帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:陳文琳
作者(英文):Chen, Wen-Lin
論文名稱(中文):二氧化鈦表面摻雜鎢光催化還原二氧化碳特性探討
論文名稱(英文):Surface Doped W-TiO2 Photocatalysts for CO2 Reduction
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:徐雍鎣
楊家銘
口試委員(英文):Hsu, Yung-Jung
Yang, Gu-Ming
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0451707
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:79
中文關鍵詞:光催化還原二氧化碳二氧化鈦表面摻雜鎢離子
外文關鍵詞:Photoreduction CO2Titanium DioxideSurface dopedTungsten ion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本研究以表面摻雜鎢的二氧化鈦(W-TiO2)進行光催化還原CO2反應,探討材料特性(表面結構、離子價態,元素比例、元素分布、電子轉移)與光催化還原CO2活性,並比較氣相與液相系統的還原特性,最後為了解光催化還原CO2反應機制,而進行光觸媒表面官能基分析。從材料鑑定結果顯示,W均勻分布於TiO2上,並以六價形式存在,在粒徑大小上因W作為不純物在TiO2表面上使鍛燒時顆粒間無法縮合形成大顆粒,並且W能在TiO2表面能隙導入兩個未填滿能階,驅使電子移動至表面並捕捉電子降低電子電洞對再結合機率。以TiO2與W-TiO2進行氣相光催化還原CO2反應,甲烷為主要產物,不同表面摻雜W/Ti比例皆在第一小時有最佳甲烷產率,並且在表面摻雜W/Ti為3.2 at.%W-TiO2時,有最佳產量0.84 μmol/g,是TiO2的2.6倍。液相反應系統中,除主要產物甲烷外,還有次要產物乙烯,另外因CO2水溶解度低、大量水分子阻礙CO2與光觸媒接觸,因此使液相系統總碳量約小於氣相系統的2倍。由EPR與DRIFT的分析中可知,在光催化反應過程中CO2會先形成單牙基與雙牙基碳酸錯合吸附在W-TiO2表面,而光激發電子會從強電負度的W上進行界面轉移至吸附的碳酸根離子,爾後C-O鍵結逐漸被打斷且進行氫化反應,最後因W強電負度的特性使表面C-O斷鍵而生成甲烷。W離子的強電負度促使CO2鍵結於W-TiO2表面上進行電子轉移,並增加表面酸性而益於吸附H2O,而促進光催化還原CO2活性。
In the study, W ion were incorporated into the surface lattice of TiO2 photocatalysts to improve the activity for CO2 reduction. Photocatalytic activity and byproducts in the gaseous and aqueous phases were measured and characterized. Material properties, including microstructures, bandgaps, chemical compositions, chemical states of W ions, and interfacial charge transfer behaviors were characterized. Moreover, photoreduction mechanism of CO2 were proposed based on charge transfer pathways and changes in the surface functional groups during photocatalysis. Sol-gel-derived W-TiO2 contained hexavalent W ions which distributed evenly in surface lattice. The lattice defects retarded crystallization and increased surface areas. In addition, they introduced two unoccupied energy states in the band gap in the surface lattice which promote charge diffusion from the bulk to the surface and trap the charge carriers to suppress recombination. CH4 was the major product in the gas phase reaction system. The W-TiO2 photocatalyst with a surface W/Ti ratio of 0.032 had the highest CH4 yield of 0.84 μmol/g after 4-hour irradiation. The reduction efficiency was 2.6 times higher than that of unmodified TiO2 powders. In the aqueous phase, C2H4 were formed in addition to CH4 as the minor by-product. Due to low solubility of CO2 in water and competitive adsorption of water molecules, total carbon transformation in the aqueous system was 2 times lower than that in the gas phase system. Mechanisms for CO2 reduction were proposed according to EPR and DRIFT analysis. CO2 molecules transformed into m-CO32- and b-CO32- species and then chelated to the W-TiO2 surface for the first step. The carbonate species constantly received electrons through the doped W ions and the H+ ions from water molecules to generate C-H bonds. Due to strong W-O bonding, the last protonation of :CH3 generated CH4. Their high electron negativity not only allows the W6+ ions to strongly bind the carbonate species to facilitate charge transfer, but also increase surface acidity to enhance water adsorption, thus effectively promoting the photocatalytic activity of TiO2 .
第一章、前言 1
1.1研究動機 1
1.2研究目的 2
第二章、文獻回顧 3
2.1二氧化鈦簡介 3
2.1.1光觸媒發展與應用 3
2.1.2二氧化鈦特性 4
2.2光催化還原二氧化碳 6
2.2.1光催化還原CO2原理 6
2.2.2 TiO2光催化還原CO2反應機制 7
2.2.3影響光還原CO2反應因素 9
2.3二氧化鈦修飾 10
2.3.1二氧化鈦摻雜種類與效率 10
2.3.2二氧化鈦摻雜與產物關係 18
2.3.3二氧化鈦摻雜方式 18
2.4鎢摻雜二氧化鈦(W-TiO2) 19
2.4.1鎢摻雜二氧化鈦介紹 19
2.4.2鎢摻雜二氧化鈦特性 20
2.5二氧化鈦表面反應機制 22
2.5.1表面吸附現象 22
2.5.2 FTIR-DRIFT對觸媒表面探討 23
第三章、研究方法 25
3.1實驗架構 25
3.2實驗藥品 26
3.3光觸媒材料合成方法 26
3.4材料鑑定分析 28
3.4.1紫外光可見光分光光譜儀(UV-Vis Spectophotometer) 28
3.4.2 X光粉末繞射儀(X-ray Diffraction, XRD) 29
3.4.3等溫氮氣吸脫附分析(Nitrogen Adsorption-Desorption Isothermal Analysis) 29
3.4.4 X 射線光電子能譜分析(X-ray photoelectron spectroscopy, XPS) 30
3.4.5電子式掃描顯微鏡 ( Scanning Electron Microscopy, SEM) 31
3.4.6穿透式電子顯微鏡元素分析(Transmission Electron Microscopy-Energy Dispersive Spectrum, TEM-EDS) 31
3.4.7電子順磁共振儀(Electron Paramagnetic Resonance, EPR) 31
3.4.8螢光光譜儀分析(Photoluminescence Spectroscopy, PL) 32
3.5光催化二氧化碳還原系統 32
3.5.1氣相人工光催化設備與操作步驟 32
3.5.2液相人工光催化設備與操作步驟 34
3.5.3氣相層析儀定性分析參數設定 35
3.5.4氣相層析儀定量分析參數設定 36
3.6漫反射紅外線傅立葉轉換即時監測(In-situ Diffuse reflectance infrared Fourier transform Analysis, DRIFT) 36
第四章、結果與討論 39
4.1材料特性鑑定 39
4.2光催化還原產物定性分析 49
4.3光催化還原CO2反應 50
4.4光催化還原CO2反應機制 55
4.4.1電子順磁共振(EPR) 55
4.4.2氣相系統光催化還原CO2即時監測 58
第五章、結論 66
參考文獻 67
附錄A.光催化還原CO2產物檢量線 73
附錄B. 不同反應環境下隨時間變化EPR圖譜 74
附錄C. TiO2與W-TiO2不同反應環境下EPR圖譜 76
附錄D. W-TiO2表面殼層計算公式 77
附錄E. 氣相層析儀不同標準品之滯留時間 78
1. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition in English 2013, 52 (29), 7372-408.
2. Kočí, K.; Matějů, K.; Obalová, L.; Krejčíková, S.; Lacný, Z.; Plachá, D.; Čapek, L.; Hospodková, A.; Šolcová, O., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2010, 96 (3-4), 239-244.
3. Liu, L.; Gao, F.; Zhao, H.; Li, Y., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental 2013, 134-135, 349-358.
4. Fan, J.; Liu, E.-z.; Tian, L.; Hu, X.-y.; He, Q.; Sun, T., Synergistic Effect of N and Ni 2 + on Nanotitania in Photocatalytic Reduction of CO2. Journal of Environmental Engineering 2011, 137 (3), 171-176.
5. Chang, S.-m.; Liu, W.-s., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B: Environmental 2011, 101 (3-4), 333-342.
6. Chang, S.-m.; Liu, W.-s., The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Applied Catalysis B: Environmental 2014, 156-157, 466-475.
7. Gong, C. w.; Jiao, J. r.; Wang, J. h.; Shao, W., Structural, optical and magnetic properties of W-doped TiO2: Theory and experiment. Physica B: Condensed Matter 2015, 457, 140-143.
8. Liu, Z.; Xue, Y.; Gao, F.; Cheng, X.; Yang, K., Removal of ammonium from aqueous solutions using alkali-modified biochars. Chemical Speciation & Bioavailability 2016, 28 (1-4), 26-32.
9. Li, M.; Zhang, L.; Fan, X.; Zhou, Y.; Wu, M.; Shi, J., Highly selective CO2photoreduction to CO over g-C3N4/Bi2WO6composites under visible light. Journal Materials Chemistry 2015, 3 (9), 5189-5196.
10. Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M., A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. Journal of Materials Chemistry A 2014, 2 (10), 3407.
11. Mahmodi, G.; Sharifnia, S.; Rahimpour, F.; Hosseini, S. N., Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization. Solar Energy Materials and Solar Cells 2013, 111, 31-40.
12. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2Reduction with H2O on TiO2Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. American Chemical Society Catalysis 2012, 2 (8), 1817-1828.
13. Ola, O.; Maroto-Valer, M. M., Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42.
14. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M., Why is anatase a better photocatalyst than rutile?Model studies on epitaxial TiO2 films. Science Reports 2014, 4, 4043.
15. Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2010, 46 (4), 855-874.
16. Low, J.; Cheng, B.; Yu, J., Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686.
17. Mino, L.; Spoto, G.; Ferrari, A. M., CO2Capture by TiO2Anatase Surfaces: A Combined DFT and FTIR Study. The Journal of Physical Chemistry C 2014, 118 (43), 25016-25026.
18. Ji, Y.; Luo, Y., New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. Journal of the American Chemical Society 2016, 138 (49), 15896-15902.
19. Collado, L.; Jana, P.; Sierra, B.; Coronado, J. M.; Pizarro, P.; Serrano, D. P.; de la Peña O’Shea, V. A., Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors. Chemical Engineering Journal 2013, 224, 128-135.
20. Sasirekha, N.; Basha, S.; Shanthi, K., Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental 2006, 62 (1-2), 169-180.
21. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2009, 89 (3-4), 494-502.
22. Alxneit, F. S. a. I., Temperature dependence of the photochemical reduction of in CO2 the presence of at the solidgas interface of H2O TiO2. Journal Chemistry Soc., Faraday Trans., 93, 4159-4163 1998.
23. Liu, L., Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review. Aerosol and Air Quality Research 2014.
24. Zhang, Q.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H., Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Applied Catalysis A: General 2011, 400 (1-2), 195-202.
25. Zhao, Z.; Fan, J.; Wang, J.; Li, R., Effect of heating temperature on photocatalytic reduction of CO2 by N–TiO2 nanotube catalyst. Catalysis Communications 2012, 21, 32-37.
26. Tahir, M.; Amin, N. S., Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Applied Catalysis B: Environmental 2015, 162, 98-109.
27. Tsutomu Umebayashia, T. Y., Hisayoshi Itohb, Keisuke Asaia, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids 2002, 63, 1909-1920.
28. Nie, Y.; Wang, W.-N.; Jiang, Y.; Fortner, J.; Biswas, P., Crumpled reduced graphene oxide–amine–titanium dioxide nanocomposites for simultaneous carbon dioxide adsorption and photoreduction. Catalysts Sciencce Technology 2016, 6 (16), 6187-6196.
29. Nasution, H.; Purnama, E.; Kosela, S.; Gunlazuardi, J., Photocatalytic reduction of CO on copper-doped Titania catalysts prepared by improved-impregnation method. Catalysis Communications 2005, 6 (5), 313-319.
30. 林宸嶢., 鍛燒溫度對釩離子摻雜二氧化鈦光觸媒物化與光催化還原二氧化碳特性研究. 2011.
31. Kočí, K.; Matějová, L.; Ambrožová, N.; Šihor, M.; Troppová, I.; Čapek, L.; Kotarba, A.; Kustrowski, P.; Hospodková, A.; Obalová, L., Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O. Journal of Sol-Gel Science and Technology 2016, 78 (3), 550-558.
32. Gonell, F.; Puga, A. V.; Julián-López, B.; García, H.; Corma, A., Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Applied Catalysis B: Environmental 2016, 180, 263-270.
33. Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C. M. A.; Lee, A. F.; Wu, J. C. S., On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications 2012, 25, 78-82.
34. Tseng, I. H.; Wu, J. C. S.; Chou, H.-Y., Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis 2004, 221 (2), 432-440.
35. Richardson, P. L.; Perdigoto, M. L. N.; Wang, W.; Lopes, R. J. G., Retracted: Manganese- and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol. Applied Catalysis B: Environmental 2012, 126, 200-207.
36. Zhang, Q.; Gao, T.; Andino, J. M.; Li, Y., Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor. Applied Catalysis B: Environmental 2012, 123-124, 257-264.
37. Grabowska, E.; Sobczak, J. W.; Gazda, M.; Zaleska, A., Surface properties and visible light activity of W-TiO2 photocatalysts prepared by surface impregnation and sol–gel method. Applied Catalysis B: Environmental 2012, 117-118, 351-359.
38. Sathasivam, S.; Bhachu, D. S.; Lu, Y.; Chadwick, N.; Althabaiti, S. A.; Alyoubi, A. O.; Basahel, S. N.; Carmalt, C. J.; Parkin, I. P., Tungsten Doped TiO2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition. Science Reports 2015, 5, 10952.
39. Jiao, J.; Wei, Y.; Zhao, Z.; Liu, J.; Li, J.; Duan, A.; Jiang, G., Photocatalysts of 3D Ordered Macroporous TiO2-Supported CeO2Nanolayers: Design, Preparation, and Their Catalytic Performances for the Reduction of CO2with H2O under Simulated Solar Irradiation. Industrial & Engineering Chemistry Research 2014, 53 (44), 17345-17354.
40. Ji, Y.; Luo, Y., Theoretical Study on the Mechanism of Photoreduction of CO2to CH4on the Anatase TiO2(101) Surface. American Chemical Society Catalysis 2016, 6 (3), 2018-2025.
41. Yang, L.; Wei, J.; Liu, Z.; Wang, J.; Wang, D., Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater. Applied Surface Science 2015, 330, 228-236.
42. Wang, Y.; Zhao, J.; Wang, T.; Li, Y.; Li, X.; Yin, J.; Wang, C., CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. Journal of Catalysis 2016, 337, 293-302.
43. Mayoufi, A.; Nsib, M. F.; Ahmed, O.; Houas, A., Synthesis, characterization and photocatalytic performance of W, N, S-tri-doped TiO2 under visible light irradiation. Comptes Rendus Chimie 2015, 18 (8), 875-882.
44. Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental 2010, 100 (1-2), 386-392.
45. Fuerte, A.; Hernández-Alonso, M. D.; Iglesias-Juez, A.; Martínez-Arias, A.; Conesa, J. C.; Soria, J.; Fernández-García, M., Influence of preparation method on surface and bulk properties of sunlight-active Ti–W mixed oxide photocatalysts. Physical Chemistry 2003, 5 (13), 2913-2921.
46. Pandiyan, R.; Delegan, N.; Dirany, A.; Drogui, P.; El Khakani, M. A., Probing the Electronic Surface Properties and Bandgap Narrowing of in situ N, W, and (W,N) Doped Magnetron-Sputtered TiO2Films Intended for Electro-Photocatalytic Applications. The Journal of Physical Chemistry C 2016, 120 (1), 631-638.
47. Occhiuzzi, M.; Cordischi, D.; Gazzoli, D.; Valigi, M.; Heydorn, P. C., WOx/ZrO2 catalysts. Applied Catalysis A: General 2004, 269 (1-2), 169-177.
48. X.Z. Li , F.B. Li , C.L. Yang , W.K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2001, 141, 209–217.
49. Abdennouri1,M., R. E., A. Elmhammedi1, A. Galadi, M. Baâlala, M. Bensitel, A. Boussaoud, Y. El hafiane, A. Smith, N. Barka, Influence of tungsten on the anatase-rutile phase transition of sol-gel synthesized TiO2 and on its activity in the photocatalytic degradation of pesticides. 2013.
50. Zhu, S.; Liang, S.; Tong, Y.; An, X.; Long, J.; Fu, X.; Wang, X., Photocatalytic reduction of CO2 with H2O to CH4 on Cu(I) supported TiO2 nanosheets with defective {001} facets. Physical Chemistry 2015, 17 (15), 9761-70.
51. Xin, B.; Ren, Z.; Wang, P.; Liu, J.; Jing, L.; Fu, H., Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts. Applied Surface Science 2007, 253 (9), 4390-4395.
52. Ola, O.; Maroto-Valer, M. M., Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction. Applied Catalysis A: General 2015, 502, 114-121.
53. Paulino, P. N.; Salim, V. M. M.; Resende, N. S., Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light. Applied Catalysis B: Environmental 2016, 185, 362-370.
54. Oomman K. Varghese, M. P., Thomas J. LaTempa, and Craig A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. 2008, Vol. 9,No.2.
55. Juan M. Coronado, A. Javier Maira, Jose´ Carlos Conesa, King Lun Yeung,Vincenzo Augugliaro,and Javier Soria., EPR Study of the Surface Characteristics of nanostructured TiO2 under UV irradiation. Langmuir, 2001,17,5368-5374
56. Dimitrijevic, N. M.; Shkrob, I. A.; Gosztola, D. J.; Rajh, T., Dynamics of Interfacial Charge Transfer to Formic Acid, Formaldehyde, and Methanol on the Surface of TiO2Nanoparticles and Its Role in Methane Production. The Journal of Physical Chemistry C 2012, 116 (1), 878-885.
57. Chinthala P. K., Neeruganti O.G., Ting C.W., Wong M. S. and Ke S. C., EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. Journal Phyical. Chemistry B, 2006,110,5223-5229
58. T. Rajh, J. M. N., L. X. Chen, O. Poluektov, and M. C. Thurnauer, Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C. 1999.
59. Deanna C. Hurum, A. G. A., and Kimberly A. Gray, Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. Journal Physical Chemistry B 2003, Vol. 107, No. 19.
60. Macdonald, I. R.; Rhydderch, S.; Holt, E.; Grant, N.; Storey, J. M. D.; Howe, R. F., EPR studies of electron and hole trapping in titania photocatalysts. Catalysis Today 2012, 182 (1), 39-45.
61. Smits, M.; Ling, Y.; Lenaerts, S.; Van Doorslaer, S., Photocatalytic removal of soot: unravelling of the reaction mechanism by EPR and in situ FTIR spectroscopy. Chemphyschem 2012, 13 (18), 4251-7.
62. Alessandra, T. a. A., G., Study of the Interaction between Simple Molecules and W-Sn-Based Oxide Catalysts. 1. The Case of WO3 Powders. Langmuir 2000, Vol. 16, No. 15.
63. Xiong, L.-B.; Li, J.-L.; Yang, B.; Yu, Y., Ti3+in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. Journal of Nanomaterials 2012, 2012, 1-13.
64. Molinari, A.; Samiolo, L.; Amadelli, R., EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO2 in TiO2 aqueous suspensions. Photochem Photobiol Science 2015, 14 (5), 1039-46.
65. Masakazu Anpo a, Hiromi Yamashita a, Yuichi Ichihashi a, Shaw Ehara b, Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry 1995, 396, 21-26.
66. Fang, W.; Khrouz, L.; Zhou, Y.; Shen, B.; Dong, C.; Xing, M.; Mishra, S.; Daniele, S.; Zhang, J., Reduced {001}-TiO2-x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution. Phys Chem Chem Phys 2017, 19 (21), 13875-13881.
67. Tijana Rajh, A. E. O., Olga I. Micic,‡ David M. Tiede, and Marion C. Thurnauer, Surface Modification of Small Particle TiO2 Colloids with Cysteine for Enhanced Photochemical Reduction An EPR Study. Journal Physical Chemistry 1995, Vol. 100, No. 11.
68. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P., Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. Journal of the American Chemical Society 2011, 133 (11), 3964-71.
69. Mark A., BollingerM., Albert V., A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2, catalysts., aplied Catalysis B: Environmental 8, 1996, 417-443
70. Finkelstein-Shapiro, D.; Petrosko, S. H.; Dimitrijevic, N. M.; Gosztola, D.; Gray, K. A.; Rajh, T.; Tarakeshwar, P.; Mujica, V., CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles. J Phys Chem Lett 2013, 4 (3), 475-9.
71. Neatu, S.; Macia-Agullo, J. A.; Concepcion, P.; Garcia, H., Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. Journal of the American Chemical Society 2014, 136 (45), 15969-76.
72. Liu, L.; Zhao, C.; Miller, J. T.; Li, Y., Mechanistic Study of CO2 Photoreduction with H2O on Cu/TiO2 Nanocomposites by in Situ X-ray Absorption and Infrared Spectroscopies. The Journal of Physical Chemistry C 2017, 121 (1), 490-499.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *