帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:謝侑璁
作者(英文):Hsieh, Yo-Tsung
論文名稱(中文):氨基修飾二氧化矽之製備與銨離子吸附研究
論文名稱(英文):Preparation of Amino-Functionalized Silica for Adsorption of Ammonium Ions
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:黃志彬
李俊錡
口試委員(英文):Huang, Chih-Pin
Lee, Chun-Chi
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0451711
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:47
中文關鍵詞:氨基二氧化矽吸附
外文關鍵詞:amino groupSiO2adsorption
相關次數:
  • 推薦推薦:0
  • 點閱點閱:402
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究將針對NH4+去除,首度開發以鹼基為基礎的吸附材料,製備氨基修飾二氧化矽(NH2-SiO2),研究中以四乙氧基矽烷(tetraethyl orthosilicate,TEOS)與(3-氨基丙基)三乙氧基矽烷((3-Aminopropyl)triethoxysilane,APTES)作為SiO2與-NH2來源,從FTIR圖譜中可以看到單純SiO2樣品中波數為798 cm-1的訊號代表Si-O-Si之鍵結,而不同APTES:TEOS比例之NH2-SiO2中,除SiO2的特徵峰外,在694cm-1多出N-H鍵結的訊號,表示-NH2成功地修飾在SiO2顆粒上。隨著APTES:TEOS比例從0:5增加至20:5,NH4+吸附量從無法量測增加至9.85 mg/g,表示-NH2為一有效吸附活性位址。再以動力吸附模式、等溫吸附模式、FTIR圖譜瞭解NH4+吸附行為與機制,結果顯示動力吸附模式較符合擬二階動力模式,其相關係數R2高達0.997,等溫吸附模式較符合Langmuir model,其相關係數為0.984且最大吸附量為11.53 mg/g,表示其速率決定步驟為NH4+與NH2-SiO2表面上的-NH2形成化學作用力,-NH2在溶液中以質子化的-NH3+形式存在,而-NH3+中的H+與NH4+進行離子交換達吸附效果,而再生方面,相較於酸基為基礎吸附材再生容易造成二次污染,本研究以簡單的100℃加熱方式使NH4+脫附達到再生效果,再生率為74.5%。
In this study, amino-functionalized silica (NH2-SiO2) was prepared as the adsorbent for NH4+ removal for the first time. Tetraethyl orthosilicate (TEOS) and 3-Aminopropyltriethoxysilane (APTES) were used as the precursor for SiO2 and the source of -NH2 functional groups, respectively. From the FTIR spectra, the wavenumber of 798 cm-1 in the pure SiO2 sample represented the Si-O-Si bonding, while in the NH2-SiO2 powders with different APTES:TEOS ratios, additional N-H bonds at 694cm-1 indicates that -NH2 was successfully modified on the SiO2 particles. When the APTES:TEOS ratio increased from 0:5 to 20:5, the NH4 + adsorption amount increased from an undetectable value to 9.85 mg/g, implying that -NH2 is an active adsorption site for NH4+ ions. The adsorption behavior and mechanism of NH2-SiO2 were investigated through kinetic adsorptions, isothermal adsorptions, and FTIR characterization. The kinetics was better fitted by the pseudo-second-order model with R2= 0.997. Adsorption isotherm was better fitted by the Langmuir model with R2= 0.984 and the maximum adsorption capacity of 11.53 mg/g. These results reveal that the rate-limiting step is the chemical reaction between NH4+ and -NH2. Most of -NH2 are in the form of -NH3+ in the solution, and the H+ ions on the -NH3+ groups were exchangeable with NH¬4+ ions. In the aspect of regeneration, the NH4+ desorption can be achieved by simple heating at 100℃ and the regeneration efficiency was 74.5%.
摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 VII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 NH4+來源、危害及處理方法 4
2.2 NH4+/NH3吸附材 5
2.3 吸附機制 9
2.4 吸附熱力學 10
2.5 吸附動力學 13
2.6 環境影響因子 15
2.6.1 溶液pH值 15
2.6.2 初始濃度 15
2.6.3 反應時間 16
2.6.4 吸附劑劑量 16
2.6.5 反應溫度 16
2.7 NH2-SiO2 17
第三章 研究材料與方法 19
3.1 實驗架構 19
3.2 實驗材料 20
3.3 NH2-SiO2合成方法 20
3.4 NH2-SiO2表面特性分析 21
3.4.1氮氣吸脫附分析 21
3.4.2傅立葉轉換紅外光譜分析(FTIR) 22
3.4.3表面電位及等電位點之分析(pHzpc) 22
3.4.4化學分析電子光譜分析(XPS) 22
3.4.5高解析場發射掃描式電子顯微鏡及能量散佈光譜儀(SEM-EDS) 23
3.5 NH2-SiO2吸附實驗 23
3.5.1 NH4+溶液之配製 23
3.5.2吸附動力實驗 23
3.5.3等溫吸附實驗 24
3.5.4 pH實驗 24
3.5.5 離子層析儀之分析條件 24
3.6 NH2-SiO2脫附及再生實驗 24
第四章 結果與討論 25
4.1材料特性鑑定 25
4.2 NH4+吸附實驗 29
4.2.1 動力吸附實驗 31
4.2.2 等溫吸附實驗 33
4.2.3 NH4+溶液pH值影響實驗 36
4.2.4 NH4+吸附機制 38
4.3 NH4+脫附及再生實驗 40
第五章 結論 42
參考文獻 43
附錄A NH2-SiO2元素濃度比例 47
1. Petit, C.; Kante, K.; Bandosz, T. J., The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon 2010, 48 (3), 654-667.
2. Vignoli, C. N.; Bahé, J. M. C. F.; Marques, M. R. C., Evaluation of ion exchange resins for removal and recuperation of ammonium–nitrogen generated by the evaporation of landfill leachate. Polymer Bulletin 2015, 72 (12), 3119-3134.
3. Vassileva, P.; Voikova, D., Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. J Hazard Mater 2009, 170 (2-3), 948-53.
4. Haji, S.; Al-Buqaishi, B. A.; Bucheeri, A. A.; Bu-Ali, Q.; Al-Aseeri, M.; Ahmed, S., The dynamics and equilibrium of ammonium removal from aqueous solution by Na-Y zeolite. Desalination and Water Treatment 2015, 57 (40), 18992-19001.
5. Huang, H.; Xiao, X.; Yan, B.; Yang, L., Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. J Hazard Mater 2010, 175 (1-3), 247-52.
6. Moussavi, G.; Talebi, S.; Farohki, M.; Mojtabaee Sabouti, R., Removal of ammonium from water by adsorption onto synthetic zeolites NaA and NaX: a comparative parametric, kinetic, and equilibrium study. Desalination and Water Treatment 2013, 51 (28-30), 5710-5720.
7. Saltali, K.; Sari, A.; Aydin, M., Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality. J Hazard Mater 2007, 141 (1), 258-63.
8. Guo, J., Adsorption characteristics and mechanisms of high-levels of ammonium from swine wastewater using natural and MgO modified zeolites. Desalination and Water Treatment 2015, 57 (12), 5452-5463.
9. Li, J.; Miao, X.; Hao, Y.; Zhao, J.; Sun, X.; Wang, L., Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI). J Colloid Interface Sci 2008, 318 (2), 309-14.
10. Yokoi, T.; Kubota, Y.; Tatsumi, T., Amino-functionalized mesoporous silica as base catalyst and adsorbent. Applied Catalysis A: General 2012, 421-422, 14-37.
11. Lei, L.; Li, X.; Zhang, X., Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and Purification Technology 2008, 58 (3), 359-366.
12. Liao, Z. L.; Chen, H.; Zhu, B. R.; Li, H. Z., Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water. Chemosphere 2015, 134, 127-32.
13. Guaya, D.; Valderrama, C.; Farran, A.; Armijos, C.; Cortina, J. L., Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal 2015, 271, 204-213.
14. Moussavi, G.; Talebi, S.; Farrokhi, M.; Sabouti, R. M., The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chemical Engineering Journal 2011, 171 (3), 1159-1169.
15. Wang, Y.; Pelkonen, M.; Kotro, M., Treatment of High Ammonium–Nitrogen Wastewater from Composting Facilities by Air Stripping and Catalytic Oxidation. Water, Air, and Soil Pollution 2009, 208 (1-4), 259-273.
16. Lind, B.-B.; Ban, Z.; Bydén, S., Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technology 2000, 73 (2), 169-174.
17. Yunnen, C.; Xiaoyan, L.; Changshi, X.; Liming, L., The mechanism of ion exchange and adsorption coexist on medium-low concentration ammonium-nitrogen removal by ion-exchange resin. Environ Technol 2015, 36 (18), 2349-56.
18. Egli, K.; Fanger, U.; Alvarez, P. J. J.; Siegrist, H.; van der Meer, J. R.; Zehnder, A. J. B., Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology 2001, 175 (3), 198-207.
19. Ahmadiannamini, P.; Eswaranandam, S.; Wickramasinghe, R.; Qian, X., Mixed-matrix membranes for efficient ammonium removal from wastewaters. Journal of Membrane Science 2017, 526, 147-155.
20. Karadag, D.; Koc, Y.; Turan, M.; Armagan, B., Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. J Hazard Mater 2006, 136 (3), 604-9.
21. Wang, Y. F.; Lin, F.; Pang, W. Q., Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. J Hazard Mater 2007, 142 (1-2), 160-4.
22. Lin, L.; Lei, Z.; Wang, L.; Liu, X.; Zhang, Y.; Wan, C.; Lee, D.-J.; Tay, J. H., Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Separation and Purification Technology 2013, 103, 15-20.
23. Cincotti, A.; Lai, N.; Orrù, R.; Cao, G., Sardinian natural clinoptilolites for heavy metals and ammonium removal: experimental and modeling. Chemical Engineering Journal 2001, 84 (3), 275-282.
24. Vassileva, P.; Tzvetkova, P.; Nickolov, R., Removal of ammonium ions from aqueous solutions with coal-based activated carbons modified by oxidation. Fuel 2009, 88 (2), 387-390.
25. Zheng, Y.; Liu, Y.; Wang, A., Fast removal of ammonium ion using a hydrogel optimized with response surface methodology. Chemical Engineering Journal 2011, 171 (3), 1201-1208.
26. Liu, Z.; Xue, Y.; Gao, F.; Cheng, X.; Yang, K., Removal of ammonium from aqueous solutions using alkali-modified biochars. Chemical Speciation & Bioavailability 2016, 28 (1-4), 26-32.
27. Zheng, Y.; Zhang, J.; Wang, A., Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly(acrylic acid)/attapulgite composite. Chemical Engineering Journal 2009, 155 (1-2), 215-222.
28. Glover, T. G.; Peterson, G. W.; DeCoste, J. B.; Browe, M. A., Adsorption of ammonia by sulfuric acid treated zirconium hydroxide. Langmuir 2012, 28 (28), 10478-87.
29. Thornton, A.; Pearce, P.; Parsons, S., Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. Journal of Hazardous Materials 2007, 147 (3), 883-889.
30. Yin, X.; Han, H.; Gunji, I.; Endou, A.; Cheettu Ammal, S. S.; Kubo, M.; Miyamoto, A., NH3 adsorption on the Brönsted and Lewis acid sites of V2O5 (010): a periodic density functional study. The Journal of Physical Chemistry B 1999, 103 (22), 4701-4706.
31. Feng, Z.; Sun, T., A novel selective hybrid cation exchanger for low-concentration ammonia nitrogen removal from natural water and secondary wastewater. Chemical Engineering Journal 2015, 281, 295-302.
32. FO, O.; Odebunmi, E., Freundlich and Langmuir isotherms parameters for adsorption of methylene blue by activated carbon derived from agrowastes. Advances in Natural and applied Sciences 2010, 4, 281-288.
33. Yousef, R. I.; El-Eswed, B.; Al-Muhtaseb, A. a. H., Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chemical Engineering Journal 2011, 171 (3), 1143-1149.
34. Sun, Z.; Qu, X.; Wang, G.; Zheng, S.; Frost, R. L., Removal characteristics of ammonium nitrogen from wastewater by modified Ca-bentonites. Applied Clay Science 2015, 107, 46-51.
35. Jiang, Z.; Yang, J.; Ma, H.; Ma, X.; Yuan, J., Synthesis of pure NaA zeolites from coal fly ashes for ammonium removal from aqueous solutions. Clean Technologies and Environmental Policy 2015, 18 (3), 629-637.
36. Ho, Y.-S.; McKay, G., Pseudo-second order model for sorption processes. Process biochemistry 1999, 34 (5), 451-465.
37. Jha, V. K.; Kameshima, Y.; Nakajima, A.; Okada, K., Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. J Hazard Mater 2008, 156 (1-3), 156-62.
38. Huang, Y.-D.; Gao, X.-D.; Gu, Z.-Y.; Li, X.-M., Amino-terminated SiO2 aerogel towards highly-effective lead (II) adsorbent via the ambient drying process. Journal of Non-Crystalline Solids 2016, 443, 39-46.
39. Englert, A. H.; Rubio, J., Characterization and environmental application of a Chilean natural zeolite. International Journal of Mineral Processing 2005, 75 (1-2), 21-29.
40. Huang, H.; Yang, L.; Xue, Q.; Liu, J.; Hou, L.; Ding, L., Removal of ammonium from swine wastewater by zeolite combined with chlorination for regeneration. J Environ Manage 2015, 160, 333-41.
41. Zheng, H.; Han, L.; Ma, H.; Zheng, Y.; Zhang, H.; Liu, D.; Liang, S., Adsorption characteristics of ammonium ion by zeolite 13X. J Hazard Mater 2008, 158 (2-3), 577-84.
42. Hao, S.; Zhong, Y.; Pepe, F.; Zhu, W., Adsorption of Pb2+ and Cu2+ on anionic surfactant-templated amino-functionalized mesoporous silicas. Chemical Engineering Journal 2012, 189-190, 160-167.
43. Vasudevan, M.; Sakaria, P. L.; Bhatt, A. S.; Mody, H. M.; Bajaj, H. C., Effect of Concentration of Aminopropyl Groups on the Surface of MCM-41 on Adsorption of Cu2+. Industrial & Engineering Chemistry Research 2011, 50 (19), 11432-11439.
44. Medina-Juárez, O.; García-Sánchez, M.; Arellano-Sánchez, U.; Kornhauser-Straus, I.; Rojas-González, F., Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption. Materials 2016, 9 (11), 898.
45. Byunghwan Lee, Y. K., Hyunjoo Lee, Jongheop Yi, Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents:
the introduction of surface hydrophilicity onto the surface of adsorbents. 2001.
46. White, L. D.; Tripp, C. P., Reaction of (3-Aminopropyl)dimethylethoxysilane with Amine Catalysts on Silica Surfaces. J Colloid Interface Sci 2000, 232 (2), 400-407.
47. Xueguang Wang, K. S. K. L., Jerry C. C. Chan, and Soofin Cheng, Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials. 2005.
48. Zhao, A. S. M. C. a. X. S., Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials. 2003.
49. Zhenghe Xu a, Qingxia Liu b, J.A. Finch Silanation and stability of 3-aminopropyl triethoxy silane on nanosized superparamagnetic particles: I. Direct silanation. 1997.
50. Hiyoshi, N.; Yogo, K.; Yashima, T., Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials 2005, 84 (1-3), 357-365.
51. Manu V., H. M. M., * Hari C. Bajaj,* and Raksh V. Jasra, Adsorption of Cu2+ on Amino Functionalized Silica Gel with Different Loading.
52. Franks, G. V., Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction. J Colloid Interface Sci 2002, 249 (1), 44-51.
53. Wahab, M. A.; Jellali, S.; Jedidi, N., Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour Technol 2010, 101 (14), 5070-5.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *