帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:鐘鼎鈞
作者(英文):Zhong,Ding-Jun
論文名稱(中文):表面修飾TiO2光觸媒應用於氣相與水溶液相光催化還原CO2特性探討
論文名稱(英文):Photocatalytic Reduction of CO2 by Surface-Doped TiO2 Photocatalysts in Gaseous and Aqueous Phases
指導教授(中文):張淑閔
指導教授(英文):Chang,Sue-Min
口試委員:吳紀聖
徐雍鎣
口試委員(英文):Jeffery Chi-Sheng Wu
Hsu,Yung-Jung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0351725
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:表面摻雜二氧化鈦二氧化碳還原水液相/氣相反應系統表面酸量載子再結合
外文關鍵詞:Surface Doped TiO2CO2 ReductionGaseous/Aqueous Phase ReductionCharge RecombinationSurface Acidity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:61
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
本研究成功以溶膠-凝膠法製備表面摻雜二氧化鈦(TiO2),研究中除探討銅(Cu)、鐵(Fe)以及釩(V)離子對於表面摻雜二氧化鈦(CT,FT,VT)的特性差異(元素比例、元素分布、載子分離效率及表面特性)以及光催化還原二氧化碳(CO2)特性的影響外,並比較氣相及水溶液相還原系統在還原特性上的差異,最後為了改善水溶液相系統的效率,探討系統促進劑—溴化鉀(KBr)與還原態氧化石墨烯(rGO)—對於光催化還原 CO2 效率改善的影
響。元素分析結果顯示金屬離子主要分布在 TiO2 表層晶格中,濃度比例(M/Ti, M=摻雜離子)為 0.71-1.63 %,受金屬離子向外擴散程度的影響,VT 樣品呈現較高表面金屬摻雜量。VT 觸媒在三種摻雜觸媒中具有最好的還原效率,其 CH4 產率(1.3 µ mol/g)在氣相系統中更高於 TiO2 的兩倍,V5+離子在表面抑制載子再結合,且導入較高的表面酸度,是呈現高活性的原因。氣相系統中的還原產物以甲烷(CH4)為主,而水溶液相中則除了 CH4,還有乙烯(C2H4)、乙烷(C2H6)以及丙烯(C3H6)的存在,雖物種較多,然水溶液系統的還原總產率卻不如氣相系統,原因為水中 CO2 濃度僅為氣相系統濃度的一半,降低 CO2 參與還原反應的機率,另外,反應初期生成的產物受到周圍水分子的籠效應影響佔據觸媒表面活性位置,也造成反應速率低下。系統中存在溴離子與 rGO 時,產物生成率均受到抑制,雖然兩者能去除強氧化性的氫氧自由基(‧OH),但卻都因為影響 CO2 的吸附而造成界面電荷轉移效率降低,因而對系統造成負面的影響。
In this study, Cu-, Fe-, and V-surface-doped TiO2 photocatalysts have been prepared with a sol-gel method for CO2 reduction. The effects of the three types of dopants on surface and physicochemical properties and the photocatalytic activity for CO2 reduction in gaseous and
aqueous systems were explicitly characterized and elucidated. In addition, the reduction in the presence of KBr or rGO, which were used as radical scavengers, in the aqueous phase was examined. Elemental analysis results indicate that the doped ions mainly distributed in the surface lattice with the concentrations of 0.71-1.63 at%. Due to low diffusion energy, V ions easily underwent outward migration during calcination and led to the highest accumulation at the surface of the doped TiO2 powders. The V-doped TiO2 exhibited the highest activity over the Cu- and Fe-doped photocatalysts for CO2 reduction. In gaseous phase, its methane yield (1.3 µ mol/g) was even twice as high as that by the pure TiO2 sample. The merits of V ions on the improved activity are mainly associated to inhibited charge recombination and increased quantity of Bronsted sites. While methane was the only detectable product in gaseous phase, short chained hydrocarbons, including methane, ethane, ethylene, and propene, were obtained in the aqueous system. Although more species were produced in aqueous phase, the product yield in the aqueous phase was lower than the gaseous system. The limited activity is ascribed to low solubility of CO2 in water and the block of active sites by products due to solvent-cage effect. In the presence of KBr or rGO, product yields declined. These two species hindered charge transfer between the photocataysts and CO2 molecules, thus causing adverse effect to the system.
主目錄
中文摘要 I
Abstract II
誌謝 III
主目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 光觸媒簡介 3
2.2 光催化還原二氧化碳(Carbon Dioxide) 7
2.3 光觸媒表面修飾 9
2.3.1 觸媒修飾概念&種類 9
2.3.2 表面摻雜 10
2.4 觸媒表面特性 13
2.5 光催化還原CO2反應系統 14
第三章 研究方法 19
3.1 實驗架構 19
3.2 藥品 20
3.3 觸媒製備方法 20
3.4 材料鑑定 22
3.4.1紫外光-可見光光譜儀 ( UV-Visble Spectrophotometer ) 22
3.4.2等溫氮氣吸脫附分析(Nitrogen Adsorption-Desorption Isotherm Measurement) 23
3.4.3 X光粉末繞射儀(X-ray Powder Diffraction Spectrum,XRD) 23
3.4.4 高解析場發射掃瞄式電子顯微鏡(Scanning Electron Microscope,SEM) 24
3.4.5 化學分析能譜儀 ( Electron Spectroscopy for Chemical Analysis , ESCA ) 25
3.4.6 飛行時間二次離子質譜儀(Time-of-Flight Secondary Ion Mass spectrometer) 26
3.4.7 感應耦合電漿質譜儀 (Inductively Coupled Plasma Mass Spectrometry) 27
3.4.8 光激發螢光分析儀(Steady State Photo-Luminescence, Steady state PL) 27
3.4.9 氨氣程式升溫脫附分析 (NH3-TPD) 28
3.5 光催化CO2還原系統 30
3.5.1 氣相系統 30
3.5.2 液相系統 31
3.5.3 氣相層析儀設備之參數設定 33
第四章 結果與討論 37
4.1 材料鑑定 37
4.2 光催化還原CO2反應行為 48
4.2.1 不同表面摻雜離子對CO2還原影響 51
4.2.2 光催化還原CO2系統間差異 61
4.2.3 光催化還原CO2系統促進劑 62
第五章 結論 67
第六章 參考文獻 68
附錄A.還原態氧化石墨烯製備方式 74
附錄B.表面摻雜光觸媒BET鑑定結果 75
附錄C.還原活性測試結果 77
附錄D.還原電位計算方式 80
附錄E.各金屬離子與鈦離子莫耳比例檢量線 81
附錄F.產物檢量線 83
1.Bazzaz, F. A., The response of natural ecosystems to the rising global CO2 levels. Annual Review Of Ecology And Systematics 1990, 21 (1), 167-196.
2.Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V., Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells 2003, 77 (1), 65-82.
3.Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells 2007, 91 (19), 1765-1774.
4.Miseki, Y.; Kusama, H.; Sugihara, H.; Sayama, K., Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe (III) ion reduction under visible light. The Journal of Physical Chemistry Letters 2010, 1 (8), 1196-1200.
5.Park, H.; Ou, H.-H.; Kang, U.; Choi, J.; Hoffmann, M. R., Photocatalytic conversion of carbon dioxide to methane on TiO2/Cds in aqueous isopropanol solution. Catalysis Today 2016, 266, 153-159.
6.Xu, Y.; Schoonen, M. A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist 2000, 85 (3-4), 543-556.
7.Chang, S.-m.; Liu, W.-s., The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, And W) in the interfacial behavior of TiO2 photocatalysts. Applied Catalysis B: Environmental 2014, 156, 466-475.
8.Choi, W. Y.; Termin, A.; Hoffmann, M. R., The role of metal-ion dopants in quantum-sized TiO2 :Correlation between photoreactivity and charge-carrier recombination dynamics. Journal of Physical Chemistry 1994, 98 (51), 13669-13679.
9.Jeon, M.-K.; Park, J.-W.; Kang, M., Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase and rutile forms of Cu-TiO2. Journal of Industrial and Engineering Chemistry 2007, 33 (1), 84-91.
10.Morikawa, T.; Asahi, R.; Ohwak, T.; Aoki, K.; Taga, Y., Band-gap narrowing of titanium dioxide by nitrogen doping. Japanese Journal of Applied Physics 2001, 40 (6A), 561-563.
11.Paulino, P. N.; Salim, V. M. M.; Resende, N. S., Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light. Applied Catalysis B-Environmental 2016, 185, 362-370.
12.Park, M.; Kwak, B. S.; Jo, S. W.; Kang, M., Effective CH4 production from CO2 photoreduction using TiO2/x mol% Cu–TiO2 double-layered films. Energy Conversion and Management 2015, 103, 431-438.
13.Lee, C. W.; Kourounioti, R. A.; Wu, J. C. S.; Murchie, E.; Maroto-Valer, M.; Jensen, O. E.; Huang, C. W.; Ruban, A., Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. Journal of CO2 Utilization 2014, 5, 33-40.
14.Chang, S. M.; Liu, W. S., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B-Environmental 2011, 101 (3-4), 333-342.
15.Molinari, A.; Samiolo, L.; Amadelli, R., EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO2 in TiO2 aqueous suspensions. Photochemical & Photobiological Sciences 2015, 14 (5), 1039-1046.
16.Civiš, S.; Ferus, M.; Knížek, A.; Kubelík, P.; Kavan, L.; Zukalová, M., Photocatalytic transformation of CO2 to CH4 and CO on acidic surface of TiO2 anatase. Optical Materials 2016, 56, 80-83.
17.Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J. C.-S.; Wu, H.-H., Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catalysis Letters 2009, 131 (3-4), 381-387.
18.Qin, S.; Xin, F.; Liu, Y.; Yin, X.; Ma, W., Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. Journal of Colloid and Interface Science 2011, 356 (1), 257-261.
19.Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuk, T.; Ishitani, O., Photochemical reduction of CO2 using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. American Chemical Society 2011, 3, 2594-2600.
20.Gui, M. M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A. R., Enhanced visible light responsive MWCNT/TiO2 core-shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Solar Energy Materials & Solar Cells 2014, 122 183-189.
21.Tseng, I.-H.; Chang, W.-C.; C.S.Wu, J., Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental 2002, 37, 37-48.
22.Iguchi, S.; Teramura, K.; Hosokawa, S.; Tanaka, T., Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO2 in an aqueous solution over Ni-Al layered double hydroxides. Physical Chemistry Chemical Physics 2015, 17 (27), 17995-18003.
23.Das, R.; Dutta, B. K.; Maurino, V.; Vione, D.; Minero, C., Suppression of inhibition of substrate photodegradation by scavengers of hydroxyl radicals: the solvent-cage effect of bromide on nitrate photolysis. Environmental Chemistry Letters 2008, 7 (4), 337-342.
24.Galano, A., Carbon nanotubes as free-radical scavengers. The Journal of Physical Chemistry C 2008, 112 (24), 8922-8927.
25.Fujishima, A.; Zhang, X.; Tryk, D. A., TiO2 photocatalysis and related surface phenomena. Surface Science Reports 2008, 63, 515-582.
26.Dalton, J. S.; Janes, P. A.; Jones, N.; Nicholson, J. A.; Hallam, K. R.; Allen, G. C., Photocatalytic oxidation of NOx gases using TiO2:A surface spectroscopic approach. Environmental Pollution 2002, 120 (2), 415-422.
27.Su, C.; Ran, X.; Hu, J.; Shao, C., Photocatalytic process of simultaneous desulfurization and denitrification of flue Gas by TiO2–polyacrylonitrile nanofibers. Environmental Science & Technology 2013, 47 (20), 11562-11568.
28.Valente, J. S.; Tzompantzi, F.; Prince, J., Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides. Applied Catalysis B: Environmental 2011, 102 (1–2), 276-285.
29.Wang, Z.; Chen, C.; Wu, F. q.; Zou, B.; Zhao, M.; JinxingWang; Feng, C., Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. Journal of Hazardous Materials 2009, 164, 615-620.
30.Behnajady, M. A.; Eskandarloo, H., Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal 2013, 228, 1207-1213.
31.Lazar, M. A.; Varghese, S.; Nair, S. S., Photocatalytic water treatment by titanium dioxide:Recent updates. Catalysts 2012, 2, 572-601.
32.Ao, C. H.; Lee, S. C., Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chemical Engineering Science 2005, 60 (1), 103-109.
33.Zhang, H.; Yu, X.; McLeod, J. A.; Sun, X., First-principles study of Cu-doping and oxygen vacancy effects on TiO2 for water splitting. Chemical Physics Letters 2014, 612, 106-110.
34.Grätzel, M., Photoelectrochemical cells. NATURE 2001, 414, 338-344.
35.Banerjee, S.; Dionysiou, D. D.; Pillai, S. C., Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental 2015, 176–177, 396-428.
36.Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 1995, 95 (3), 735-758.
37.Peyghambarian, N.; Koch, S. W.; Mysyrowicz, A., Introduction to semiconductor optics. Englewood Cliffs,New Jersey : Prentice-Hall International,Inc.: 1993.
38.Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2011, 46 (4), 855-874.
39.Wang, Y.; Zhang, R.; Li, J.; Li, L.; Lin, S., First-principles study on transition metal-doped anatase TiO2. Nanoscale Research Letters 2014, 9 (1), 46.
40.Liu, L.; Li, Y., Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review. Aerosol and Air Quality Research 2014, 14, 453-469.
41.Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J., Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials 2014, 57 (1), 70-100.
42.Hsu, H. C.; Shown, I.; Wei, H. Y.; Chang, Y. C.; Du, H. Y.; Lin, Y. G.; Tseng, C. A.; Wang, C. H.; Chen, L. C.; Lin, Y. C.; Chen, K. H., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5 (1), 262-268.
43.Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2000, 1 (1), 1-21.
44.Dean, J. A.; Lange, N. A., Lange's Handbook of Chemistry. McGraw-Hill: 1999.
45.Ho, J.; Coote, M. L.; Cramer, C. J.; Truhlar, D. G., Theoretical calculation of reduction potentials. Organic electrochemistry 2012, 5.
46.Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. NATURE 1979, 277 (5698), 637-638.
47.Neațu, Ș.; Maciá-Agulló, J. A.; Garcia, H., Solar light photocatalytic CO2 reduction: General considerations and selected bench-mark photocatalysts. International Journal of Molecular Sciences 2014, 15, 5246-5262.
48.林榮良, TiO2光催化原理和應用例子. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 2002 60 (3), 457-461.
49.Xie, S.; Yu Wang, Q. Z.; Fan, W.; Deng, W.; Wang, Y., Photocatalytic reduction of CO2 with H2O: Significant enhancement of the activity of Pt–TiO2 in CH4 formation by addition of MgO. Chemical Communications 2013, 49, 2451-2453.
50.Tseng, I.-H.; C.S.Wu, J.; Chou, H.-Y., Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis 2004, 221, 432-440.
51.Bhattacharyya, K.; Danon, A.; K.Vijayan, B.; Gray, K. A.; Stair, P. C.; Weitz, E., Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: An in situ FT-IR study. The Journal of Physical Chemistry C 2013, 117 (24), 12661-12678.
52.Michalkiewicz, B.; Majewska, J.; Kądziołka, G.; Bubacz, K.; Mozia, S.; Morawski, A. W., Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization 2014, 5, 47-52.
53.Su, W.; Zhang, J.; Feng, Z.; Chen, T.; Ying, P.; Li, C., Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. The Journal of Physical Chemistry C 2008, 112 (20), 7710-7716.
54.Yuan, L.; Xu, Y.-J., Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science 2015, 342, 154-167.
55.Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P., Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. Journal of the American Chemical Society 2011, 133 (11), 3964-3971.
56.Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition 2013, 52 (29), 7372-7408.
57.Liu, C.; Cundari, T. R.; Wilson, A. K., CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: In comparison with homogeneous catalysis. The Journal of Physical Chemistry C 2012, 116 (9), 5681-5688.
58.Liu, L.; Zhao, C.; Li, Y., Spontaneous dissociation of CO2 to CO on defective surface of Cu(i)/TiO2–x nanoparticles at room temperature. The Journal of Physical Chemistry C 2012, 116 (14), 7904-7912.
59.瞿佑任; 張淑閔, 二氧化鈦表面特性對光催化還原二氧化碳反應活性探討.碩士論文. 2013.
60.王宥喆; 張淑閔, 摻雜銅離子於二氧化鈦表面對光催化還原二氧化碳特性探討.碩士論文. 2014.
61.Piscopo, A.; Robert, D.; Weber, J. V., Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Applied Catalysis B: Environmental 2001, 35 (2), 117-124.
62.Ku, Y.; Lee, W.-H.; Wang, W.-Y., Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. Journal of Molecular Catalysis A: Chemical 2004, 212 (1-2), 191-196.
63.Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y., Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core–shell structure. Angewandte Chemie International Edition 2013, 52 (22), 5776-5779.
64.Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental 2010, 100 (1-2), 386-392.
65.Calza, P.; Minero, C.; Pelizzetti, E., Photocatalytic transformations of chlorinated methanes in the presence of electron and hole scavengers. Journal of the Chemical Society-Faraday Transactions 1997, 93 (21), 3765-3771.
66.Chen, C. Y.; Jafvert, C. T., Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water. Environ Sci Technol 2010, 44 (17), 6674-6679.
67.Chen, J.; Yao, B.; Li, C.; Shi, G., An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225-229.
68.Sahu, R. S.; Bindumadhavan, K.; Doong, R.-a., Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene. Environmental Science: Nano 2017, 4 (3), 565-576.
69.Hamzah, N.; Nordin, N. M.; Nadzri, A. H. A.; Nik, Y. A.; Kassim, M. B.; Yarmo, M. A., Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media. Applied Catalysis A: General 2012, 419–420, 133-141.
70.Faria, J. L. F. J.; Pereira, M. M.; Faria, J., Catalysis from theory to application: An integrated course. Imprensa da Universidade de Coimbra/Coimbra University Press: 2008.
71.Davidson, A.; Che, M., Temperature-induced diffusion of probe vanadium (IV) ions into the matrix of titanium dioxide as investigated by ESR techniques. Journal of Physical Chemistry 1992, 96, 9909-9909.
72.Edwards, M.; Whittle, D.; Rhodes, C.; Ward, A.; Rohan, D.; Shannon, M.; Hutchings, G.; Kiely, C., Microstructural studies of the copper promoted iron oxide/chromia water-gas shift catalyst. Physical Chemistry Chemical Physics 2002, 4 (15), 3902-3908.
73.Recio, A.; Liew, S.; Lu, D.; Rahman, R.; Macchi, A.; Hill, J., The effects of thermal treatment and steam addition on integrated CuO/CaO chemical looping combustion for CO2 capture. Technologies 2016, 4 (2), 11.
74.Wachs, I. E.; Chen, Y.; Jehng, J.-M.; Briand, L. E.; Tanaka, T., Molecular structure and reactivity of the group V metal oxides. Catalysis Today 2003, 78 (1–4), 13-24.
75.Popa, T.; Xu, G.; Barton, T. F.; Argyle, M. D., High temperature water gas shift catalysts with alumina. Applied Catalysis A: General 2010, 379 (1–2), 15-23.
76.Wang, Y.; Li, B.; Zhang, C.; Cui, L.; Kang, S.; Li, X.; Zhou, L., Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Applied Catalysis B: Environmental 2013, 130–131, 277-284.
77.Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 single crystals with a large percentage of reactive facets. NATURE 2008, 453 (7195), 638-641.
78.Yang, C.; Hirose, Y.; Nakao, S.; Hoang, N. L. H.; Hasegawa, T., Metal-induced solid-phase crystallization of amorphous TiO2 thin films. Applied Physics Letters 2012, 101 (5), 052101.
79.Lu, J.; Kosuda, K. M.; Van Duyne, R. P.; Stair, P. C., Surface acidity and properties of TiO2/SiO2 catalysts prepared by atomic layer deposition: UV−visible diffuse reflectance, drifts, and visible raman spectroscopy studies. The Journal of Physical Chemistry C 2009, 113 (28), 12412-12418.
80.Sasirekha, N.; Basha, S. J. S.; Shanthi, K., Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental 2006, 62 (1), 169-180.
81.Whipple, D. T.; Finke, E. C.; Kenis, P. J., Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochemical and Solid-State Letters 2010, 13 (9), B109-B111.
82.Laidler, K. J., A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996). Pure and applied chemistry 1996, 68 (1), 149-192.
83.Zhang, C.; Chen, S.; Alvarez, P. J. J.; Chen, W., Reduced graphene oxide enhances horseradish peroxidase stability by serving as radical scavenger and redox mediator. Carbon 2015, 94, 531-538.
84.Low, J.; Yu, J.; Ho, W., Graphene-based photocatalysts for CO2 reduction to solar fuel. The Journal of Physical Chemistry Letters 2015, 6 (21), 4244-4251.
85.Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C., Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano letters 2011, 11 (7), 2865-2870.
86.Yu, S.; Wang, X.; Yao, W.; Wang, J.; Ji, Y.; Ai, Y.; Alsaedi, A.; Hayat, T.; Wang, X., Macroscopic, spectroscopic, and theoretical investigation for the interaction of phenol and naphthol on reduced graphene oxide. Environmental Science & Technology 2017, 51 (6), 3278-3286.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *