帳號:guest(44.192.54.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:吳宗翰
作者(英文):Wu, Tsung-Han
論文名稱(中文):智慧物聯網電梯平臺暨其延伸應用
論文名稱(英文):ElevatorTalk: A Smart Elevator Platform and Its Extension to Other Applications
指導教授(中文):范倫達
林一平
指導教授(英文):Van, Lan-Da
Lin, Yi-Bing
口試委員:黃俊銘
林一平
范倫達
曾煜棋
溫瓌岸
李皇辰
口試委員(英文):Huang, Chun-Ming
Lin, Yi-Bing
Van, Lan-Da
Tseng, Yu-Chee
Wen, Kuei-Ann
Lee, Huang Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學號:0286011
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:95
中文關鍵詞:物聯網電梯排程電梯移動步數電梯控制面板電梯系統乘客 等待/移動/旅程 時間節能綠色通訊感測器
外文關鍵詞:Internet of Thingscar Schedulingcar moving stepelevator car operating (ECO) Panelelevator systememulatorwaiting/travel/journey timeenergy savinggreen communicationssensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出了一個物聯網智慧電梯平台(ElevatorTalk),此平台基於IoT的架構(IoTtalk)能夠幫助電梯系統發展及管理,此系統將電梯各組件軟體模組化,因此能夠讓開發者更彈性的設計其電梯排程演算法並且其架構具有可擴充性。物聯網智慧電梯平台具有三個子系統,分別為車廂系統 (Cars Subsystem)、排程器系統 (Scheduler Subsystem)以及控制面板系統 (ECO Panel),控制面板系統負責接收乘客的需求指令,排程器系統與車廂系統負責電梯的車廂群組的排程與車廂的控制。三個子系統平行運作並透過有線或無線的網路封包進行溝通。由於物聯網的傳輸架構以及模組化的設計,物聯網智慧電梯平台有能力做為電梯的中央控制系統,並且能夠使用不同的電梯排程演算法仿真模擬現存實際的電梯設備。在物聯網智慧電梯平台上,我們開發了兩個排程演算法,分別為:智慧積極排程演算法 (intelligent aggressive car scheduling with initial car distribution algorithm (ACSICD)),智慧積極排程演算法透過參數控制啟動電梯的數量,調節電梯系統的積極度,以及節能排程演算法 (energy-saving scheduling algorithm),節能排程演算法透過AssignCar機制減少電梯移動步數,藉此節省電梯系統能耗,研究指出智慧積極排程演算法比起以往的排程演算法,具有較佳的乘客等待/乘客移動/乘客旅程時間以及排程準確性,同時節能演算法在節能表現上較智慧積極排程演算法有更好的表現,分別在三種測資:上班時間
(up-peak),一般時段 (inter-floor),下班時間 (down-peak)以及整天(all-day)上以49.43%,47.68%,37.89%及47.65%勝出,與此同時又能夠保有可接受的乘客等待/乘客旅程時間。此兩種演算法同時展現了物聯網智慧電梯平台的特色。
This dissertation proposes ElevatorTalk, an elevator development and management system based on an IoT approach called IoTtalk. This system modularizes the software into elevator components so that flexible and scalable car scheduling algorithms can be developed. ElevatorTalk consists of three subsystems: Cars, Scheduler and the Elevator Car Operating (ECO) Panel. ECO Panel receive the requests issued by the passengers. Scheduler subsystem is responsible of scheduling the car group controlled by Cars subsystem. These three subsystems work in parallel, and communicate with each other through sending and receiving wired/wireless messages. Due to the IoT communication and system is modular design, ElevatorTalk can be a real elevator management center and emulate existing elevator systems with different car scheduling algorithms. Based on ElevatorTalk, we propose an intelligent aggressive car scheduling with initial car distribution algorithm (ACSICD) and an energy-saving scheduling algorithm. Our study indicates that ACSICD has better waiting/travel/journey time performance and/or accuracy than the previous proposed algorithms. It also illustrates that the Energy-Saving scheduling algorithm outperforms ACSICD with energy consumption reductions by 49.43%, 47.68%, 37.89%, and 47.65% for up-peak, inter-floor, down-peak, and all-day request patterns, respectively and still has acceptable performance on waiting/journey time. These two scheduling algorithm also demonstrate the ability of ElevatorTalk.
摘要 I
ABSTRACT III
誌謝 V
CONTENTS VII
LIST OF TABLES X
LIST OF FIGURES XI

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 ElevatorTalk 2
1.3 Dissertation Contribution 5
1.4 Dissertation Organization 6

Chapter 2 Literature Review of Elevator System and Related Works 7
2.1 Genetic Algorithm for Elevator Scheduling 8
2.2 Ant Colony for Elevator Scheduling 12
2.3 Reinforcement Learning Based Scheduling 15

Chapter 3 An Intelligent Aggressive Car Scheduling With Initial Car Distribution Algorithm (ACSICD) 17
3.1 Procedure Panel 19
3.2 Procedure ReqArrival 20
3.3 Procedure SchCar(n) 22
3.4 Procedure UpTaskCar(n) 26
3.5 Procedure Car(n) 29
3.6 Performance Evaluation 31
3.6.1 Measurements of Door Open Delays 31
3.6.2 Comparing ACSICD with the Previously Proposed Algorithms 33
3.6.3 Statbility Margin and Reliability 37
3.6.4 Limitation and Usage Variation 39
3.7 Summary 40

Chapter 4 Green Elevator Scheduling 41
4.1 Procedure Panel and ReqArrival 42
4.1.1 Procedure AssignCar(r) 44
4.1.2 Procedure MoveUp(r) . 47
4.2 Procedure SchCar(n) 51
4.3 Procedure UpTaskCar(n) 52
4.4 Procedure Car(n) 55
4.5 Performance Evaluation 55
4.5.1 Energy Consumption Model 56
4.5.2 Generation of Request Patterns 58
4.5.3 Comparing Energy-Saving Elevator Scheduling Algorithm with The Previously Proposed Algorithm 60
4.6 Summary 63

Chapter 5 PlantTalk: Intelligent Hydroponic Plant Box 64
5.1 The PlantTalk Intelliegnt Hydroponic Plant-Car System
68
5.2 Plant Sensors and Actuators 72
5.2.1 Plant Sensors 72
5.2.2 Plant Actuators 73
5.3 Configuring PlantTalk Projects 75
5.4 AirCleaning Experiments 80
5.5 Summary 83

Chapter 6 Conclusion and Future Work 86
6.1 Concluding Remarks 86
6.2 Future Work 87

Bibliography 88

Publication List 94

Biography 95
[1] https://www.siemens.com/history/en/news/1043_elevator.htm
[2] B. L. Whitehall, D. J. Sirag, Jr., and B. A. Powell, “Elevator control neural network,” U.S. Patent, no. 5,672,853, Sep. 30, 1997.
[3] A. Fujino, T. Tobita, K. Segawa, K. Yoneda, A. Togawa, “An elevator group control system with floor-attribute control method and system optimization using genetic algorithms,” IEEE Trans. Industrial Electronics, vol. 44, no. 4, pp. 546-552, Aug. 1997.
[4] R. Gudwin, F. Gomide, and M. A. Netto, “A fuzzy elevator group controller with linear context adaptation,” in Proc. IEEE World Congress on Computational Intelligence, vol. 1, May. 1998, pp. 481-486,.
[5] B. L. Whitehall, T. M. Christy, and B. A. Powell, “Method for continuous learning by a neural network used in an elevator dispatching system,” U.S. Patent, no. 5,923,004, Jul. 13, 1999.
[6] J. H. Kim and B. R. Moon, “Adaptive elevator group control with cameras,” IEEE Trans. Industrial Electronics, vol. 48, no. 2, pp. 377-382, Apr. 2001.
[7] A. Rong, H. Hakonen, and R. Lahdelma, “Estimated time of arrival (ETA) based elevator group control algorithm with more accurate estimation,” TUCS Technical Report, no 584, ISBN 952-12-1289-6, 2003.
[8] S. Tanaka, Y. Uraguchi, and M. Araki, “Dynamic optimization of the operation of single-car elevator systems with destination hall call registration: Part I. Formulation and simulations,” European Journal of Operational Research, vol. 167, no. 2, pp. 550-573, Dec. 2005.
[9] W. Ghareib, “Optimal elevator group control using genetic algorithms”, Computer and Systems Engineering Dept., Faculty of Engineering Ain Shams University, 2005.
[10] T. Miyamoto and S. Yamaguchi, ”MceSim: A multi-car elevator simulator,” IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, vol. E91-A, no. 11, pp. 3207-3214, Nov. 2008.
[11] M. Baradaran Nia and Y. Alipouri, “Speeding up the genetic algorithm convergence using sequential mutation and circular gene methods,” in Proc. IEEE 9th Int. Conf. on Intelligent Systems Design and Applications, Pissa, Italy, Nov. 2009.
[12] J. Sun, Q. C. Zhao, and P. B. Luh, “Optimization of group elevator scheduling with advance information,” IEEE Transactions on Automation Science and Engineering, vol. 7, no. 2, pp. 352–363, Apr. 2010.
[13] Z. Hu, Y. Liu, Q. Su, and J. Huo, “A multi-objective genetic algorithm designed for energy saving of the elevator system with complete information,” in Proc. IEEE Intnational Energy Conferernce, 2010, pp. 126–130.
[14] J. L. Zhang, J. Tang, Q. Zong, and J. F. Li, “Energy-saving scheduling strategy for elevator group control system based on ant colony optimization,” in Proc. IEEE Youth Conference on Information, Computing and Telecommunications, pp. 37-40, 2010.
[15] A. Valdivielso, and T. Miyamoto, “Multicar-elevator group control algorithm for interference prevention and optimal call allocation,” IEEE Trans. Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 41, no. 2, pp. 311-322, Mar. 2011.
[16] M. Ikuta, K. Takahashi, and M. Inaba, “Strategy selection by reinforcement learning for multi-car elevator systems,” in Proc. IEEE International Conference on Systems, Man, and Cybernetics, Oct. 2013, pp. 2479–2484.
[17] W. Liu, N. Liu, H. Sun, G. Xing, Y. Dong, H. Chen, “Dispatching algorithm design for elevator group control system with Q-Learning based on a recurrent neural network,” in Proc. Chinese Control and Decision Conference (CCDC), May. 2013, pp. 3397-3402.
[18] J. Fernandez, P. Cortes, J. Muñuzuri, and J. Guadix, “Dynamic fuzzy logic elevator group control system with relative waiting time consideration,” IEEE Trans. Industrial Electronics, vol. 61, no. 9, pp. 4912-4919, Sep. 2014.
[19] E. O. Tartan, H. Erdem, A. Berkol, “Optimization of waiting and journey time in group elevator system using genetic algorithm, “ in Proc. IEEE International
Symposium on Innovations in Intelligent Systems and Applications (INISTA), 2014, pp. 361-367.
[20] H. Ishihara, and S. Kato, “The effectiveness of dynamic zoning in multi-car elevator control,” IEEE 3rd Global Conference on Consumer Electronics (GCCE), Oct. 2014, pp. 601-604.
[21] J. R. Fernandez and P. Cortes, “A survey of elevator group control systems for vertical transportation,” IEEE Control System Magzine, pp. 38-55, Aug. 2015.
[22] L. Marcus and A. Elias, “Impact of machine learning on elevator control strategies,” Technical Report, KTH Royal Institute Of Technology, 2015.
[23] D.-H. Cheng, Low-cost and Nonintrusive Elevator Operations Detection Service, M. S. Thesis, National Chiao Tung University, 2017.
[24] L. D. Van, Y. B. Lin, T. H. Wu, and Y. C. Lin, “An intelligent elevator development and management system,” IEEE Systems Journal, published in 2019.
[25] L. D. Van, Y. B. Lin, T. H. Wu, T. H. Chao, ”Green Elevator Scheduling Based on IoT Communications”, IEEE Access, Vol. 8, Feb. 2020, pp. 38404-38415.
[26] Passenger Lift Planning Guide, OTIS Elevator Company, pp.15-16.
[27] https://multi.thyssenkrupp-elevator.com/en/
[28] https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
[29] Y.-B. Lin, Y. W. Lin, C. Y. Chih, T. Y. Li, C. C. Tai, Y. C. Wang, F. J. Lin, H. C. Kuo, C. C. Huang, and S. C. Hsu, “EasyConnect: A management system for IoT devices and its applications for interactive design and art,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 551-561, Dec. 2015.
[30] T. H. Wu, C. H. Chang, Y. W. Lin, L. D. Van, Y.-B. Lin, “Intelligent plant care hydroponic box using IoTtalk,” in Proc. IEEE International Conference on Internet of Things (iThings 2016), Chengdu, China, Dec. 2016, pp. 398-401.
[31] Y.-B. Lin, Y. W. Lin, C. M. Huang, C. Y. Chih, and P. Lin, “IoTtalk: A management platform for reconfigurable sensor devices,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1552-1562, Oct. 2017.
[32] Y. W. Lin, Y.-B. Lin, M. T. Yang, and J. H. Lin, “ArduTalk: An Arduino network application development platform based on IoTtalk,” Accepted and to appear in IEEE System Journal, 2018.
[33] Representational state transfer (REST) 2016 [Online]. Available https://en.wikipedia.org/wiki/Representational_state_transfer
[34] https://labs.mediatek.com/en/platform/overview
[35] https://openwrt.org/
[36] http://www.atmel.com/devices/atmega32u4.aspx
[37] https://www.python.org/
[38] http://scikit-learn.org/stable/modules/svm.html
[39] Open Connectivity Foundation. [Online]. Available: https://openconnectivity.org/ (accessed on 22 May 2018).
[40] oneM2M. Standards for M2M and the Internet of Things. [Online].
[41] Y.-T. Chen, Edward W. Sun, and Y.-B. Lin, “Coherent quality management for big data systems: a dynamic approach for stochastic time consistency,” Accepted and to appear in Annals of Operations Research.
[42] W. L. Chen, Y. B. Lin, Y. W. Lin, R. Chen, J. K. Liao, F. L. Ng, Y. Y. Chan, Y. C. Liu, C. C. Wang, C. H. Chiu, and T. H. Yen, “AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation”, IEEE Internet of Things Journal, accepted to published in Feb. 2019.
[43] [Online]. Available: http://www.yungtay.com.tw/
[44] T. Sultana, and K. A. Wahid, “Choice of application layer protocols for next generation video surveillance using internet of video things,” IEEE Access, vol. 7, pp. 41607-41624, 2019.
[45] A. A. Al-Roubaiey, T. R. Sheltami, A. S. H. Mahmoud, and K. Salah, “Reliable middleware for wireless sensor-actuator networks,” IEEE Access, vol. 7, pp. 14099-14111, 2019.
[46] R. Milner, The Space and Motion of Communicating Agents, Cambridge University Press, 2009.
[47] G. Barney and S. D. Santos, “Elevator Traffic Analysis, Design and Conrol”, 2nd ed. Stevenage, U.K.: Peregrinus, 1985.
[48] R.S. Sutton and A.G. Barto, “Reinforcement Learning: An Introduction”, 2nd ed. Massachusetts, U.S.: Bradford Book, 2018.
[49] T. H. Chao, Design and Implementation of an Energy-Saving Scheduling Algorithm for Elevator Group Control System Using ElevatorTalk, M. S. Thesis, National Chiao Tung University, 2020.
[50] Kameoka, T, Kondo, H., Isozaki, M., Nakamura, T., Kitamura, H.; Kimura, J. Environmental measurement for indoor plant factory with micro-miniature size wireless sensor. In Proceedings of the IEEE SICE Annual Conference (SICE), Tokyo, Japan, 13–18 September 2011.
[51] Ijaz, F, Kondo, H, Siddiqui, A.A, Im, B.K, Lee, C. Remote management and control system for LED based plant factory using ZigBee and Internet. In Proceedings of the 14th IEEE Advanced Communication Technology (ICACT), PyeongChang, South Korea, 19–22 February 2012.
[52] Sugano, M. Elemental technologies for realizing a fully-controlled artificial light-type plant factory. In Proceedings of the 12th International Conference & Expo on Emerging Technologies for a Smarter World (CEWIT), Melville, NY, USA, 19–20 October 2015.
[53] AeroGarden. Available online: https://www.aerogrow.com/ (accessed on 2 February 2019).
[54] Kobayashi, K, Amore, T, Lazaro, M. Light-emitting diodes (LEDs) for miniature hydroponic lettuce. Opt. Photonics J. 2013, 3, 74–77.
[55] Lee, S, Park, S. Energy savings of home growing plants by using daylight and LED. In Proceedings of the IEEE Sensors Applications Symposium, Galveston, TX, USA, 19–21 February 2013.
[56] Harun, A. N, Ahmad, R.; Mohamed, N. WSN application in LED plant factory using continuous lighting (CL) method. In Proceedings of the IEEE Conference on Open Systems (ICOS), Bandar Melaka, Malaysia, 24–26 August 2015.
[57] Siregar, B, Efendi, S, Pranoto, H.; Ginting, R, Andayani, U, Fahmi, F. Remote monitoring system for hydroponic planting media. In Proceedings of International Conference on ICT For Smart Society (ICISS), Tangerang, Indonesia, 18–19 September 2017.
[58] Pitakphongmetha, J, Boonnam, N, Wongkoon, S, Horanont, T, Somkiadcharoen, D, Prapakornpilai, J. Internet of things for planting in smart farm hydroponics style. In Proceedings of the International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 14–17 December 2016.
[59] Ruengittinun, S, Phongsamsuan, S, Sureeratanakorn, P. Applied internet of thing for smart hydroponic farming ecosystem (HFE). In Proceedings of the 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media), Pattaya, Thailand, 1–4 August 2017.
[60] Changmai, T, Gertphol, S, Chulak, P. Smart Hydroponic Lettuce Farm using Internet of Things. In Proceedings of the 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 31 January–3 February 2018.
[61] Wolverton, B.C. How to Grow Fresh Air:50 Houseplants that Purify Your Home or Office; Penguin Books: New York, USA, 1997.
[62] Lin, Y.-B, Tseng, H.-C. FishTalk: An IoT-based mini aquarium system. IEEE Access. 2019, 7, 35457–35469.
(此全文20250712後開放外部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *