO2 in aqueous solution on surface-fluorinated anatase TiO2 nanosheets with exposed {001} facets. Energy & fuels 2014, 28, 3982-3993. 30. Xu, Y.; Zhao, W.; Feng, M.; Sang, H. Preparation of p-doped TiO2 nanotubes and the effect of glycerol aqueous solution on hydrogen production of photocatalytic. Environ. Chem. 2014, 33, 129-134. 31. Peng, Y.; He, J.; Liu, Q.; Sun, Z.; Yan, W.; Pan, Z.; Wu, Y.; Liang, S.; Cheng, W.; Wei, S. Impurity concentration dependence of optical absorption for phosphorus-doped anatase TiO2. The Journal of Physical Chemistry C 2011, 115, 8184-8188. 32. Yang, K.; Dai, Y.; Huang, B. Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations. The journal of physical chemistry C 2007, 111, 12086-12090. 33. Feng, X.; Wang, P.; Hou, J.; Qian, J.; Ao, Y.; Wang, C. Significantly enhanced visible light photocatalytic efficiency of phosphorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: Synergistic effect and intermediates analysis. Journal of hazardous materials 2018, 351, 196-205. 34. Hou, J.; Cao, S.; Wu, Y.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction. Nano Energy 2017, 32, 359-366. 35. Zhang, K.; Park, J. H. Surface localization of defects in black TiO2: enhancing photoactivity or reactivity. The Journal of Physical Chemistry Letters 2017, 8, 199-207. 36. Chang, S.-m.; Hou, C.-y.; Lo, P.-h.; Chang, C.-t. Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Applied Catalysis B: Environmental 2009, 90, 233-241. 37. Wang, M.; Shen, M.; Jin, X.; Tian, J.; Li, M.; Zhou, Y.; Zhang, L.; Li, Y.; Shi, J. Oxygen vacancy generation and stabilization in CeO2–x by Cu introduction with improved CO2 photocatalytic reduction activity. ACS Catalysis 2019, 9, 4573-4581. 38. Lin, L.-Y.; Kavadiya, S.; He, X.; Wang, W.-N.; Karakocak, B. B.; Lin, Y.-C.; Berezin, M. Y.; Biswas, P. Engineering stable Pt nanoparticles and oxygen vacancies on defective TiO2 via introducing strong electronic metal-support interaction for efficient CO2 photoreduction. Chemical Engineering Journal 2020, 389, 123450. 39. Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95, 735-758. 40. Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis 2018, 8, 3602-3635. 41. Ye, L.; Liu, X.; Zhao, Q.; Xie, H.; Zan, L. Dramatic visible light photocatalytic activity of MnOx–BiOI heterogeneous photocatalysts and the selectivity of the cocatalyst. Journal of Materials Chemistry A 2013, 1, 8978-8983. 42. Zhu, S.; Liang, S.; Bi, J.; Liu, M.; Zhou, L.; Wu, L.; Wang, X. Photocatalytic reduction of CO2 with H2O to CH4 over ultrathin SnNb2O6 2D nanosheets under visible light irradiation. Green Chemistry 2016, 18, 1355-1363. 43. Wang, S.; Wang, X. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Applied Catalysis B: Environmental 2015, 162, 494-500. 44. Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. Journal of Materials Chemistry A 2016, 4, 10744-10766. 45. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Journal of the American Chemical Society 2017, 139, 5660-5663. 46. Xie, Y. P.; Liu, G.; Yin, L.; Cheng, H.-M. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. Journal of Materials Chemistry 2012, 22, 6746-6751. 47. Niu, P.; Yang, Y.; Yu, J. C.; Liu, G.; Cheng, H.-M. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chemical Communications 2014, 50, 10837-10840. 48. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89, 494-502. 49. Banerjee, A. N. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol Sci Appl 2011, 4, 35-65. 50. Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S. C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25, 1-29. 51. Haggerty, J. E. S.; Schelhas, L. T.; Kitchaev, D. A.; Mangum, J. S.; Garten, L. M.; Sun, W.; Stone, K. H.; Perkins, J. D.; Toney, M. F.; Ceder, G.; Ginley, D. S.; Gorman, B. P.; Tate, J. High-fraction brookite films from amorphous precursors. Scientific Reports 2017, 7, 15232. 52. Pipornpong, W.; Wanbayor, R.; Ruangpornvisuti, V. Adsorption CO2 on the Perfect and Oxygen Vacancy Defect Surfaces of Anatase TiO2 and its Photocatalytic Mechanism of Conversion to CO. Appl. Surf. Sci. 2011, 257, 10322-10328. 53. Liu, L.; Zhao, C.; Li, Y. Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2–x Nanoparticles at Room Temperature. J. Phys. Chem. C 2012, 116, 7904-7912. 54. Yu, H.; Yan, S.; Zhou, P.; Zou, Z. CO2 Photoreduction on Hydroxyl-Group-Rich Mesoporous Single Crystal TiO2. Appl. Surf. Sci. 2018, 427, 603-607. 55. Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T. Which is an Intermediate Species for Photocatalytic Conversion of CO2 by H2O as the Electron Donor: CO2 Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions? J. Phys. Chem. C 2017, 121, 8711-8721. 56. Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S. A. C. Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Applied Materials & Interfaces 2014, 6, 16449-16465. 57. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122. 58. Zhou, Y.; Tian, Z.; Zhao, Z.; Liu, Q.; Kou, J.; Chen, X.; Gao, J.; Yan, S.; Zou, Z. High-Yield Synthesis of Ultrathin and Uniform Bi2WO6 Square Nanoplates Benefitting from Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel under Visible Light. ACS Applied Materials & Interfaces 2011, 3, 3594-3601. 59. Guo, S.-Q.; Zhen, M.-M.; Sun, M.-Q.; Zhang, X.; Zhao, Y.-P.; Liu, L. Controlled fabrication of hierarchical WO3·H2O hollow microspheres for enhanced visible light photocatalysis. RSC Advances 2015, 5, 16376-16385. 60. Mori, K.; Yamashita, H.; Anpo, M. Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances 2012, 2, 3165-3172. 61. Liu, B.-J.; Torimoto, T.; Matsumoto, H.; Yoneyama, H. Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry 1997, 108, 187-192. 62. Corma, A.; Garcia, H. Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis 2013, 308, 168-175. 63. Xie, S.; Wang, Y.; Zhang, Q.; Deng, W.; Wang, Y. MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catalysis 2014, 4, 3644-3653. 64. `ihor, M.; Kp í, K.; Praus, P.; Kozak, O.; Obalová, L. In Influence of Reaction Medium on CO2 Photocatalytic Reduction Yields over ZnS-MMT, 2012. 65. Fan, J.; Liu, E.-z.; Tian, L.; Hu, X.-y.; He, Q.; Sun, T. Synergistic Effect of N and Ni 2 + on Nanotitania in Photocatalytic Reduction of CO2. Journal of Environmental Engineering 2011, 137, 171-176. 66. Pan, Y.-X.; You, Y.; Xin, S.; Li, Y.; Fu, G.; Cui, Z.; Men, Y.-L.; Cao, F.-F.; Yu, S.-H.; Goodenough, J. B. Photocatalytic CO2 Reduction by Carbon-Coated Indium-Oxide Nanobelts. Journal of the American Chemical Society 2017, 139, 4123-4129. 67. Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials 2014, 57, 70-100. 68. Chang, X.; Wang, T.; Gong, J. CO2 Photo-reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environ. Sci. 2016, 9, 2177-2196. 69. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P. Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania. J. Am. Chem. Soc. 2011, 133, 3964-3971. 70. Ikeue, K.; Yamashita, H.; Anpo, M.; Takewaki, T. Photocatalytic Reduction of CO2 with H2O on Ti−β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties. The Journal of Physical Chemistry B 2001, 105, 8350-8355. 71. Li, Y. F.; Soheilnia, N.; Greiner, M.; Ulmer, U.; Wood, T.; Jelle, A. A.; Dong, Y.; Yin Wong, A. P.; Jia, J.; Ozin, G. A. Pd@HyWO3–x Nanowires Efficiently Catalyze the CO2 Heterogeneous Reduction Reaction with a Pronounced Light Effect. ACS Applied Materials & Interfaces 2019, 11, 5610-5615. 72. Xing, M.; Zhou, Y.; Dong, C.; Cai, L.; Zeng, L.; Shen, B.; Pan, L.; Dong, C.; Chai, Y.; Zhang, J.; Yin, Y. Modulation of the Reduction Potential of TiO2–x by Fluorination for Efficient and Selective CH4 Generation from CO2 Photoreduction. Nano Letters 2018, 18, 3384-3390. 73. Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core–Shell Structure. Angewandte Chemie International Edition 2013, 52, 5776-5779. 74. Neaţu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. J. Am. Chem. Soc. 2014, 136, 15969-15976. 75. Meng, A.; Wu, S.; Cheng, B.; Yu, J.; Xu, J. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance. Journal of Materials Chemistry A 2018, 6, 4729-4736. 76. Maruska, H. P.; Ghosh, A. K. Transition-metal dopants for extending the response of titanate photoelectrolysis anodes. Solar Energy Materials 1979, 1, 237-247. 77. Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chemical Reviews 2014, 114, 9824-9852. 78. Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42. 79. Teh, C. M.; Mohamed, A. R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. Journal of Alloys and Compounds 2011, 509, 1648-1660. 80. Liu, L.; Gao, F.; Zhao, H.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental 2013, 134-135, 349-358. 81. Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry 2011, 21, 13452-13457. 82. Xu, H.; Ouyang, S.; Liu, L.; Wang, D.; Kako, T.; Ye, J. Porous-structured Cu2O/TiO2 nanojunction material toward efficient CO2 photoreduction. Nanotechnology 2014, 25, 165402. 83. Wei, Y.; Jiao, J.; Zhao, Z.; Zhong, W.; Li, J.; Liu, J.; Jiang, G.; Duan, A. 3D ordered macroporous TiO2-supported Pt@CdS core–shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. Journal of Materials Chemistry A 2015, 3, 11074-11085. 84. Meng, X.; Ouyang, S.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chemical Communications 2014, 50, 11517-11519. 85. Liao, Y.; Cao, S.-W.; Yuan, Y.; Gu, Q.; Zhang, Z.; Xue, C. Efficient CO2 Capture and Photoreduction by Amine-Functionalized TiO2. Chemistry – A European Journal 2014, 20, 10220-10222. 86. Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2 for Improved Solar Fuel Production. Nano Letters 2011, 11, 2865-2870. 87. Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686. 88. Gui, M. M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A. R. Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Solar Energy Materials and Solar Cells 2014, 122, 183-189. 89. Li, R.; Zhang, W.; Zhou, K. Metal–Organic-Framework-Based Catalysts for Photoreduction of CO2. Advanced Materials 2018, 30, 1705512. 90. Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H.-L.; Jiang, J.; Zhang, Q.; Xie, Y.; Xiong, Y. Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials 2014, 26, 4783-4788. 91. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. Journal of the American Chemical Society 2011, 133, 3964-3971. 92. Daskalaki, V. M.; Panagiotopoulou, P.; Kondarides, D. I. Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming. Chemical Engineering Journal 2011, 170, 433-439. 93. Xiong, Z.; Lei, Z.; Li, Y.; Dong, L.; Zhao, Y.; Zhang, J. A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2018, 36, 24-47. 94. Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale. 2013, 5, 3601-3614. 95. Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xin, Z.; Wang, J.; Ke, X.-k.; Sheng, G.; Yan, S.; Zou, Z. Oxygen-Vacancy-Activated CO2 Splitting over Amorphous Oxide Semiconductor Photocatalyst. ACS Catal. 2018, 8, 516-525. 96. Fu, J.; Cao, S.; Yu, J.; Low, J.; Lei, Y. Enhanced Photocatalytic CO2-Reduction Activity of Electrospun Mesoporous TiO2 Nanofibers by Solvothermal Treatment. Dalton Trans. 2014, 43, 9158-9165. 97. Ghuman, K. K.; Wood, T. E.; Hoch, L. B.; Mims, C. A.; Ozin, G. A.; Singh, C. V. Illuminating CO2 Reduction on Frustrated Lewis Pair Surfaces: Investigating the Role of Surface Hydroxides and Oxygen Vacancies on Nanocrystalline In2O3−x(OH)y. Phys. Chem. Chem. Phys. 2015, 17, 14623-14635. 98. Fan, C.; Chen, C.; Wang, J.; Fu, X.; Ren, Z.; Qian, G.; Wang, Z. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Scientific reports 2015, 5, 11712. 99. Di Paola, A.; Bellardita, M.; Palmisano, L.; Barbieriková, Z.; Brezová, V. Influence of Crystallinity and OH Surface Density on the Photocatalytic Activity of TiO2 Powders. J. Photochem. Photobiol. A: Chem. 2014, 273, 59-67. 100. Peng, L.; Qisui, W.; Xi, L.; Chaocan, Z. Investigation of the States of Water and OH Groups on the Surface of Silica. Colloids Surf. A 2009, 334, 112-115. 101. Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E. OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19, 160-165. 102. Wang, X.; Shen, M.; Song, L.; Su, Y.; Wang, J. Surface Basicity on Bulk Modified Phosphorus Alumina through Different Synthesis Methods. Phys. Chem. Chem. Phys. 2011, 13, 15589-15596. 103. Nguyen Thanh, D.; Kikhtyanin, O.; Ramos, R.; Kothari, M.; Ulbrich, P.; Munshi, T.; Kubička, D. Nanosized TiO2 —A Promising Catalyst for the Aldol Condensation of Furfural with Acetone in Biomass Upgrading. Catal. Today. 2016, 277, 97-107. 104. Chen, E.; Bevilacqua, M.; Tavagnacco, C.; Montini, T.; Yang, C.-M.; Fornasiero, P. High surface area N/O co-doped carbon materials: Selective electrocatalysts for O2 reduction to H2O2. Catalysis Today 2019. 105. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69-96. 106. Hirakawa, T.; Nosaka, Y. Properties of O2•- and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions. Langmuir 2002, 18, 3247-3254. 107. Nakamura, R.; Okamura, T.; Ohashi, N.; Imanishi, A.; Nakato, Y. Molecular Mechanisms of Photoinduced Oxygen Evolution, PL Emission, and Surface Roughening at Atomically Smooth (110) and (100) n-TiO2 (Rutile) Surfaces in Aqueous Acidic Solutions. J. Am. Chem. Soc. 2005, 127, 12975-12983. 108. Krylova, G.; Na, C. Photoinduced Crystallization and Activation of Amorphous Titanium Dioxide. J. Phys. Chem. C 2015, 119, 12400-12407. 109. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J. EPR Study of the Surface Characteristics of Nanostructured TiO2 under UV Irradiation. Langmuir 2001, 17, 5368-5374. 110. Masakazu, A.; Takahito, S.; Yutaka, K. ESR and Photoluminescence Evidence for the Photocatalytic Formation of Hydroxyl Radicals on Small TiO2 Particles. Chem. Lett. 1985, 14, 1799-1802. 111. Chiesa, M.; Paganini, M. C.; Livraghi, S.; Giamello, E. Charge Trapping in TiO2 Polymorphs as Seen by Electron Paramagnetic Resonance Spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 9435-9447. 112. Li, G.; Dimitrijevic, N. M.; Chen, L.; Nichols, J. M.; Rajh, T.; Gray, K. A. The Important Role of Tetrahedral Ti4+ Sites in the Phase Transformation and Photocatalytic Activity of TiO2 Nanocomposites. J. Am. Chem. Soc. 2008, 130, 5402-5403. 113. Kumar, C. P.; Gopal, N. O.; Wang, T. C.; Wong, M.-S.; Ke, S. C. EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. J. Phys. Chem. B 2006, 110, 5223-5229. 114. Fittipaldi, M.; Gatteschi, D.; Fornasiero, P. The Power of EPR Techniques in Revealing Active Sites in Heterogeneous Photocatalysis: The Case of Anion Doped TiO2. Catal. Today. 2013, 206, 2-11. 115. Thompson, T. L.; Yates, J. T. TiO2-Based Photocatalysis: Surface Defects, Oxygen and Charge Transfer. Top. Catal. 2005, 35, 197-210. 116. Xiaoxin, Z.; Jikai, L.; Juan, S.; Fan, Z.; Jiesheng, C.; Pingyun, F. Facile Synthesis of Thermal- and Photostable Titania with Paramagnetic Oxygen Vacancies for Visible-Light Photocatalysis. Chem. Eur. J. 2013, 19, 2866-2873. 117. Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xin, Z.; Wang, J.; Ke, X.-k.; Sheng, G.; Yan, S.; Zou, Z. Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst. ACS Catalysis 2018, 8, 516-525. 118. Coenen, K.; Gallucci, F.; Mezari, B.; Hensen, E.; van Sint Annaland, M. An in-situ IR Study on the Adsorption of CO2 and H2O on Hydrotalcites. J. CO2 Util. 2018, 24, 228-239. 119. Herburger, A.; Ončák, M.; Siu, C.-K.; Demissie, E. G.; Heller, J.; Tang, W. K.; Beyer, M. K. Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO2.−(H2O)n (n=2–61) in the C−O Stretch Region. Chem. Eur. J. 2019, 25, 10165-10171. 120. Pan, Q.; Peng, J.; Wang, S.; Wang, S. In situ FTIR Spectroscopic Study of the CO2 Methanation Mechanism on Ni/Ce0.5Zr0.5O2. Catal. Sci. Technol. 2014, 4, 502-509. 121. Khosa, M.; Mazhar, M.; Ali, S.; Molloy, K.; Dastgir, S.; Shaheen, F. Synthesis, Spectroscopic (FT-IR, 1H, 13C, Mass Spectrometry), and Biological Investigation of Five-Coordinated Germanium-Substituted Tricyclohexyl Antimony Dipropionates: Crystal Structure of Tricyclohexylantimony Dibromide. Turk. J. Chem. 2006, 30, 731-743. 122. Wu, J. C. S.; Huang, C.-W. In situ DRIFTS Study of Photocatalytic CO2 Reduction under UV Irradiation. Front. Chem. Eng. 2010, 4, 120-126. 123. Paparo, A.; Okuda, J. Carbonite, the Dianion of Carbon Dioxide and its Metal Complexes. J. Organomet. Chem. 2018, 869, 270-274. 124. Han, C.; Zhang, R.; Ye, Y.; Wang, L.; Ma, Z.; Su, F.; Xie, H.; Zhou, Y.; Wong, P. K.; Ye, L. Chainmail Co-catalyst of NiO Shell-Encapsulated Ni for Improving Photocatalytic CO2 Reduction over g-C3N4. J. Mater. Chem. A 2019, 7, 9726-9735. 125. Raskó, J.; Kecskés, T.; Kiss, J. Adsorption and Reaction of Formaldehyde on TiO2-Supported Rh Catalysts Studied by FTIR and Mass Spectrometry. J. Catal. 2004, 226, 183-191. 126. Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc. 2011, 133, 16414-16417. 127. Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Mechanism of Water Photooxidation Reaction at Atomically Flat TiO2 (Rutile) (110) and (100) Surfaces: Dependence on Solution pH. J. Am. Chem. Soc. 2007, 129, 11569-78. 128. Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Smith, L. J.; O'Hare, D.; Zhang, T. Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water. Adv. Mater. 2015, 27, 7824-7831. 129. Akhter, P.; Hussain, M.; Saracco, G.; Russo, N. Novel Nanostructured-TiO2 Materials for the Photocatalytic Reduction of CO2 Greenhouse Gas to Hydrocarbons and Syngas. Fuel 2015, 149, 55-65. 130. Gonell, F.; Puga, A. V.; Julián-López, B.; García, H.; Corma, A. Copper-Doped Titania Photocatalysts for Simultaneous Reduction of CO2 and Production of H2 from Aqueous Sulfide. Appl. Catal. B: Environ. 2016, 180, 263-270. 131. Xiong, J.; Song, P.; Di, J.; Li, H. Ultrathin Structured Photocatalysts: A Versatile Platform for CO2 Reduction. Appl. Catal. B: Environ. 2019, 256, 117788. 132. Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Product Selectivity of Photocatalytic CO2 Reduction Reactions. Mater. Today. 2019. 133. Ye, L.; Mao, J.; Peng, T.; Zan, L.; Zhang, Y. Opposite Photocatalytic Activity Orders of Low-Index Facets of Anatase TiO2 for Liquid Phase Dye Degradation and Gaseous Phase CO2 Photoreduction. Phys. Chem. Chem. Phys. 2014, 16, 15675-15680. 134. Meng, X.; Ouyang, S.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. Photocatalytic CO2 Conversion over Alkali Modified TiO2 without Loading Noble Metal Cocatalyst. Chem. Commun. 2014, 50, 11517-11519. 135. Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced Photocatalytic CO2-Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. J. Am. Chem. Soc. 2014, 136, 8839-8842. 136. Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y. Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light. ACS Catal. 2016, 6, 1097-1108. 137. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 Particle Size on the Photocatalytic Reduction of CO2. Appl. Catal. B: Environ. 2009, 89, 494-502. 138. He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S. Enhancement of Photocatalytic Reduction of CO2 to CH4 over TiO2 Nanosheets by Modifying with Sulfuric Acid. Appl. Surf. Sci. 2016, 364, 416-427. 139. Abdullah, H.; Khan, M. M. R.; Ong, H. R.; Yaakob, Z. Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. Journal of CO2 Utilization 2017, 22, 15-32. 140. Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. Acs Catalysis 2016, 6, 1097-1108. 141. Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angewandte Chemie 2018, 130, 6162-6167. 142. Wu, P.; Zeng, Y.; Wang, C. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods. Biomaterials 2004, 25, 1123-1130. 143. Yu, H.-F. Phase development and photocatalytic ability of gel-derived P-doped TiO2. Journal of Materials Research 2007, 22, 2565-2572. 144. Reidy, D.; Holmes, J.; Morris, M. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. Journal of the European Ceramic Society 2006, 26, 1527-1534. 145. Li, F.; Jiang, Y.; Xia, M.; Sun, M.; Xue, B.; Liu, D.; Zhang, X. Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. The Journal of Physical Chemistry C 2009, 113, 18134-18141. 146. Bhaumik, A.; Inagaki, S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. Journal of the American Chemical Society 2001, 123, 691-696. 147. Zheng, R.; Lin, L.; Xie, J.; Zhu, Y.; Xie, Y. State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. The Journal of Physical Chemistry C 2008, 112, 15502-15509. 148. Xie, K.; Umezawa, N.; Zhang, N.; Reunchan, P.; Zhang, Y.; Ye, J. Self-doped SrTiO3− δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy & Environmental Science 2011, 4, 4211-4219. 149. Pokrovski, K.; Jung, K. T.; Bell, A. T. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia. Langmuir 2001, 17, 4297-4303. 150. Zhu, C.; Wei, X.; Li, W.; Pu, Y.; Sun, J.; Tang, K.; Wan, H.; Ge, C.; Zou, W.; Dong, L. Crystal-Plane Effects of CeO2 {110} and CeO2 {100} on Photocatalytic CO2 Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups. ACS Sustainable Chemistry & Engineering 2020, 8, 14397-14406. 151. Xia, Y.; Jiang, Y.; Li, F.; Xia, M.; Xue, B.; Li, Y. Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Applied Surface Science 2014, 289, 306-315. 152. Baunack, S.; Oswald, S.; Scharnweber, D. Depth distribution and bonding states of phosphorus implanted in titanium investigated by AES, XPS and SIMS. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 1998, 26, 471-479. 153. Xu, Y.; Wu, S.; Wan, P.; Sun, J.; Hood, Z. D. Introducing Ti3+ defects based on lattice distortion for enhanced visible light photoreactivity in TiO2 microspheres. RSC advances 2017, 7, 32461-32467. 154. Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 2003, 15, 2280-2286. 155. Canepa, P.; Gonella, G.; Pinto, G.; Grachev, V.; Canepa, M.; Cavalleri, O. Anchoring of Aminophosphonates on Titanium Oxide for Biomolecular Coupling. The Journal of Physical Chemistry C 2019, 123, 16843-16850. 156. Gopal, N. O.; Lo, H.-H.; Ke, T.-F.; Lee, C.-H.; Chou, C.-C.; Wu, J.-D.; Sheu, S.-C.; Ke, S.-C. Visible light active phosphorus-doped TiO2 nanoparticles: an EPR evidence for the enhanced charge separation. The Journal of Physical Chemistry C 2012, 116, 16191-16197. 157. Xiang, Q.; Lv, K.; Yu, J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental 2010, 96, 557-564. 158. Sarkar, A.; Khan, G. G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 2019, 11, 3414-3444. 159. Sarkar, A.; Karmakar, K.; Singh, A. K.; Mandal, K.; Khan, G. G. Surface functionalized H2Ti3O7 nanowires engineered for visible-light photoswitching, electrochemical water splitting, and photocatalysis. Physical Chemistry Chemical Physics 2016, 18, 26900-26912. 160. Bhosale, S. S.; Kharade, A. K.; Jokar, E.; Fathi, A.; Chang, S.-m.; Diau, E. W.-G. Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas–Solid Interface. Journal of the American Chemical Society 2019, 141, 20434-20442. 161. Yu, H.; Li, J.; Zhang, Y.; Yang, S.; Han, K.; Dong, F.; Ma, T.; Huang, H. Three-in-One Oxygen Vacancies: Whole Visible-Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO2 Photoreduction. Angewandte Chemie International Edition 2019, 58, 3880-3884. 162. Santara, B.; Giri, P. K.; Imakita, K.; Fujii, M. Evidence for Ti Interstitial Induced Extended Visible Absorption and Near Infrared Photoluminescence from Undoped TiO2 Nanoribbons: An In Situ Photoluminescence Study. The Journal of Physical Chemistry C 2013, 117, 23402-23411. 163. Zhu, Q.; Peng, Y.; Lin, L.; Fan, C.-M.; Gao, G.-Q.; Wang, R.-X.; Xu, A.-W. Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. Journal of Materials Chemistry A 2014, 2, 4429-4437. 164. Nishikawa, M.; Sakamoto, H.; Nosaka, Y. Reinvestigation of the Photocatalytic Reaction Mechanism for Pt-Complex-Modified TiO2 under Visible Light Irradiation by Means of ESR Spectroscopy and Chemiluminescence Photometry. The Journal of Physical Chemistry A 2012, 116, 9674-9679. 165. Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. Preparation of highly visible-light active N-doped TiO2 photocatalyst. Journal of Materials Chemistry 2010, 20, 5301-5309. 166. Liu, H.; Ma, H. T.; Li, X. Z.; Li, W. Z.; Wu, M.; Bao, X. H. The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 2003, 50, 39-46. 167. Nakaoka, Y.; Nosaka, Y. ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A: Chemistry 1997, 110, 299-305. 168. Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xin, Z.; Wang, J.; Ke, X.-k.; Sheng, G.; Yan, S.; Zou, Z. Oxygen-Vacancy-Activated CO2 Splitting over Amorphous Oxide Semiconductor Photocatalyst. ACS Catalysis 2018, 8, 516-525. 169. Hou, J.; Cheng, H.; Takeda, O.; Zhu, H. Three-Dimensional Bimetal-Graphene-Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide. Angewandte Chemie International Edition 2015, 54, 8480-8484. 170. Wang, H.; Zhang, W.; Lu, L.; Liu, D.; Liu, D.; Li, T.; Yan, S.; Zhao, S.; Zou, Z. Dual-metal hydroxide with ordering frustrated Lewis pairs for photoactivating CO2 to CO. Applied Catalysis B: Environmental 2021, 283, 119639. 171. Chastain, J.; King Jr, R. C. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation 1992, 40, 221. 172. Lu, L.; Wang, B.; Wang, S.; Shi, Z.; Yan, S.; Zou, Z. La2O3-Modified LaTiO2N Photocatalyst with Spatially Separated Active Sites Achieving Enhanced CO2 Reduction. Advanced Functional Materials 2017, 27, 1702447. 173. Fukuda, N.; Kanazawa, M.; Tsuru, K.; Tsuchiya, A.; Sunarso; Toita, R.; Mori, Y.; Nakashima, Y.; Ishikawa, K. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia. Scientific Reports 2018, 8, 16887. 174. Li, Y.; Gao, Y. Interplay between Water and TiO2 Anatase (101) Surface with Subsurface Oxygen Vacancy. Physical Review Letters 2014, 112, 206101. 175. Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Science Advances 2017, 3, e1701290. 176. Wu, W.; Bhattacharyya, K.; Gray, K.; Weitz, E. Photoinduced Reactions of Surface-Bound Species on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FTIR Study. The Journal of Physical Chemistry C 2013, 117, 20643-20655. 177. Yang, C.-C.; Yu, Y.-H.; van der Linden, B.; Wu, J. C. S.; Mul, G. Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? J. Am. Chem. Soc. 2010, 132, 8398-8406. 178. Chong, R.; Fan, Y.; Du, Y.; Liu, L.; Chang, Z.; Li, D. Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. International Journal of Hydrogen Energy 2018, 43, 22329-22339. 179. Diallo-Garcia, S.; Osman, M. B.; Krafft, J.-M.; Casale, S.; Thomas, C.; Kubo, J.; Costentin, G. Identification of Surface Basic Sites and Acid–Base Pairs of Hydroxyapatite. The Journal of Physical Chemistry C 2014, 118, 12744-12757. 180. Yin, G.; Huang, X.; Chen, T.; Zhao, W.; Bi, Q.; Xu, J.; Han, Y.; Huang, F. Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions: Preparation, Characterization, and Reaction Mechanism of CO2 Reduction. ACS Catalysis 2018, 8, 1009-1017. 181. Morterra, C.; Chiorino, A.; Boccuzzi, F.; Fisicaro, E. A Spectroscopic Study of Anatase Properties. Zeitschrift für Physikalische Chemie 1981, 124, 211-222. 182. Li, Y.; Walsh, A. G.; Li, D.; Do, D.; Ma, H.; Wang, C.; Zhang, P.; Zhang, X. W-Doped TiO2 for photothermocatalytic CO2 reduction. Nanoscale 2020, 12, 17245-17252. 183. Samantaray, S. K.; Mohapatra, P.; Parida, K. Physico-chemical characterisation and photocatalytic activity of nanosized SO42−/TiO2 towards degradation of 4-nitrophenol. Journal of Molecular Catalysis A: Chemical 2003, 198, 277-287. 184. Zhu, Y.; Li, J.; Dong, C.-L.; Ren, J.; Huang, Y.-C.; Zhao, D.; Cai, R.; Wei, D.; Yang, X.; Lv, C. Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Applied Catalysis B: Environmental 2019, 255, 117764. 185. Colón, G.; Sanchez-Espana, J.; Hidalgo, M.; Navío, J. Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry 2006, 179, 20-27. 186. Sorcar, S.; Thompson, J.; Hwang, Y.; Park, Y. H.; Majima, T.; Grimes, C. A.; Durrant, J. R.; In, S.-I. High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C 1 to C 2 products. Energy & Environmental Science 2018, 11, 3183-3193. 187. Wu, J. C.; Lin, H.-M.; Lai, C.-L. Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General 2005, 296, 194-200. 188. Yu, B.; Zhou, Y.; Li, P.; Tu, W.; Li, P.; Tang, L.; Ye, J.; Zou, Z. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 2016, 8, 11870-11874. 189. Sharma, A.; Lee, B.-K. Photocatalytic reduction of carbon dioxide to methanol using nickel-loaded TiO2 supported on activated carbon fiber. Catalysis Today 2017, 298, 158-167. 190. Chen, S.; Wang, H.; Kang, Z.; Jin, S.; Zhang, X.; Zheng, X.; Qi, Z.; Zhu, J.; Pan, B.; Xie, Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nature communications 2019, 10, 1-8.
|