|
1.Bazzaz, F. A., The response of natural ecosystems to the rising global CO2 levels. Annual Review Of Ecology And Systematics 1990, 21 (1), 167-196. 2.Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V., Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells 2003, 77 (1), 65-82. 3.Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells 2007, 91 (19), 1765-1774. 4.Miseki, Y.; Kusama, H.; Sugihara, H.; Sayama, K., Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe (III) ion reduction under visible light. The Journal of Physical Chemistry Letters 2010, 1 (8), 1196-1200. 5.Park, H.; Ou, H.-H.; Kang, U.; Choi, J.; Hoffmann, M. R., Photocatalytic conversion of carbon dioxide to methane on TiO2/Cds in aqueous isopropanol solution. Catalysis Today 2016, 266, 153-159. 6.Xu, Y.; Schoonen, M. A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist 2000, 85 (3-4), 543-556. 7.Chang, S.-m.; Liu, W.-s., The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, And W) in the interfacial behavior of TiO2 photocatalysts. Applied Catalysis B: Environmental 2014, 156, 466-475. 8.Choi, W. Y.; Termin, A.; Hoffmann, M. R., The role of metal-ion dopants in quantum-sized TiO2 :Correlation between photoreactivity and charge-carrier recombination dynamics. Journal of Physical Chemistry 1994, 98 (51), 13669-13679. 9.Jeon, M.-K.; Park, J.-W.; Kang, M., Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase and rutile forms of Cu-TiO2. Journal of Industrial and Engineering Chemistry 2007, 33 (1), 84-91. 10.Morikawa, T.; Asahi, R.; Ohwak, T.; Aoki, K.; Taga, Y., Band-gap narrowing of titanium dioxide by nitrogen doping. Japanese Journal of Applied Physics 2001, 40 (6A), 561-563. 11.Paulino, P. N.; Salim, V. M. M.; Resende, N. S., Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light. Applied Catalysis B-Environmental 2016, 185, 362-370. 12.Park, M.; Kwak, B. S.; Jo, S. W.; Kang, M., Effective CH4 production from CO2 photoreduction using TiO2/x mol% Cu–TiO2 double-layered films. Energy Conversion and Management 2015, 103, 431-438. 13.Lee, C. W.; Kourounioti, R. A.; Wu, J. C. S.; Murchie, E.; Maroto-Valer, M.; Jensen, O. E.; Huang, C. W.; Ruban, A., Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. Journal of CO2 Utilization 2014, 5, 33-40. 14.Chang, S. M.; Liu, W. S., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B-Environmental 2011, 101 (3-4), 333-342. 15.Molinari, A.; Samiolo, L.; Amadelli, R., EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO2 in TiO2 aqueous suspensions. Photochemical & Photobiological Sciences 2015, 14 (5), 1039-1046. 16.Civiš, S.; Ferus, M.; Knížek, A.; Kubelík, P.; Kavan, L.; Zukalová, M., Photocatalytic transformation of CO2 to CH4 and CO on acidic surface of TiO2 anatase. Optical Materials 2016, 56, 80-83. 17.Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J. C.-S.; Wu, H.-H., Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catalysis Letters 2009, 131 (3-4), 381-387. 18.Qin, S.; Xin, F.; Liu, Y.; Yin, X.; Ma, W., Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. Journal of Colloid and Interface Science 2011, 356 (1), 257-261. 19.Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuk, T.; Ishitani, O., Photochemical reduction of CO2 using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. American Chemical Society 2011, 3, 2594-2600. 20.Gui, M. M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A. R., Enhanced visible light responsive MWCNT/TiO2 core-shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Solar Energy Materials & Solar Cells 2014, 122 183-189. 21.Tseng, I.-H.; Chang, W.-C.; C.S.Wu, J., Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental 2002, 37, 37-48. 22.Iguchi, S.; Teramura, K.; Hosokawa, S.; Tanaka, T., Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO2 in an aqueous solution over Ni-Al layered double hydroxides. Physical Chemistry Chemical Physics 2015, 17 (27), 17995-18003. 23.Das, R.; Dutta, B. K.; Maurino, V.; Vione, D.; Minero, C., Suppression of inhibition of substrate photodegradation by scavengers of hydroxyl radicals: the solvent-cage effect of bromide on nitrate photolysis. Environmental Chemistry Letters 2008, 7 (4), 337-342. 24.Galano, A., Carbon nanotubes as free-radical scavengers. The Journal of Physical Chemistry C 2008, 112 (24), 8922-8927. 25.Fujishima, A.; Zhang, X.; Tryk, D. A., TiO2 photocatalysis and related surface phenomena. Surface Science Reports 2008, 63, 515-582. 26.Dalton, J. S.; Janes, P. A.; Jones, N.; Nicholson, J. A.; Hallam, K. R.; Allen, G. C., Photocatalytic oxidation of NOx gases using TiO2:A surface spectroscopic approach. Environmental Pollution 2002, 120 (2), 415-422. 27.Su, C.; Ran, X.; Hu, J.; Shao, C., Photocatalytic process of simultaneous desulfurization and denitrification of flue Gas by TiO2–polyacrylonitrile nanofibers. Environmental Science & Technology 2013, 47 (20), 11562-11568. 28.Valente, J. S.; Tzompantzi, F.; Prince, J., Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides. Applied Catalysis B: Environmental 2011, 102 (1–2), 276-285. 29.Wang, Z.; Chen, C.; Wu, F. q.; Zou, B.; Zhao, M.; JinxingWang; Feng, C., Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. Journal of Hazardous Materials 2009, 164, 615-620. 30.Behnajady, M. A.; Eskandarloo, H., Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal 2013, 228, 1207-1213. 31.Lazar, M. A.; Varghese, S.; Nair, S. S., Photocatalytic water treatment by titanium dioxide:Recent updates. Catalysts 2012, 2, 572-601. 32.Ao, C. H.; Lee, S. C., Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chemical Engineering Science 2005, 60 (1), 103-109. 33.Zhang, H.; Yu, X.; McLeod, J. A.; Sun, X., First-principles study of Cu-doping and oxygen vacancy effects on TiO2 for water splitting. Chemical Physics Letters 2014, 612, 106-110. 34.Grätzel, M., Photoelectrochemical cells. NATURE 2001, 414, 338-344. 35.Banerjee, S.; Dionysiou, D. D.; Pillai, S. C., Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental 2015, 176–177, 396-428. 36.Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 1995, 95 (3), 735-758. 37.Peyghambarian, N.; Koch, S. W.; Mysyrowicz, A., Introduction to semiconductor optics. Englewood Cliffs,New Jersey : Prentice-Hall International,Inc.: 1993. 38.Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2011, 46 (4), 855-874. 39.Wang, Y.; Zhang, R.; Li, J.; Li, L.; Lin, S., First-principles study on transition metal-doped anatase TiO2. Nanoscale Research Letters 2014, 9 (1), 46. 40.Liu, L.; Li, Y., Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review. Aerosol and Air Quality Research 2014, 14, 453-469. 41.Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J., Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials 2014, 57 (1), 70-100. 42.Hsu, H. C.; Shown, I.; Wei, H. Y.; Chang, Y. C.; Du, H. Y.; Lin, Y. G.; Tseng, C. A.; Wang, C. H.; Chen, L. C.; Lin, Y. C.; Chen, K. H., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5 (1), 262-268. 43.Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2000, 1 (1), 1-21. 44.Dean, J. A.; Lange, N. A., Lange's Handbook of Chemistry. McGraw-Hill: 1999. 45.Ho, J.; Coote, M. L.; Cramer, C. J.; Truhlar, D. G., Theoretical calculation of reduction potentials. Organic electrochemistry 2012, 5. 46.Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. NATURE 1979, 277 (5698), 637-638. 47.Neațu, Ș.; Maciá-Agulló, J. A.; Garcia, H., Solar light photocatalytic CO2 reduction: General considerations and selected bench-mark photocatalysts. International Journal of Molecular Sciences 2014, 15, 5246-5262. 48.林榮良, TiO2光催化原理和應用例子. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 2002 60 (3), 457-461. 49.Xie, S.; Yu Wang, Q. Z.; Fan, W.; Deng, W.; Wang, Y., Photocatalytic reduction of CO2 with H2O: Significant enhancement of the activity of Pt–TiO2 in CH4 formation by addition of MgO. Chemical Communications 2013, 49, 2451-2453. 50.Tseng, I.-H.; C.S.Wu, J.; Chou, H.-Y., Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis 2004, 221, 432-440. 51.Bhattacharyya, K.; Danon, A.; K.Vijayan, B.; Gray, K. A.; Stair, P. C.; Weitz, E., Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: An in situ FT-IR study. The Journal of Physical Chemistry C 2013, 117 (24), 12661-12678. 52.Michalkiewicz, B.; Majewska, J.; Kądziołka, G.; Bubacz, K.; Mozia, S.; Morawski, A. W., Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization 2014, 5, 47-52. 53.Su, W.; Zhang, J.; Feng, Z.; Chen, T.; Ying, P.; Li, C., Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. The Journal of Physical Chemistry C 2008, 112 (20), 7710-7716. 54.Yuan, L.; Xu, Y.-J., Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science 2015, 342, 154-167. 55.Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P., Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. Journal of the American Chemical Society 2011, 133 (11), 3964-3971. 56.Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition 2013, 52 (29), 7372-7408. 57.Liu, C.; Cundari, T. R.; Wilson, A. K., CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: In comparison with homogeneous catalysis. The Journal of Physical Chemistry C 2012, 116 (9), 5681-5688. 58.Liu, L.; Zhao, C.; Li, Y., Spontaneous dissociation of CO2 to CO on defective surface of Cu(i)/TiO2–x nanoparticles at room temperature. The Journal of Physical Chemistry C 2012, 116 (14), 7904-7912. 59.瞿佑任; 張淑閔, 二氧化鈦表面特性對光催化還原二氧化碳反應活性探討.碩士論文. 2013. 60.王宥喆; 張淑閔, 摻雜銅離子於二氧化鈦表面對光催化還原二氧化碳特性探討.碩士論文. 2014. 61.Piscopo, A.; Robert, D.; Weber, J. V., Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Applied Catalysis B: Environmental 2001, 35 (2), 117-124. 62.Ku, Y.; Lee, W.-H.; Wang, W.-Y., Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. Journal of Molecular Catalysis A: Chemical 2004, 212 (1-2), 191-196. 63.Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y., Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core–shell structure. Angewandte Chemie International Edition 2013, 52 (22), 5776-5779. 64.Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental 2010, 100 (1-2), 386-392. 65.Calza, P.; Minero, C.; Pelizzetti, E., Photocatalytic transformations of chlorinated methanes in the presence of electron and hole scavengers. Journal of the Chemical Society-Faraday Transactions 1997, 93 (21), 3765-3771. 66.Chen, C. Y.; Jafvert, C. T., Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water. Environ Sci Technol 2010, 44 (17), 6674-6679. 67.Chen, J.; Yao, B.; Li, C.; Shi, G., An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225-229. 68.Sahu, R. S.; Bindumadhavan, K.; Doong, R.-a., Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene. Environmental Science: Nano 2017, 4 (3), 565-576. 69.Hamzah, N.; Nordin, N. M.; Nadzri, A. H. A.; Nik, Y. A.; Kassim, M. B.; Yarmo, M. A., Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media. Applied Catalysis A: General 2012, 419–420, 133-141. 70.Faria, J. L. F. J.; Pereira, M. M.; Faria, J., Catalysis from theory to application: An integrated course. Imprensa da Universidade de Coimbra/Coimbra University Press: 2008. 71.Davidson, A.; Che, M., Temperature-induced diffusion of probe vanadium (IV) ions into the matrix of titanium dioxide as investigated by ESR techniques. Journal of Physical Chemistry 1992, 96, 9909-9909. 72.Edwards, M.; Whittle, D.; Rhodes, C.; Ward, A.; Rohan, D.; Shannon, M.; Hutchings, G.; Kiely, C., Microstructural studies of the copper promoted iron oxide/chromia water-gas shift catalyst. Physical Chemistry Chemical Physics 2002, 4 (15), 3902-3908. 73.Recio, A.; Liew, S.; Lu, D.; Rahman, R.; Macchi, A.; Hill, J., The effects of thermal treatment and steam addition on integrated CuO/CaO chemical looping combustion for CO2 capture. Technologies 2016, 4 (2), 11. 74.Wachs, I. E.; Chen, Y.; Jehng, J.-M.; Briand, L. E.; Tanaka, T., Molecular structure and reactivity of the group V metal oxides. Catalysis Today 2003, 78 (1–4), 13-24. 75.Popa, T.; Xu, G.; Barton, T. F.; Argyle, M. D., High temperature water gas shift catalysts with alumina. Applied Catalysis A: General 2010, 379 (1–2), 15-23. 76.Wang, Y.; Li, B.; Zhang, C.; Cui, L.; Kang, S.; Li, X.; Zhou, L., Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Applied Catalysis B: Environmental 2013, 130–131, 277-284. 77.Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 single crystals with a large percentage of reactive facets. NATURE 2008, 453 (7195), 638-641. 78.Yang, C.; Hirose, Y.; Nakao, S.; Hoang, N. L. H.; Hasegawa, T., Metal-induced solid-phase crystallization of amorphous TiO2 thin films. Applied Physics Letters 2012, 101 (5), 052101. 79.Lu, J.; Kosuda, K. M.; Van Duyne, R. P.; Stair, P. C., Surface acidity and properties of TiO2/SiO2 catalysts prepared by atomic layer deposition: UV−visible diffuse reflectance, drifts, and visible raman spectroscopy studies. The Journal of Physical Chemistry C 2009, 113 (28), 12412-12418. 80.Sasirekha, N.; Basha, S. J. S.; Shanthi, K., Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental 2006, 62 (1), 169-180. 81.Whipple, D. T.; Finke, E. C.; Kenis, P. J., Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochemical and Solid-State Letters 2010, 13 (9), B109-B111. 82.Laidler, K. J., A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996). Pure and applied chemistry 1996, 68 (1), 149-192. 83.Zhang, C.; Chen, S.; Alvarez, P. J. J.; Chen, W., Reduced graphene oxide enhances horseradish peroxidase stability by serving as radical scavenger and redox mediator. Carbon 2015, 94, 531-538. 84.Low, J.; Yu, J.; Ho, W., Graphene-based photocatalysts for CO2 reduction to solar fuel. The Journal of Physical Chemistry Letters 2015, 6 (21), 4244-4251. 85.Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C., Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano letters 2011, 11 (7), 2865-2870. 86.Yu, S.; Wang, X.; Yao, W.; Wang, J.; Ji, Y.; Ai, Y.; Alsaedi, A.; Hayat, T.; Wang, X., Macroscopic, spectroscopic, and theoretical investigation for the interaction of phenol and naphthol on reduced graphene oxide. Environmental Science & Technology 2017, 51 (6), 3278-3286.
|