帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:李美華
作者(英文):Li,Mei-Hua
論文名稱(中文):磷酸化鈦鋯氧化物表面特性分析與對NH4+離子吸附行為探討
論文名稱(英文):Surface Characterization of Phosphated Zirconia-Titania and Its Adsorption Behavior for Ammonium Ions
指導教授(中文):張淑閔
指導教授(英文):Chang,Sue-Min
口試委員:黃志彬
戴清智
張淑閔
口試委員(英文):Huang,Zhi-Bin
Dai,Qing-Zhi
Chang,Sue-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院永續環境科技學程
學號:0261515
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:77
中文關鍵詞:固態酸吸附銨離子陽離子交換容量零電位點pH值
外文關鍵詞:Solid acidAdsorptionAmmonia ionsCation exchange capacitypH of zero potential point
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本研究以離子液體輔助水熱法合成之磷酸化鈦鋯氧化物固體酸作為NH4+離子吸附劑,並對其表面特性進行分析以探討其對NH4+離子吸附行為的影響;透過一系列批次實驗進行探討等溫和動力吸附模式,其操作參數包括:不同吸附劑量、pH值和溫度對NH4+離子吸附能力的影響。研究結果發現,磷酸化鈦鋯氧化物團聚形成粒徑大小為400~500nm,比表面積為247±20m2/g,陽離子交換容量(cation exchange capacity , CEC )約為250±20meq/g,零電位點(pH of zero point charge , pHzpc)介於3.3±0.2,而分散於水溶液中可使溶液pH值降至4.4±0.5,表示磷酸化鈦鋯氧化物具有酸性及陽離子交換能力;動力吸附平衡時間為30min,符合擬二階動力模式;磷酸化鈦鋯氧化物對於NH4+吸附行為較符合Freundlich吸附模式且為自發性放熱反應,H0= -5.76kJ/mole,最佳吸附劑量為70g/L,不同pH環境下吸附量隨著pH值增加而增加至pH值為6.25;在固態酸鹼吸附劑上,對於銨離子去除條件為靜電引力吸附及離子交換。
This study investigated the surface properties and NH4+ adsorption characteristics of the phosphated titanium-zirconium oxide solid acid prepared by an ionic-liquid assisted hydrothermal method. In addition, the correlation between the adsorption capability and the surface properties of the adsorbent was elucidated. Adsorption isotherm and kinetic study were carried out from a series of batch tests. Moreover, the influences including adsorbent dosage, pH values, and temperatures on the adsorption capability were examined. The results showed that the aggregated particles had a size ranged between 400-500 nm with the specific surface area of 247±20m2/g. The cation exchange capacity (CEC) was 250±20meq/100g, and the pH at zero-point-of-charge (pHzpc) was 3.3±0.2. Dispersion of the adsorbent in water decreased the pH to 4.4±0.5, indicating acidity and cationic exchanging ability of the phosphated titanium-zirconium oxide. The adsorption equilibrium time was 30 minutes and the adsorption kinetic data can be well fitted by a pseudo-second-order model. The Freundlich model fits the adsorption isotherm and the adsorption was an exothermic process with H0= -5.76 kJ/mol. The optimal adsorbent dosage was 70g/L, and the adsorption amount increased with the pH values till pH= 6.25. These results reveal that the ammonia ions are removed in terms of electrostatic attraction and cation ion exchange on the solid-acid-based adsorbent.
中文摘要 I
Abstract III
誌謝 V
圖目錄 XI
表目錄 XIII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1固體酸簡介 4
2.1.1 固體酸之定義與特性 4
2.1.2 固體酸之發展歷史 5
2.1.3 固體酸於環境污染防治之應用 6
2.2 二元金屬氧化物材料之製備及改質 7
2.3二元金屬氧化物與磷酸化金屬氧化物表面特性 9
2.4 吸附及離子交換作用 11
2.4.1 吸附理論 11
2.4.2 吸附模式 12
2.4.3 影響吸附之因素 17
2.4.4 離子交換作用及交換能力 21
2.5 水體中NH4+離子的來源、危害及處理 22
2.5.1 水體中NH4+離子之來源及危害 22
2.5.2 水體中NH4+離子之處理方式 24
第三章 研究材料與方法 26
3.1 實驗架構 26
3.2 磷酸化鈦鋯氧化物合成方法 27
3.3 磷酸化鈦鋯氧化物之表面特性分析 29
3.3.1 磷酸化鈦鋯氧化物表面電位及等電位點(pHzpc)之測定 30
3.3.2 磷酸化鈦鋯氧化物顆粒粒徑之測定 30
3.3.3 磷酸化鈦鋯氧化物陽離子交換容量(CEC)之測定 31
3.3.4 磷酸化鈦鋯氧化物比表面積(BET)測定 31
3.4 磷酸化鈦鋯氧化物吸附NH4+離子實驗 32
3.4.1 人工含NH4+離子溶液之配製 32
3.4.2 吸附動力實驗 33
3.4.3 等溫吸附平衡實驗 33
3.5 磷酸化鈦鋯氧化物脫附NH4+離子實驗 34
3.6離子層析儀(IC)之分析條件 35
第四章 結果與討論 36
4.1 磷酸化鈦鋯氧化物表面特性分析 36
4.1.1外觀與微觀分析 36
4.1.2表面帶電性與離子交換容量 41
4.2 磷酸化鈦鋯氧化物吸附NH4+離子 44
4.2.1 NH4+離子的動力吸附 44
4.2.2 等溫吸附 48
4.2.3 不同劑量之等溫吸附實驗 59
4.2.4 pH值的影響 60
4.3磷酸化鈦鋯氧化物脫附再生及重複吸附實驗 62
第五章 結論 65
參考文獻 66
附錄 75
1.Wang, Shaobin, and Yuelian Peng. "Natural zeolites as effective adsorbents in water and wastewater treatment." Chemical Engineering Journal 156.1 (2010): 11-24.
2.Wang, Yifei, Feng Lin, and Wenqin Pang. "Ion exchange of ammonium in natural and synthesized zeolites." Journal of hazardous materials 160.2 (2008): 371-375.
3.Bond, G. C. "Preparation and properties of vanadia titania monolayer catalysts." Applied Catalysis A: General 157.1 (1997): 91-103.
4.Chuah, G. K., S. Jaenicke, and B. K. Pong. "The preparation of high-surface-area zirconia: II. Influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia." Journal of Catalysis 175.1 (1998): 80-92.
5.Yue, Yinghong, et al. "Nanosized titania and zirconia as catalysts for hydrolysis of carbon disulfide." Applied Catalysis B: Environmental 46.3 (2003): 561-572.
6.Kung, Harold H., and Edmond I. Ko. "Preparation of oxide catalysts and catalyst supports—a review of recent advances." The Chemical Engineering Journal and the Biochemical Engineering Journal 64.2 (1996): 203-214.
7.Miciukiewicz, J., T. Mang, and H. Knozinger. "Raman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide." Applied Catalysis A: General 122.2 (1995): 151-159.
8.Reddy, Benjaram M., et al. "Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques." Applied Catalysis A: General 228.1 (2002): 269-278.
9.Fu, Xianzhi, et al. "Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2." Environmental science & technology 30.2 (1996): 647-653.
10.Yu, Jimmy C., Jun Lin, and Raymund WM Kwok. "Ti1-xZrxO2 solid solutions for the photocatalytic degradation of acetone in air." The Journal of Physical Chemistry B 102.26 (1998): 5094-5098.
11.Uchiyama, Shuhei, et al. "Preparation of porous spherical ZrO2–SiO2 composite particles using templating and its solid acidity by H2SO4 treatment." Journal of Materials Science 47.1 (2012): 341-349.
12.Parida, K. M., and P. K. Pattnayak. "Studies on PO3−4/ZrO2: I. Effect of H3PO4 on Textural and Acidic Properties of ZrO2." Journal of colloid and interface science 182.2 (1996): 381-387.
13.Samantaray, Santosh Kumar, and Kulamani Parida. "Studies on anion-promoted titania: 3. Effect of concentration and source of phosphate ion, method of preparation, and activation temperature on redox, acid–base, textural and catalytic properties of titania." Journal of Molecular Catalysis A: Chemical 176.1 (2001): 151-163.
14.Ramadan, Adham R., et al. "The effect of phosphate anions on surface and acidic properties of TiO2 hydrolyzed from titanium ethoxide." Colloids and Surfaces A: Physicochemical and Engineering Aspects 352.1 (2009): 118-125.
15.Im Ryoo, Hyang, et al. "Direct syntheses of sulfonated mesoporous SiO2-TiO2-SO3H materials as solid acid catalysts." Journal of Materials Chemistry 20.31 (2010): 6419-6421.
16.Patel, Sonal M., Uma V. Chudasama, and Pralhad A. Ganeshpure. "Metal (IV) phosphates as solid acid catalysts for selective cyclodehydration of 1, n-diols." Green Chemistry 3.3 (2001): 143-145.
17.Thakkar, Rakesh, and Uma Chudasama. "Synthesis and characterization of zirconium titanium phosphate and its application in separation of metal ions." Journal of hazardous materials 172.1 (2009): 129-137.
18.Guo, Na, et al. "Uniform TiO2–SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption–photodegradation of azo dyes and phenol." Applied Surface Science 305 (2014): 562-574.
19.Corma, Avelino. "Solid acid catalysts." Current Opinion in Solid State and Materials Science 2.1 (1997): 63-75.
20.Gupta, Princy, and Satya Paul. "Solid acids: Green alternatives for acid catalysis." Catalysis Today 236 (2014): 153-170.
21.Jorgenson, Margaret Jefraim, and Donald R. Hartter. "A critical re-evaluation of the Hammett acidity function at moderate and high acid concentrations of sulfuric acid. New H0 values based solely on a set of primary aniline indicators." Journal of the American Chemical Society 85.7 (1963): 878-883.
22.Walspurger, Stéphane, and Benoit Louis. "Insights into the structure of active sites in metal-doped solid acid catalysts." Applied Catalysis A: General 336.1 (2008): 109-115.
23.Atieh, Muataz Ali. "Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon." Procedia Environmental Sciences 4 (2011): 281-293.
24.Hoa, Nguyen Duc, Nguyen Van Duy, and Nguyen Van Hieu. "Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications." Materials Research Bulletin 48.2 (2013): 440-448.
25.Takao, Yuji, et al. "Trimethylamine-sensing mechanism of TiO2-based sensors 1. Effects of metal additives on trimethylamine-sensing properties of TiO2 sensors." Sensors and Actuators B: Chemical 10.3 (1993): 229-234.
26.Navarrete, J., et al. "Surface acidity of sulfated TiO2-SiO2 sol-gels." Langmuir 12.18 (1996): 4385-4390.
27.Zou, H., and Y. S. Lin. "Structural and surface chemical properties of sol–gel derived TiO2–ZrO2 oxides." Applied Catalysis A: General 265.1 (2004): 35-42.
28.Zhou, Xuan, et al. "Hydrothermal synthesis of magnetic carbon microspheres for effective adsorption of Cd (II) in water." Journal of Chemical Technology and Biotechnology 89.7 (2014): 1051-1059.
29.Chen, Dehong, et al. "Facile synthesis of monodisperse mesoporous zirconium titanium oxide microspheres with varying compositions and high surface areas for heavy metal ion sequestration." Advanced Functional Materials 22.9 (2012): 1966-1971.
30.Fierro, Jose Luis G., ed. Metal oxides: chemistry and applications. CRC press,( 2005).
31.Tanabe, Kozo, et al. New solid acids and bases: their catalytic properties. Elsevier, (1990).
32.Tanabe, Kozo, et al. "A new hypothesis regarding the surface acidity of binary metal oxides." Bulletin of the Chemical Society of Japan 47.5 (1974): 1064-1066.
33.Ren, Jun, et al. "Silica–titania mixed oxides: Si–O–Ti connectivity, coordination of titanium, and surface acidic properties." Catalysis Letters 124.3-4 (2008): 185-194.
34.Smitha, V. K., et al. "Surface properties and catalytic activity of phosphate modified zirconia." INDIAN JOURNAL OF CHEMISTRY SECTION A 42.2 (2003): 300-304.
35.Esteban Benito, H., et al. "Synthesis and physicochemical characterization of titanium oxide and sulfated titanium oxide obtained by thermal hydrolysis of titanium tetrachloride." Brazilian Journal of Chemical Engineering 31.3 (2014): 737-745.
36.Chen, Chang-Lin, et al. "Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve." Applied Catalysis A: General 215.1 (2001): 21-30.
37.Huang, Limin, and Quanzhi Li. "Enhanced acidity and thermal stability of mesoporous materials with post-treatment with phosphoric acid." Chemistry letters 1999.8 (1999): 829-830.
38.Kosmulski, Marek. "pH-dependent surface charging and points of zero charge. IV. Update and new approach." Journal of Colloid and Interface Science 337.2 (2009): 439-448.
39.Muhammad, S.; Hussain, S.; Waseem, M.; Naeem, A.; Hussain, J.; Jan, M. T., Surface charge properties of zirconium dioxide. Iran J Sci Technol A (2012), 4, 481-486.
40.Thakkar, Rakesh, and Uma Chudasama. "Synthesis and characterization of zirconium titanium phosphate and its application in separation of metal ions." Journal of hazardous materials 172.1 (2009): 129-137.
41.Thakkar, Rakesh, and Uma Chudasama. "Synthesis, characterization and proton transport property of crystalline--zirconium titanium phosphate, a tetravalent bimetallic acid salt." Journal of Scientific and Industrial Research 68.4 (2009): 312.
42.Kiruba, U. Pearlin, et al. "Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd (II) ions-surface modified Eucalyptus seeds system." Journal of the Taiwan Institute of Chemical Engineers 45.6 (2014): 2957-2968.
43.Stenzel, Mark H. "Remove organics by activated carbon adsorption." Chemical Engineering Progress;(United States) 89.4 (1993).
44.Wei, Yun-Xia, Yan-Feng Li, and Zheng-Fang Ye. "Enhancement of removal efficiency of ammonia nitrogen in sequencing batch reactor using natural zeolite." Environmental Earth Sciences 60.7 (2010): 1407-1413.
45.Huo, Hanxin, et al. "Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite." Journal of hazardous materials 229 (2012): 292-297.
46.Wu, Deyi, et al. "Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment." Journal of colloid and interface science 304.2 (2006): 300-306.
47.Huo, Hanxin, et al. "Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite." Journal of hazardous materials 229 (2012): 292-297.
48.Su, Yu, et al. "Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles." Water research 47.14 (2013): 5018-5026.
49.Zheng, Hong, et al. "Adsorption characteristics of ammonium ion by zeolite 13X." Journal of hazardous materials 158.2 (2008): 577-584.
50.Yean, S., et al. "Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate." Journal of Materials Research 20.12 (2005): 3255-3264.
51.Kucic, Dajana, Marinko Markic, and Felicita Briski. "Ammonium adsorption on natural zeolite (clinoptilolite): adsorption isotherms and kinetics modeling." The Holistic Approach to Environment 2.4 (2012): 145-158.
52.Makeswari, M., and T. Santhi. "Removal of malachite green dye from aqueous solutions onto microwave assisted zinc chloride chemical activated epicarp of Ricinus communis." (2013).
53.Karadag, Dogan, et al. "Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite." Journal of Hazardous Materials 136.3 (2006): 604-609.
54.Suraja, P. V., et al. "Co3O4 doped over SBA 15: excellent adsorbent materials for the removal of methyleneblue dye Pollutant." Clean Technologies and Environmental Policy 15.6 (2013): 967-975.
55.Ghosh, Sudipa, et al. "Adsorptive removal of emerging contaminants from water using superparamagnetic Fe3O4 nanoparticles bearing aminated β-cyclodextrin." Journal of Environmental Chemical Engineering 1.3 (2013): 122-130.
56.Shiau, B.J., D.A. Sabatini and J.H. Harwell, "Solubilization and Microemulsification of Chlorinated Solvents Using Direct Food Additive (Edible) Surfactants." Ground Water, Vol.32, No.4, pp.561-569, (1994).
57.Nevskaia, D.M., A.G. Ruiz, and J.D. Gonzalez, "Adsorption of Polyoxy ethylenic Surfactants on Quartz, Kaolin, and Dolomite: A Correlation between Surfactant Structure and Soil Surface Nature", Colloid and Interface Sci., Vol.181, pp.571-580, (1996).
58.Harwell, J. H., "Factors Affecting Surfactant Performance in Groundwater Remediation Applications", American Chemical Society Symposium Series 491., pp.124-132, (1992).
59.Manrıquez, M. E., et al. "Preparation of TiO2–ZrO2 mixed oxides with controlled acid–basic properties." Journal of Molecular Catalysis A: Chemical 220.2 (2004): 229-237.
60.Chiou, Chyow-San, et al. "Adsorption of Phosphate in Aqueous Solution by Magnetite Modified with Diethylenetriamine." Journal of Nanoscience and Nanotechnology 15.4 (2015): 2850-2857.
61.Gao, Xingtao, and Israel E. Wachs. "Structural characteristics and reactivity properties of highly dispersed Al2O3/SiO2 and V2O5/Al2O3/SiO2 catalysts." Journal of Catalysis 192.1 (2000): 18-28.
62.Watanabe, Shingo, Xiaoliang Ma, and Chunshan Song. "Characterization of structural and surface properties of nanocrystalline TiO2−CeO2 mixed oxides by XRD, XPS, TPR, and TPD." The Journal of Physical Chemistry C 113.32 (2009): 14249-14257.
63.Guo, Cuili, et al. "CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study." Fuel Processing Technology 124 (2014): 61-69.
64.Itoh, Masayoshi, Hideshi Hattori, and Kozo Tanabe. "The acidic properties of TiO2-SiO2 and its catalytic activities for the amination of phenol, the hydration of ethylene and the isomerization of butene." Journal of Catalysis 35.2 (1974): 225-231.
65.Tanabe, Kozo, et al. "Surface property and catalytic activity of MgO-TiO2." Journal of Catalysis 53.1 (1978): 1-8.
66.Nishiwaki, Katsuhiko, et al. "Generation of acid sites on finely divided TiO2." Journal of Catalysis 118.2 (1989): 498-501.
67.Yamanaka, Tohr, and Kozo Tanabe. "A representative parameter, H0, max, of acid-base strength on solid metal-oxygen compounds." The Journal of Physical Chemistry 80.15 (1976): 1723-17
68.Nakano, Yasuko, et al. "Surface properties of zirconium oxide and its catalytic activity for isomerization of 1-butene." Journal of Catalysis 57.1 (1979): 1-10.
69.Li, Kuo-Tseng, Ikai Wang, and Jung-Chung Wu. "Surface and Catalytic Properties of TiO2–ZrO2 Mixed Oxides." Catalysis Surveys from Asia 16.4 (2012): 240-248.
70.Stumm, Werner, and James J. Morgan. Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. John Wiley, (1981).
71.Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P., Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. (2011), 6 (1), 27.
72.Mondal, P., B. Mohanty, and C. B. Majumder. "Effect of pH and Treatment Time on the Removal of Arsenic Species from Simulated Groundwater by Using Fe3+ and Ca2+ Impregnated Granular Activated Charcoals." Chemical Engineering and Science 1.2 (2013): 27-31.
73.Tsai, W., J. A. Schwarz, and C. T. Driscoll. "Differential cation exchange capacity (DCEC) of platinum supported on titania." The Journal of Physical Chemistry 87.9 (1983): 1619-1621.
74.Jiang, Jia-Qian, Colin Cooper, and Sabeha Ouki. "Comparison of modified montmorillonite adsorbents: part I: preparation, characterization and phenol adsorption." Chemosphere 47.7 (2002): 711-716.
75.Karadag, Dogan, et al. "Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite." Journal of Hazardous Materials 136.3 (2006): 604-609.
76.Sarioglu, M. "Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite." Separation and purification technology 41.1 (2005): 1-11.
77.Juan, Roberto, et al. "Ion exchange uptake of ammonium in wastewater from a sewage treatment plant by zeolitic materials from fly ash." Journal of hazardous materials 161.2 (2009): 781-786.
78.Molina, A., and C. Poole. "A comparative study using two methods to produce zeolites from fly ash." Minerals Engineering 17.2 (2004): 167-173.
79.Zhang, Mulan, et al. "Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method." Desalination 271.1 (2011): 111-121.
80.Yusof, Alias Mohd, et al. "Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite." Journal of hazardous materials 174.1 (2010): 380-385.
81.沈柏汎,Effects of tungatate and phosphate species on the acidity of ZrO2-TiO2 soild acids,(2015).
82.Farkas, Anamarija, Mirela Rozic, and Zeljka Barbaric-Mikocevic. "Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia." Journal of hazardous materials 117.1 (2005): 25-33.
83.Wu, Deyi, et al. "Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment." Journal of colloid and interface science 304.2 (2006): 300-306.
84.Moutsatsou, A., et al. "The utilization of Ca-rich and Ca–Si-rich fly ashes in zeolites production." Fuel 85.5 (2006): 657-663.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *