帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:張俊傑
作者(英文):Chang, Chun-Chieh
論文名稱(中文):半導體含鈷廢水以螯合樹脂處理之探討
論文名稱(英文):The application of a chelating ion exchange resin on the treatment of cobalt-containing wastewater of the semiconductor manufactory
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:黃志彬
徐樹剛
口試委員(英文):Huang, Chih-Pin
Shiu, Shu-Gang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院永續環境科技學程
學號:0261513
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:半導體廢水鈷濃度D5843螯合樹脂電化學電鍍化學機械研磨
外文關鍵詞:Semiconductor wastewaterCobalt concentrationchelating ion exchange resins(D5843)Electrochemical PlatingChemical-Mechanical Planarization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於半導體製程日新月異,環保署針對園區高科技產業廢水排放已開始訂定放流水鈷濃度標準需要管制在限值1.0 mg/L以下,使得各園區廠商開始注重其放流水中的鈷濃度想辦法將廢水中的鈷降低,尤其在半導體製程中含有鈷,無法直接排放至放流口。因此本研究以某園區半導體實廠含鈷製程排水,並利用商用D5843樹脂處理水中鈷濃度,探討其處理可行性並評估實廠操作參數。在吸附實驗中得出吸附平衡時間為240分鐘,最大吸附容量分別為化學機械研磨廢水(67.38 mg/g)、電化學電鍍廢水(84.97 mg/g),最佳pH值為4~8。
其中發現商用D5843螯合樹脂以實廠電化學電鍍廢水原始含鈷濃度50 mg/L達到吸附平衡時實驗終點為含鈷 0.1208 mg/L,實廠化學機械研磨廢水原始含鈷濃度 2 mg/L到吸附平衡時實驗終點為含鈷 1.4572 mg/L,以放流水標準須達到含鈷限值1.0 mg/L以下為標準則顯示化學機械研磨廢水並不適用於商用D5843螯合樹脂,尋找與分析廢水基本特性推論化學機械研磨廢水中的各類溶劑(pH緩衝劑、界面活性劑、氧化劑)會影響樹脂吸附;則對於電化學電鍍廢水,商用D5843樹脂表現出良好的吸附效果與適性範圍,結果顯示商用D5843樹脂具有處理電化學電鍍廢水潛力,並推估其實廠吸附飽和時間與實廠運轉參數。
Owing to the ever-changing semiconductor manufacturing process, the Environmental Protection Agency has started to set standards for the cobalt concentration in the discharge water for high-tech industrial(<1mg/L), which has led various manufacturers to pay attention to the cobalt concentration in their discharge water and find ways to reduce it, especially in semiconductor industry. Therefore, this study uses commercial chelating ion exchange resins(D5843) to treat cobalt-containing wastewaters in semiconductor industry wastewater, and discuss its treatment feasibility and evaluate the operating parameters. In this study, we found adsorption equilibrium time is 240 minutes, the maximum adsorption capacity is Chemical-Mechanical Planarization(CMP) wastewater (67.38 mg/g), Electrochemical Plating(ECP) wastewater (84.97 mg/g), and the optimal pH value is 4-8.
Among them, it was found that the commercial resin D5843 reached the adsorption end point(0.1208 mg/L of cobalt concentration)in the ECP wastewater(50 mg/L), and the adsorption end point(1.4572 mg/L of cobalt concentration)in the CMP wastewater(2 mg/L) The standard of discharged water must be below the limit of 1.0 mg/L of cobalt, it shows that CMP wastewater is not suitable for commercial resin D5843.It is inferred that various solvents (pH buffers, surfactants, oxidants) in the CMP wastewater affect the resin adsorption; For ECP wastewater, commercial D5843 resin showed good adsorption capacity and adaptability range. The results show that commercial D5843 resin has the potential to treat ECP wastewater, and the adsorption saturation time and operating parameters in manufacturing plant are estimated.
目錄
摘要.............................I
ABSTRACT........................II
目錄............................III
表目錄...........................V
圖目錄...........................VI
第一章 緒 論...................1
1.1 研究緣起.....................1
第二章 文獻回顧...................3
2.1 半導體廠製程排水來源..........3
2.2 電化學電鍍製程...............6
2.2.1電化學電鍍製程的理論.........7
2.2.2電化學電鍍廢水...............7
2.3 化學機械研磨..................9
2.3.1化學機械研磨的理論...........9
2.3.2化學機械研磨液的特性與成分....10
2.3.3化學機械研磨廢水.............11
2.4 半導體廠廢水處理技術..........13
2.5離子交換技術..................16
2.6 離子交換樹脂分類.............18
2.7 樹脂處理重金屬廢水...........20
第三章 研究方法..................26
3.1 研究架構....................26
3.2 半導體製程排水來源及水質分析..27
3.2.1 水質分析方法...............27
3.3 吸附特性實驗.................34
第四章 結果與討論................37
4.1 樹脂吸附特性實驗.............37
4.1.1平衡時間測定與不同初始濃度...37
4.1.2等溫吸附曲線趨勢分析.........41
4.1.3等溫吸附方程式..............43
4.1.4 pH值趨勢分析...............46
4.2 實廠模擬實驗.................48
4.3 數據綜合分析.................53
第五章 結論與建議................59
5.1 結論........................59
5.2 建議........................60
參考文獻.........................61
參考文獻
Bernabe L. R.; Hernan A. M.; Sandra V “Adsorption behavior of metal ions by amidoxime chelating resin,” J. Appl. Polym. Sci., 77, 1994-1999 (2000).
Li, B., Liu, F., Wang, J., Ling, C., Li, L., Hou, P., ... & Bai, Z. (2012). Efficient separation and high selectivity for nickel from cobalt-solution by a novel chelating resin: Batch, column and competition investigation. Chemical engineering journal, 195, 31-39.
Deepatana, A., & Valix, M. (2006). Recovery of nickel and cobalt from organic acid complexes: Adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin. Journal of hazardous materials, 137(2), 925-933.
Mendes, F. D., & Martins, A. H. (2004). Selective sorption of nickel and cobalt from sulphate solutions using chelating resins. International Journal of Mineral Processing, 74(1-4), 359-371.
Junior, A. B. B., Dreisinger, D. B., & Espinosa, D. C. (2019). A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Mining, Metallurgy & Exploration, 36(1), 199-213.
Zainol, Z., & Nicol, M. J. (2009). Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748. Hydrometallurgy, 99(3-4), 175-180.
Mustafa, S.; Bashir, H.; Rehana, N.; Naeem, A. “Selectivity reversal and dimerization of chromate in the exchanger Amberlite IRA-400,” Reac. Funct. Polym., 34, 135-144 (1997).
Rodda, D. P.; Johnson, B. B.; Wells, J. D., “The effect of temperature and pH on the adsorption of copper(II), lead(II), and zinc(II) onto goethite,” J. Colloid Interface Sci., 161, 57-62 (1993).
Shah, R.; Devi, S. “Preconcentration and separation of palladium(II) and platinum(IV) on a dithizone anchored poly(vinylpyridine)-based chelating resin,” Ana. Chim. Acta, 341, 217-224 (1997).
Thoams, H. A. “Heterogeneous ion exchange in a flowing system,” J. Am. Chem. Soc., 66, 1664-1666 (1944).
Tokuyama, H.; Maeda, S.; Takahashi, K. “Development of a novel moving bed with liquid-pulse and experimental analysis of nickel removal from acidic solution,” Sep. Sci. Technol., 38, 139-147 (2004).
Juang, R. S.; Wang Y. C. “Effect of added complexing anions on cation exchange of Cu(II) and Zn(II) with a strong-acid resin,” Ind. Eng. Chem. Res., 41, 5558-5564 (2002).
Juang, R. S.; Shaiu, L. D. ”Ion exchange equilibria of metal chelates of ethylenediaminetetraacetic acid with Amberlite IRA-68,” Ind. Eng. Chem. Res., 37, 555-571 (1998).
Kang, S. Y.; Lee, J. U.; Moon, S. H.; Kim, K. W. “Competitive adsorption characteristic of Co2+, Ni2+ and Cr3+ by IRN77 cation exchange resin in synthesized wastewater,” Chemosphere, 56, 141-147 (2004).
Lin, Yi-Mao; Yen, Shi-Chern “Effects of additives and chelating agents on electroless copper plating,” Applied Surface Sci., 178, 116-126 (2001).
Matejka, Z.; Zitkova, Z. “The sorption of heavy-metal cations from EDTA complexes on acrylamide resins having oligo(ethyleneamined) moieties,” React. Funct. Polym., 35, 81-88 (1997).
James B. Gerken; J. Gregory McAlpin” Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity” diagram showing the pH/potential,14431-14442 (2011)
顏登通,高科技廠務,全華科技圖書股份有限公司,台北,第5_1-8_20頁(2006)
周劻輝. (2011). 以亞胺基二乙酸螯合樹脂吸附銦 (III) 離子之研究.( 國立臺北科技大學化學工程研究所).
許伯誠. (2012). 以亞胺基二乙酸螯合樹脂吸附鎘 (II) 和鎳 (II) 離子之研究. (臺北科技大學化學工程研究所學位論文), 1-121.
張正生. (2015). 以亞胺基二乙酸螯合樹脂自氯化鹽水溶液吸附鈷 (II) 和錳 (II) 離子之動力學與平衡研究 (Doctoral dissertation, 國立台北科技大學).
吳承恩. (2009). 以強酸型陽離子交換樹脂吸附錳 (Ⅱ) 和鈷 (Ⅱ) 離子之研究 (Doctoral dissertation, 國立台北科技大學).
林庭瑋. (2012) 整合式薄膜系統回收CMP廢水之研究 (國立交通大學環境工程研究所碩士論文)
行政院環境保護署,晶圓製造及半導體製造業放流水標準草案.(2011)
經濟部工業局工業污染防治技術服務團,「工業廢水離子交換處理」(1990)。
周珊珊,曹連桂,黃森元,李茂松,彭淑惠,「含氟廢水之流體化床結晶處理技術」,第十九屆廢水處理技術研討會論文集,台中,第310-319頁(1994)。
曾迪華,「工業廢水離子交換處理」,工業污染防治技術手冊之十,經濟部工業局(1987)。
劉訓瑜、甘其銓、邱顯盛、黃志彬,「化學機械研磨廢水混凝沈澱效能之評估」,第二十五屆廢水處理研討會(2000)。
蔣本基,「工業廢水逆滲透處理」,經濟部工業污染防治技術服務團(1988)
(此全文限內部瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *