帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:鍾文卿
作者(英文):Chung, Wen-Ching
論文名稱(中文):結構類似物干擾對拓印光子晶體感測能力的影響
論文名稱(英文):Influences of Analogue Interference on Sensing Performance of Imprinted Inverse Opals
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:董瑞安
陳暉
口試委員(英文):Doong, Ruey-An
CHEN, HUI
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0351726
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:雙酚 A無機材料拓印光子晶體結構類似物干擾抑制作用
外文關鍵詞:Bisphenol AInorganic materialsImprinted photonic crystalAnalogue interferenceInhibition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本研究針對雙酚A (Bisphenol A, BPA)、 雙(2-羥基苯基)甲烷 (Bis(2-hydroxyphenyl)methane, 2HDPM)與苯酚 (phenol)製備高選擇性之拓印反蛋白石光子晶體感測器,並瞭解目標物與結構類似物之間的相互影響作用力對感測能力的影響。在感測能力試驗結果中,感測器對標的物皆具有高選擇性及廣泛的線性範圍(0.4~120 mg/L),最低偵測極限可達0.4~0.5 mg/L,而在結構類似物干擾試驗中,結構類似物對目標物的吸引力(π-π作用力)若大於拓印孔洞與目標物間的鍵結引力,便會使目標物受到抑制干擾,抑制程度隨結構類似物的濃度增加而增加,此外,目標物的尺寸大小及立體結構亦會影響目標物進入拓印孔洞的難易度,BPA與2HDPM結構與大小相似,然而2HDPM的立體結構對稱,因此較容易進入拓印孔洞中,使phenol對其抑制影響較BPA輕微,另外,phenol由於分子小,較容易進入拓印孔洞,因此BPA與2HDPM對phenol感測的抑制程度較低。另外,在線性試驗中結構類似物的存在皆會抑制感測器的響應能力,使線性截距下降,對於大分子BPA與2HDPM拓印感測器而言,當標的物濃度高時,結構類似物對感測能力的干擾變得不明顯,而對於phenol拓印感測器而言,由於類似物間的親和力較弱,因此抑制影響便不隨類似物相對濃度增加而增加,以致線性斜率不變。整體結果顯示結構類似物對於感測能力的影響主要為抑制作用,且標的物與結構類似物間的π-π作用力為抑制標的物進入拓印孔洞的主要因素。
Three inverse opal photonic crystal sensors imprinted with Bisphenol A (BPA), Bis(2-hydroxyphenyl)methane (2HDPM), and phenol were prepared, and the influence of interactions between target analyte and structural analogues on their sensing performance were investigated. Results indicate that all these imprinted sensors exhibited high selectivity, a broad linear range (0.4~120 mg/L), and low detection limits (0.4~0.5 mg/L). The interference test showed that the response of the sensors was suppressed when the π-π interaction between the target and its structural analogues is stronger than the interaction between imprint cavities and the target. In addition, the inhibition increases with increasing concentrations of analogues. The molecular size and stereogeometry of analytes determine how easy the target can bind into the imprinted cavities. Although BPA and 2HDPM are similar in size and structure, the symmetrical stereo-structure of 2HDPM enables this compound easier to fit in the imprinted cavity, thereby the inhibition effect of phenol on 2HDPM sensing is slightly lower than that on BPA sensing. On the other hand, the sensing ability of the phenol-imprinted sensor was less interfered by 2HDPM and BPA because the smaller molecular size of phenol facilitates its binding into the cavities. The linear test revealed that the presence of analogues inhibited response and led to decrease of linear intercept. The interference became insignificant for the BPA- and 2HDPM-imprinted sensors when the target concentration was increased. Due to weak affinity of phenol toward analogues, the slope of the linearity of the phenol-imprinted sensor was insignificantly affect by the matrix except for slightly decrease in intercept. These results clearly demonstrated that the impact of analogues on the sensing performance is mainly due to the π-π interaction between the molecules which hinders binding to suppress response.
摘要 I
Abstract II
誌謝 III
主目錄 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
1.1 研究背景與動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 感測器 4
2.2 分子拓印材料 6
2.2.1 分子拓印技術概念與發展 6
2.2.2 分子拓印方式 7
2.3 分子拓印高分子的特性 10
2.3.1 吸附能力 10
2.3.2 選擇性 12
2.4 光子晶體 15
2.4.1 光子晶體製備 16
2.4.2 蛋白石與反蛋白石光子晶體 17
2.5 分子拓印光子晶體感測器 17
2.5.1 辨識材料種類 18
2.5.2 感測能力 19
2.6 雙酚A與其結構類似物 20
2.7 實驗室先前研究成果 22
第三章 研究方法 23
3.1 實驗材料 25
3.2 光子晶體 27
3.2.1 乳化聚合法製備聚苯乙烯球 27
3.2.2 蛋白石光子晶體製備 28
3.3 拓印反蛋白石光子晶體製備 28
3.4 感測波長分析計算 31
3.4.1 蛋白石結構 31
3.4.2 反蛋白石結構 32
3.5 感測能力試驗 32
3.5.1 分析響應時間 33
3.5.2 選擇性試驗 33
3.5.3 結構類似物對標的物分析干擾測試 33
3.5.4 感測線性範圍 34
3.5.5 偵測極限 34
3.6 儀器分析 36
3.6.1 電子式掃描顯微鏡(Scanning Electron Microscopy, SEM) 36
3.6.2 紫外光-可見光光譜儀(UV-visible spectrophotometer, UV-Vis) 36
3.6.3 動態光散射分析(Dynamic light scattering, DLS) 36
第四章 結果與討論 37
4.1 拓印光子晶體感測器 37
4.1.1 蛋白石結構 37
4.1.2 反蛋白石結構 41
4.2 感測能力試驗 43
4.2.1 分析響應時間 43
4.2.2 選擇性試驗 45
4.2.3 結構類似物干擾試驗 46
4.2.3.1 B-IPC感測系統 46
4.2.3.2 H-IPC感測系統 49
4.2.3.3 P-IPC感測系統 53
4.2.4 線性範圍與最低偵測極限 56
4.2.5 線性範圍之干擾 62
4.2.5.1 B-IPC感測系統 62
4.2.5.2 H-IPC感測系統 64
4.2.5.3 P-IPC感測系統 66
第五章 結論與建議 68
參考文獻 69
附錄 74

1. Almeida, C.; Serodio, P.; Florencio, M. H.; Nogueira, J. M., New strategies to screen for endocrine-disrupting chemicals in the Portuguese marine environment utilizing large volume injection-capillary gas chromatography-mass spectrometry combined with retention time locking libraries (LVI-GC-MS-RTL). Analytical and Bioanalytical Chemistry 2007, 387 (7), 2569-83.
2. Ballesteros, O.; Zafra, A.; Navalon, A.; Vilchez, J. L., Sensitive gas chromatographic-mass spectrometric method for the determination of phthalate esters, alkylphenols, bisphenol A and their chlorinated derivatives in wastewater samples. Journal of Chromatography A 2006, 1121 (2), 154-62.
3. Stuart, J. D.; Capulong, C. P.; Launer, K. D.; Pan, X., Analyses of phenolic endocrine disrupting chemicals in marine samples by both gas and liquid chromatography–mass spectrometry. Journal of Chromatography A 2005, 1079 (1-2), 136-145.
4. Bacaloni, A.; Cavaliere, C.; Faberi, A.; Foglia, P.; Samperi, R.; Laganà, A., Determination of isoflavones and coumestrol in river water and domestic wastewater sewage treatment plants. Analytica Chimica Acta 2005, 531 (2), 229-237.
5. Vega-Morales, T.; Sosa-Ferrera, Z.; Santana-Rodriguez, J. J., Determination of alkylphenol polyethoxylates, bisphenol-A, 17alpha-ethynylestradiol and 17beta-estradiol and its metabolites in sewage samples by SPE and LC/MS/MS. Journal of Hazardous Materials 2010, 183 (1-3), 701-11.
6. Ge, J.; Yin, Y., Responsive photonic crystals. Angewandte Chemie 2011, 50 (7), 1492-522.
7. Griffete, N.; Frederich, H.; Maitre, A.; Schwob, C.; Ravaine, S.; Carbonnier, B.; Chehimi, M. M.; Mangeney, C., Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A. Journal of Colloid and Interface Science 2011, 364 (1), 18-23.
8. Huang, J.; Hu, X.; Zhang, W.; Zhang, Y.; Li, G., pH and ionic strength responsive photonic polymers fabricated by using colloidal crystal templating. Colloid and Polymer Science 2007, 286 (1), 113-118.
9. Lee, K.; Asher, S. A., Photonic crystal chemical sensors: pH and ionic strength. Journal of the American Chemical Society 2000, 122 (39), 9534-9537.
10. Javanbakht, M.; Attaran, A. M.; Namjumanesh, M. H.; Esfandyari-Manesh, M.; Akbari-Adergani, B., Solid-phase extraction of tramadol from plasma and urine samples using a novel water-compatible molecularly imprinted polymer. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 2010, 878 (20), 1700-6.
11. Wu, J.; Yang, Z.; Chen, N.; Zhu, W.; Hong, J.; Huang, C.; Zhou, X., Vanillin-molecularly targeted extraction of stir bar based on magnetic field induced self-assembly of multifunctional Fe3O4@Polyaniline nanoparticles for detection of vanilla-flavor enhancers in infant milk powders. Journal of Colloid and Interface Science 2015, 442, 22-9.
12. Liu, X. Y.; Fang, H. X.; Yu, L. P., Molecularly imprinted photonic polymer based on beta-cyclodextrin for amino acid sensing. Talanta 2013, 116, 283-9.
13. Xu, D.; Zhu, W.; Wang, C.; Tian, T.; Cui, J.; Li, J.; Wang, H.; Li, G., Molecularly imprinted photonic polymers as sensing elements for the creation of cross-reactive sensor arrays. Chemistry 2014, 20 (50), 16620-5.
14. Zhang, Y.; Pan, Z.; Yuan, Y.; Sun, Z.; Ma, J.; Huang, G.; Xing, F.; Gao, J., Molecularly imprinted photonic crystals for the direct label-free distinguishing of L-proline and D-proline. Physical Chemistry Chemical Physics : PCCP 2013, 15 (40), 17250-6.
15. Cummins, W.; Duggan, P.; McLoughlin, P., Systematic cross-selectivity study of the factors influencing template receptor interactions in molecularly imprinted nitrogen heterocycles. Biosensors & Bioelectronics 2006, 22 (3), 372-80.
16. Gong, C. B.; Yang, Y. Z.; Yang, Y. H.; Zheng, A. X.; Liu, S.; Tang, Q., Photoresponsive hollow molecularly imprinted polymer for the determination of trace bisphenol A in water. Journal of Colloid and Interface Science 2016, 481, 236-44.
17. Jiang, X.; Tian, W.; Zhao, C.; Zhang, H.; Liu, M., A novel sol-gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta 2007, 72 (1), 119-25.
18. Nakamura, H.; Karube, I., Current research activity in biosensors. Anal Bioanal Chem 2003, 377 (3), 446-68.
19. Lee, M.; Fauchet, P. M., Two-dimensional silicon photoniccrystal based biosensing platform for protein detection. Optics Express 2007, 15 (8).
20. Fischer, E., Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der Deutschen Chemischen Gesellschaft 1894, 27 (3), 2985-2993.
21. Polyakov, M., Adsorption properties and structure of silica gel. Zhur Fiz Khim 1931, 2, 799-805.
22. Pauling, L., A Theory of the Structure and Process of Formation of Antibodies*. Journal of the American Chemical Society 1940, 62 (10), 2643-2657.
23. Dickey, F. H., The preparation of specific adsorbents. Proceedings of the National Academy of Sciences of the United States of America 1949, 35 (5), 227.
24. Wuff, G.; Sarhan, A., The use of polymers with enzyme-analogous structures for the resolution of racemate. Journal of the Angewandte Chemie International Edition 1972, 11 (3), 341-345.
25. Arshady, R.; Mosbach, K., Synthesis of substrate‐selective polymers by host‐guest polymerization. Die Makromolekulare Chemie 1981, 182 (2), 687-692.
26. Xu, L.; Huang, Y. A.; Zhu, Q. J.; Ye, C., Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects. International Journal of Molecular Sciences 2015, 16 (8), 18328-47.
27. Lok, C.; Son, R., Application of molecularly imprinted polymers in food sample analysis—a perspective. International Food Research Journal 2009, 16 (2), 127-140.
28. Mayes, A.; Whitcombe, M., Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews 2005, 57 (12), 1742-1778.
29. Maier, N. M.; Lindner, W., Chiral recognition applications of molecularly imprinted polymers: a critical review. Analytical and Bioanalytical Chemistry 2007, 389 (2), 377-397.
30. Hien Nguyen, T.; Ansell, R. J., N‐isopropylacrylamide as a functional monomer for noncovalent molecular imprinting. Journal of Molecular Recognition 2012, 25 (1), 1-10.
31. Li, P.; Wang, T.; Lei, F.; Tang, P.; Tan, X.; Liu, Z.; Shen, L., Rosin-based molecularly imprinted polymers as the stationary phase in high-performance liquid chromatography for selective separation of berberine hydrochloride. Polymer International 2014, 63 (9), 1699-1706.
32. Rao, W.; Cai, R.; Yin, Y.; Long, F.; Zhang, Z., Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples. Talanta 2014, 128, 170-6.
33. Zhou, H.; Xu, Y.; Tong , H.; Liu, Y.; Han, F.; Yan, X.; Shaomin, L., Direct Synthesis of Surface Molecularly Imprinted Polymers Based on Vinyl–SiO2 Nanospheres for Recognition of Bisphenol A. J. APPL. POLYM. SCI. 2013, 128 (6), 3846-3852.
34. Zhu, G.; Fan, J.; Gao, Y.; Gao, X.; Wang, J., Synthesis of surface molecularly imprinted polymer and the selective solid phase extraction of imidazole from its structural analogs. Talanta 2011, 84 (4), 1124-32.
35. Su, X.; Li, X.; Li, J.; Liu, M.; Lei, F.; Tan, X.; Li, P.; Luo, W., Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chemistry 2015, 171, 292-7.
36. Carlson, C. A.; Lloyd, J. A.; Dean, S. L.; Walker, N. R.; Edmiston, P. L., Sensor for Fluorene Based on the Incorporation of an Environmentally Sensitive Fluorophore Proximal to a Molecularly Imprinted Binding Site. Analytical Chemistry 2006, 78 (11), 3537-3542.
37. Hu, X.; Wu, X.; Yang, F.; Wang, Q.; He, C.; Liu, S., Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples. Talanta 2016, 148, 29-36.
38. Clausen, D. N.; Pires, I. M.; Tarley, C. R., Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA-SiO(2)) hybrid material synthesized with different molar ratios. Materials science & engineering. C, Materials for biological applications 2014, 44, 99-108.
39. Jiang, X.; Zhao, C.; Jiang, N.; Zhang, H.; Liu, M., Selective solid-phase extraction using molecular imprinted polymer for the analysis of diethylstilbestrol. Food Chemistry 2008, 108 (3), 1061-7.
40. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 1987, 58 (20), 2059-2062.
41. John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 1987, 58 (23), 2486-2489.
42. Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C., Opals: status and prospects. Angewandte Chemie 2009, 48 (34), 6212-33.
43. Zhang, W.; Zhang, D.; Fan, T.; Gu, J.; Ding, J.; Wang, H.; Guo, Q.; Ogawa, H., Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials 2008, 21 (1), 33-40.
44. Nair, R. V.; Vijaya, R., Photonic crystal sensors: An overview. Progress in Quantum Electronics 2010, 34 (3), 89-134.
45. Stein, A.; Li, F.; Denny, N. R., Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles†. Chemistry of Materials 2007, 20 (3), 649-666.
46. Stein, A.; Schroden, R. C., Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Current Opinion in Solid State and Materials Science 2001, 5 (6), 553-564.
47. Gu, Z. Z.; Kubo, S.; Fujishima, A.; Sato, O., Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure. Applied Physics A 2014, 74 (1), 127-129.
48. Jiang, P.; McFarland, M. J., Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. Journal of the American Chemical Society 2004, 126 (42), 13778-13786.
49. Wang, X.; Mu, Z.; Liu, R.; Pu, Y.; Yin, L., Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food Chemistry 2013, 141 (4), 3947-53.
50. Peng, H.; Wang, S.; Zhang, Z.; Xiong, H.; Li, J.; Chen, L.; Li, Y., Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. Journal of Agricultural and Food Chemistry 2012, 60 (8), 1921-8.
51. Xue, F.; Meng, Z.; Wang, Y.; Huang, S.; Wang, Q.; Lu, W.; Xue, M., A molecularly imprinted colloidal array as a colorimetric sensor for label-free detection of p-nitrophenol. Anal. Methods 2014, 6 (3), 831-837.
52. Wu, Z.; Hu, X.; Cheng, a. T.; Li, Y.; Liu, J.; Yang, C.; Shen, D.; Li, G., Direct and label-free detection of cholic acid based on molecularly imprinted photonic hydrogels. Journal of Materials Chemistry 2008, 18, 5452-5458.
53. Liang, W.; Huang, Y.; Xu, Y.; Lee, R. K.; Yariv, A., Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters 2005, 86 (15), 151122.
54. Hu, X.; An, Q.; Li, G.; Tao, S.; Liu, J., Imprinted photonic polymers for chiral recognition. Angewandte Chemie Int. Ed. 2006, 45 (48), 8145-8.
55. Zhang, Y.-X.; Zhao, P.-Y.; Yu, L.-P., Highly-sensitive and selective colorimetric sensor for amino acids chiral recognition based on molecularly imprinted photonic polymers. Sensors and Actuators B: Chemical 2013, 181, 850-857.
56. vom Saal, F. S.; Hughes, C., An Extensive New Literature Concerning Low-Dose Effects of Bisphenol A Shows the Need for a New Risk Assessment. Environmental Health Perspectives 2005, 113 (8), 926-933.
57. Cousins, I.; Staples, C.; Kleĉka, G.; Mackay, D., A multimedia assessment of the environmental fate of bisphenol A. Human and Ecological Risk Assessment 2002, 8 (5), 1107-1135.
58. Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R., A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36 (10), 2149-2173.
59. Romani, A. P.; Machado, A. E.; Hioka, N.; Severino, D.; Baptista, M. S.; Codognoto, L.; Rodrigues, M. R.; de Oliveira, H. P., Spectrofluorimetric determination of second critical micellar concentration of SDS and SDS/Brij 30 systems. Journal of Fluorescence 2009, 19 (2), 327-32.
60. Joy, K.; Berlin, I. J.; Nair, P. B.; Lakshmi, J. S.; Daniel, G. P.; Thomas, P. V., Effects of annealing temperature on the structural and photoluminescence properties of nanocrystalline ZrO2 thin films prepared by sol–gel route. Journal of Physics and Chemistry of Solids 2011, 72 (6), 673-677.
61. Im, S. H.; Park, O. O., Effect of evaporation temperature on the quality of colloidal crystals at the water-air interface. Langmuir 2002, 18 (25), 9642-9646.
62. Macleod, D., On a relation between surface tension and density. Transactions of the Faraday Society 1923, 19 (July), 38-41.
63. Jones, S. L.; Norman, C. J., Dehydration of hydrous zirconia with methanol. Journal of the American Ceramic Society 1988, 71 (4), C190-C191.
64. Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J., Aromatic interactions. Journal of the Chemical Society, Perkin Transactions 2 2001, (5), 651-669.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *