|
1. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition in English 2013, 52 (29), 7372-408. 2. Kočí, K.; Matějů, K.; Obalová, L.; Krejčíková, S.; Lacný, Z.; Plachá, D.; Čapek, L.; Hospodková, A.; Šolcová, O., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2010, 96 (3-4), 239-244. 3. Liu, L.; Gao, F.; Zhao, H.; Li, Y., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental 2013, 134-135, 349-358. 4. Fan, J.; Liu, E.-z.; Tian, L.; Hu, X.-y.; He, Q.; Sun, T., Synergistic Effect of N and Ni 2 + on Nanotitania in Photocatalytic Reduction of CO2. Journal of Environmental Engineering 2011, 137 (3), 171-176. 5. Chang, S.-m.; Liu, W.-s., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B: Environmental 2011, 101 (3-4), 333-342. 6. Chang, S.-m.; Liu, W.-s., The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Applied Catalysis B: Environmental 2014, 156-157, 466-475. 7. Gong, C. w.; Jiao, J. r.; Wang, J. h.; Shao, W., Structural, optical and magnetic properties of W-doped TiO2: Theory and experiment. Physica B: Condensed Matter 2015, 457, 140-143. 8. Liu, Z.; Xue, Y.; Gao, F.; Cheng, X.; Yang, K., Removal of ammonium from aqueous solutions using alkali-modified biochars. Chemical Speciation & Bioavailability 2016, 28 (1-4), 26-32. 9. Li, M.; Zhang, L.; Fan, X.; Zhou, Y.; Wu, M.; Shi, J., Highly selective CO2photoreduction to CO over g-C3N4/Bi2WO6composites under visible light. Journal Materials Chemistry 2015, 3 (9), 5189-5196. 10. Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M., A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. Journal of Materials Chemistry A 2014, 2 (10), 3407. 11. Mahmodi, G.; Sharifnia, S.; Rahimpour, F.; Hosseini, S. N., Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization. Solar Energy Materials and Solar Cells 2013, 111, 31-40. 12. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2Reduction with H2O on TiO2Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. American Chemical Society Catalysis 2012, 2 (8), 1817-1828. 13. Ola, O.; Maroto-Valer, M. M., Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42. 14. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M., Why is anatase a better photocatalyst than rutile?Model studies on epitaxial TiO2 films. Science Reports 2014, 4, 4043. 15. Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2010, 46 (4), 855-874. 16. Low, J.; Cheng, B.; Yu, J., Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686. 17. Mino, L.; Spoto, G.; Ferrari, A. M., CO2Capture by TiO2Anatase Surfaces: A Combined DFT and FTIR Study. The Journal of Physical Chemistry C 2014, 118 (43), 25016-25026. 18. Ji, Y.; Luo, Y., New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. Journal of the American Chemical Society 2016, 138 (49), 15896-15902. 19. Collado, L.; Jana, P.; Sierra, B.; Coronado, J. M.; Pizarro, P.; Serrano, D. P.; de la Peña O’Shea, V. A., Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors. Chemical Engineering Journal 2013, 224, 128-135. 20. Sasirekha, N.; Basha, S.; Shanthi, K., Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental 2006, 62 (1-2), 169-180. 21. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89 (3-4), 494-502. 22. Alxneit, F. S. a. I., Temperature dependence of the photochemical reduction of in CO2 the presence of at the solidgas interface of H2O TiO2. Journal Chemistry Soc., Faraday Trans., 93, 4159-4163 1998. 23. Liu, L., Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review. Aerosol and Air Quality Research 2014. 24. Zhang, Q.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H., Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Applied Catalysis A: General 2011, 400 (1-2), 195-202. 25. Zhao, Z.; Fan, J.; Wang, J.; Li, R., Effect of heating temperature on photocatalytic reduction of CO2 by N–TiO2 nanotube catalyst. Catalysis Communications 2012, 21, 32-37. 26. Tahir, M.; Amin, N. S., Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Applied Catalysis B: Environmental 2015, 162, 98-109. 27. Tsutomu Umebayashia, T. Y., Hisayoshi Itohb, Keisuke Asaia, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids 2002, 63, 1909-1920. 28. Nie, Y.; Wang, W.-N.; Jiang, Y.; Fortner, J.; Biswas, P., Crumpled reduced graphene oxide–amine–titanium dioxide nanocomposites for simultaneous carbon dioxide adsorption and photoreduction. Catalysts Sciencce Technology 2016, 6 (16), 6187-6196. 29. Nasution, H.; Purnama, E.; Kosela, S.; Gunlazuardi, J., Photocatalytic reduction of CO on copper-doped Titania catalysts prepared by improved-impregnation method. Catalysis Communications 2005, 6 (5), 313-319. 30. 林宸嶢., 鍛燒溫度對釩離子摻雜二氧化鈦光觸媒物化與光催化還原二氧化碳特性研究. 2011. 31. Kočí, K.; Matějová, L.; Ambrožová, N.; Šihor, M.; Troppová, I.; Čapek, L.; Kotarba, A.; Kustrowski, P.; Hospodková, A.; Obalová, L., Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O. Journal of Sol-Gel Science and Technology 2016, 78 (3), 550-558. 32. Gonell, F.; Puga, A. V.; Julián-López, B.; García, H.; Corma, A., Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Applied Catalysis B: Environmental 2016, 180, 263-270. 33. Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C. M. A.; Lee, A. F.; Wu, J. C. S., On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications 2012, 25, 78-82. 34. Tseng, I. H.; Wu, J. C. S.; Chou, H.-Y., Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis 2004, 221 (2), 432-440. 35. Richardson, P. L.; Perdigoto, M. L. N.; Wang, W.; Lopes, R. J. G., Retracted: Manganese- and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol. Applied Catalysis B: Environmental 2012, 126, 200-207. 36. Zhang, Q.; Gao, T.; Andino, J. M.; Li, Y., Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor. Applied Catalysis B: Environmental 2012, 123-124, 257-264. 37. Grabowska, E.; Sobczak, J. W.; Gazda, M.; Zaleska, A., Surface properties and visible light activity of W-TiO2 photocatalysts prepared by surface impregnation and sol–gel method. Applied Catalysis B: Environmental 2012, 117-118, 351-359. 38. Sathasivam, S.; Bhachu, D. S.; Lu, Y.; Chadwick, N.; Althabaiti, S. A.; Alyoubi, A. O.; Basahel, S. N.; Carmalt, C. J.; Parkin, I. P., Tungsten Doped TiO2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition. Science Reports 2015, 5, 10952. 39. Jiao, J.; Wei, Y.; Zhao, Z.; Liu, J.; Li, J.; Duan, A.; Jiang, G., Photocatalysts of 3D Ordered Macroporous TiO2-Supported CeO2Nanolayers: Design, Preparation, and Their Catalytic Performances for the Reduction of CO2with H2O under Simulated Solar Irradiation. Industrial & Engineering Chemistry Research 2014, 53 (44), 17345-17354. 40. Ji, Y.; Luo, Y., Theoretical Study on the Mechanism of Photoreduction of CO2to CH4on the Anatase TiO2(101) Surface. American Chemical Society Catalysis 2016, 6 (3), 2018-2025. 41. Yang, L.; Wei, J.; Liu, Z.; Wang, J.; Wang, D., Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater. Applied Surface Science 2015, 330, 228-236. 42. Wang, Y.; Zhao, J.; Wang, T.; Li, Y.; Li, X.; Yin, J.; Wang, C., CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. Journal of Catalysis 2016, 337, 293-302. 43. Mayoufi, A.; Nsib, M. F.; Ahmed, O.; Houas, A., Synthesis, characterization and photocatalytic performance of W, N, S-tri-doped TiO2 under visible light irradiation. Comptes Rendus Chimie 2015, 18 (8), 875-882. 44. Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental 2010, 100 (1-2), 386-392. 45. Fuerte, A.; Hernández-Alonso, M. D.; Iglesias-Juez, A.; Martínez-Arias, A.; Conesa, J. C.; Soria, J.; Fernández-García, M., Influence of preparation method on surface and bulk properties of sunlight-active Ti–W mixed oxide photocatalysts. Physical Chemistry 2003, 5 (13), 2913-2921. 46. Pandiyan, R.; Delegan, N.; Dirany, A.; Drogui, P.; El Khakani, M. A., Probing the Electronic Surface Properties and Bandgap Narrowing of in situ N, W, and (W,N) Doped Magnetron-Sputtered TiO2Films Intended for Electro-Photocatalytic Applications. The Journal of Physical Chemistry C 2016, 120 (1), 631-638. 47. Occhiuzzi, M.; Cordischi, D.; Gazzoli, D.; Valigi, M.; Heydorn, P. C., WOx/ZrO2 catalysts. Applied Catalysis A: General 2004, 269 (1-2), 169-177. 48. X.Z. Li , F.B. Li , C.L. Yang , W.K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2001, 141, 209–217. 49. Abdennouri1,M., R. E., A. Elmhammedi1, A. Galadi, M. Baâlala, M. Bensitel, A. Boussaoud, Y. El hafiane, A. Smith, N. Barka, Influence of tungsten on the anatase-rutile phase transition of sol-gel synthesized TiO2 and on its activity in the photocatalytic degradation of pesticides. 2013. 50. Zhu, S.; Liang, S.; Tong, Y.; An, X.; Long, J.; Fu, X.; Wang, X., Photocatalytic reduction of CO2 with H2O to CH4 on Cu(I) supported TiO2 nanosheets with defective {001} facets. Physical Chemistry 2015, 17 (15), 9761-70. 51. Xin, B.; Ren, Z.; Wang, P.; Liu, J.; Jing, L.; Fu, H., Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts. Applied Surface Science 2007, 253 (9), 4390-4395. 52. Ola, O.; Maroto-Valer, M. M., Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction. Applied Catalysis A: General 2015, 502, 114-121. 53. Paulino, P. N.; Salim, V. M. M.; Resende, N. S., Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light. Applied Catalysis B: Environmental 2016, 185, 362-370. 54. Oomman K. Varghese, M. P., Thomas J. LaTempa, and Craig A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. 2008, Vol. 9,No.2. 55. Juan M. Coronado, A. Javier Maira, Jose´ Carlos Conesa, King Lun Yeung,Vincenzo Augugliaro,and Javier Soria., EPR Study of the Surface Characteristics of nanostructured TiO2 under UV irradiation. Langmuir, 2001,17,5368-5374 56. Dimitrijevic, N. M.; Shkrob, I. A.; Gosztola, D. J.; Rajh, T., Dynamics of Interfacial Charge Transfer to Formic Acid, Formaldehyde, and Methanol on the Surface of TiO2Nanoparticles and Its Role in Methane Production. The Journal of Physical Chemistry C 2012, 116 (1), 878-885. 57. Chinthala P. K., Neeruganti O.G., Ting C.W., Wong M. S. and Ke S. C., EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. Journal Phyical. Chemistry B, 2006,110,5223-5229 58. T. Rajh, J. M. N., L. X. Chen, O. Poluektov, and M. C. Thurnauer, Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C. 1999. 59. Deanna C. Hurum, A. G. A., and Kimberly A. Gray, Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. Journal Physical Chemistry B 2003, Vol. 107, No. 19. 60. Macdonald, I. R.; Rhydderch, S.; Holt, E.; Grant, N.; Storey, J. M. D.; Howe, R. F., EPR studies of electron and hole trapping in titania photocatalysts. Catalysis Today 2012, 182 (1), 39-45. 61. Smits, M.; Ling, Y.; Lenaerts, S.; Van Doorslaer, S., Photocatalytic removal of soot: unravelling of the reaction mechanism by EPR and in situ FTIR spectroscopy. Chemphyschem 2012, 13 (18), 4251-7. 62. Alessandra, T. a. A., G., Study of the Interaction between Simple Molecules and W-Sn-Based Oxide Catalysts. 1. The Case of WO3 Powders. Langmuir 2000, Vol. 16, No. 15. 63. Xiong, L.-B.; Li, J.-L.; Yang, B.; Yu, Y., Ti3+in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. Journal of Nanomaterials 2012, 2012, 1-13. 64. Molinari, A.; Samiolo, L.; Amadelli, R., EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO2 in TiO2 aqueous suspensions. Photochem Photobiol Science 2015, 14 (5), 1039-46. 65. Masakazu Anpo a, Hiromi Yamashita a, Yuichi Ichihashi a, Shaw Ehara b, Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry 1995, 396, 21-26. 66. Fang, W.; Khrouz, L.; Zhou, Y.; Shen, B.; Dong, C.; Xing, M.; Mishra, S.; Daniele, S.; Zhang, J., Reduced {001}-TiO2-x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution. Phys Chem Chem Phys 2017, 19 (21), 13875-13881. 67. Tijana Rajh, A. E. O., Olga I. Micic,‡ David M. Tiede, and Marion C. Thurnauer, Surface Modification of Small Particle TiO2 Colloids with Cysteine for Enhanced Photochemical Reduction An EPR Study. Journal Physical Chemistry 1995, Vol. 100, No. 11. 68. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P., Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. Journal of the American Chemical Society 2011, 133 (11), 3964-71. 69. Mark A., BollingerM., Albert V., A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2, catalysts., aplied Catalysis B: Environmental 8, 1996, 417-443 70. Finkelstein-Shapiro, D.; Petrosko, S. H.; Dimitrijevic, N. M.; Gosztola, D.; Gray, K. A.; Rajh, T.; Tarakeshwar, P.; Mujica, V., CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles. J Phys Chem Lett 2013, 4 (3), 475-9. 71. Neatu, S.; Macia-Agullo, J. A.; Concepcion, P.; Garcia, H., Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. Journal of the American Chemical Society 2014, 136 (45), 15969-76. 72. Liu, L.; Zhao, C.; Miller, J. T.; Li, Y., Mechanistic Study of CO2 Photoreduction with H2O on Cu/TiO2 Nanocomposites by in Situ X-ray Absorption and Infrared Spectroscopies. The Journal of Physical Chemistry C 2017, 121 (1), 490-499.
|