帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:沈柏汎
作者(英文):Shen, Po-Fan
論文名稱(中文):氧化鎢與磷酸對ZrO2-TiO2固態酸表面酸性影響之探討
論文名稱(英文):Effects of tungstate and phosphate species on the acidity of ZrO2-TiO2 solid acids
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:徐雍鎣
戴清智
口試委員(英文):Hsu, Yung-Jung
Tai, Chin-Chih
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0251721
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:81
中文關鍵詞:固態酸表面酸性鋯鈦二元金屬氧化鎢磷酸
外文關鍵詞:Solid acidSurface acidityZrO2-TiO2TungstatePhosphate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:33
  • 收藏收藏:0
本研究以低電負度的Zr4+與Ti4+金屬離子搭配模板法製備多孔性ZrO2-TiO2複合金屬氧化物作為固態酸基材,並以摻雜與含浸兩種手法將具有高電負度中心的氧化鎢與磷酸物種導入基材結構,以探討修飾物種對表面酸性的影響。結果顯示本研究成功地製備比表面積高達195 m2/g 且孔徑集中於6.3 nm的多孔材料,ZrO2與TiO2彼此間的相容性有效穩定基材無晶相結構直至600C,表面酸量則為859 µmol/g。磷酸 (PO4)與氧化鎢 (WO3) 以摻雜法導入結構中後可將基材表面酸量分別提高至1,547及972 µmol/g,產生最高酸量的表面P/M及W/M比例分別為0.44及0.16,反之以含浸法將修飾物種附載於表面對酸性提升較不顯著。晶格中W6+離子的高配位數與高電負度使基材表面形成氧空缺與強路易士酸 (Lewis acid),另一方面,低配位的P5+離子則使表面生成大量氫氧官能基的布朗斯特酸 (Bronsted acid)。以結構穩定度而言,PO4相較於WO3更能抑制基材結晶達700C以上,因此磷酸修飾的基材可表現出270 m2/g的比表面積與3.5 nm的主要孔徑。經NH3-TPD重複測試,磷酸化ZrO2-TiO2固態酸具有良好氨氣吸脫附再現性,可供重複使用;而與商用沸石NAY (1,544 µmol/g) 與ZSM-5 (519 µmol/g) 比較,也顯示該樣品具有高酸性、酸密度與更優良的應用潛力。
Owing to the low electronegtivity of Zr4+ and Ti4+ ions, a porous ZrO2-TiO2 composite was prepared using a templating method and was further modified with tungstate and phosphate species, which contain high electrongativity centers, through incorporation or impregnation method to increase the surface aidity. The substrate exhibited a high surface area of 195 m2/g with a pore size of 6.3 nm. The quantity of the acidic sites was 859 µmol/g. Because of the great solubility of the ZrO2 in the TiO2 matrix, crystallization is inhibited and the porous structure is stabilized till 600C. Rather than impregnation, incorporation of the two modifiers enhanced the surface acidity to a higher degree. The incorporated phosphate and tungstate species increased the number of the acidic sites to 1,547 and 972 µmole/g, respectively. The optimal P/M and W/M raito which leads to the highest acidity was 0.44 and 0.16, respectively. The W6+ ions with a high coordination number and electronegativity within the surface lattice resulted in oxygen vacancies and strong Lewis acid sites. On the other hand, P5+ ions led to Bronsted acidity because their low coordination number creates substaintial anounts of hydroxyl groups on the Ti4+ or Zr4+ centers. Compared to the WO3 moieties, PO43- species is more capable of stabilizing the microstructure of the substrate to aginast thermally induced transformation. Therefore, the incorporated phospahe speices increased the surface area to 270 m2/g and maintained the small pore size of 3.5 nm. The repeated NH3-TPD test indicated that the modified solid acid peformed high recoverability. In addition, its acid amount and density was higher than those of the commercial zeolite, suggesting the phosphated ZrO2-TiO2 solid acids a promising adsorbent for removal of base gases.
摘要 I
Abstract II
誌謝 III
主目錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究背景與動機 1
1.2 研究目標 3
第二章 文獻回顧 4
2.1 氨氣特性與去除 4
2.2 固態酸介紹 7
2.2.1固態酸背景 7
2.2.2二元金屬氧化物固態酸 8
2.3超強固態酸修飾 10
2.3.1 金屬離子修飾 10
2.3.2 強酸修飾 11
2.3.3 超強固態酸修飾手法 13
第三章 研究方法 15
3.1研究架構 15
3.2實驗材料 17
3.3固態酸材料合成方式 18
3.3.1 固態酸基材 18
3.3.2摻雜法修飾固態酸 19
3.3.3含浸法修飾固態酸 21
3.4固態酸表面特性鑑定 22
3.4.1 N2吸脫附分析 (N2 Adsorption-desorption) 22
3.4.2氨氣程序升溫脫附分析 (NH3 Temperature Programed Desorption) 22
3.4.3 X光粉末繞射 (X-ray Powder Diffraction) 23
3.4.4 化學分析電子能譜儀 (Electron Spectroscopy for Chemical Analysis) 23
3.4.5 吡啶紅外線光譜儀 (Pyridine FT-IR) 23
3.4.6 穿透式電子顯微鏡 (Transmission Electron Microscopy) 24
第四章 結果與討論 25
4.1 基材特性鑑定 25
4.2 鎢修飾固態酸之特性鑑定 31
4.2.1 鎢修飾固態酸表面鎢含量分析 31
4.2.2 WTZ結構與表面特性分析 33
4.2.3 WTZ-im結構與表面特性分析 38
4.3 磷修飾固態酸之特性鑑定 45
4.3.1 磷修飾固態酸表面磷含量分析 45
4.3.2 PTZ結構與表面特性分析 47
4.3.3 PTZ-im結構與表面特性分析 52
4.4 修飾物種鎢及磷之比較 59
4.4.1 鎢修飾與磷修飾固態酸之特性 59
4.4.2 表面化學組成分析 60
4.4.3 酸種類分析 71
第五章 結論 74
參考文獻 75
附錄 80
1. 費國偉, 以濕式洗滌法去除發光二極體產業含氨廢氣之效率探討. 2012.
2. Rodrigues, C.C., et al., Ammonia Adsorption in a Fixed Bed of Activated Carbon. Bioresource Technology, 2007. 98: p. 886-891.
3. Park, S.-J. and Kim, B.-J., Ammonia Removal of Activated Carbon Fibers Produced by Oxyfluorination. Journal of Colloid and Interface Science, 2005. 291: p. 597-599.
4. Zaccheria, F., et al., New Concepts in Solid Acid Catalysis: Some Opportunities Offered by Dispersed Copper Oxide. Topics in Catalysis, 2014. 57: p. 1085-1093.
5. Miao, Z., et al., One-pot Synthesis of Mesoporous ZrPW Solid Acid Catalyst for Liquid Phase Benzylation of Anisole. Catalysis Science & Technology, 2014. 4: p. 838-850.
6. Arghya, D., et al., Hierarchically Porous Titanium Phosphate Nanoparticles: An Efficient Solid Acid Catalyst for Microwave Assisted Conversion of Biomass and Carbohydrates into 5-hydroxymethylfurfural. Journal of Materials Chemistry, 2012. 22(28): p. 14094-14100.
7. Tanabe, K., et al., A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides. Bulletin of the Chemical Society of Japan, 1974. 47(5): p. 1064-1066.
8. Shamshuddin, S.Z.M., et al., Synthesis, Characterization and Catalytic Activity Studies on Cordierite Honeycomb Coated with ZrO2 Based Solid Super Acids. Comptes Rendus Chimie, 2012. 15(9): p. 799-807.
9. Reddy, B.M. and A. Khan., Recent Advances on TiO2‐ZrO2 Mixed Oxides as Catalysts and Catalyst Supports. Catalysis Reviews, 2005. 47(2): p. 257-296.
10. Boffito, D.C., et al., Ultrasonic Enhancement of the Acidity, Surface Area and Free Fatty Acids Esterification Catalytic Activity of Sulphated ZrO2–TiO2 Systems. Journal of Catalysis, 2013. 297: p. 17-26.
11. Chai, S.-H., et al., Sustainable Production of Acrolein: Catalytic Gas-phase Dehydration of Glycerol over Dispersed Tungsten Oxides on Alumina, Zirconia and Silica. Catalysis Today, 2014. 234: p. 215-222.
12. Hino, M. and Arata, K., Synthesis of a Highly Active Superacid of Platinum-supported Zirconia for Reaction of Butane. Journal of the Chemical Society, Chemical Communications, 1995. 7: p. 789-790.
13. Papp, J., et al., Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts. Chermistry of Materials, 1994. 6: p. 496-500.
14. Hengne, A.M., et al., Surface Synergism of Ag-Ni-ZrO2 Nannocomposite for Catalytic Transfer Hydrogenation of Bio-derived Platform Molecules. The Royal Society of Chemistry, 2014. 4: p. 9730-9736.
15. Semelsberger, T.A., et al., Generating Hydrogen-rich Fuel-cell Feeds from Dimethyl Ether (DME) Using Physical Mixtures of a Commerical Cu/Zn/Al2O3 Catalyst and Several Solid-acid Catalysts. Applied Catalysis B: Environmental, 2006. 65: p. 291-300.
16. Patel, A., et al., Effect of the Addition of Sn to Zirconia on the Acidic Properties of the Sulfated Mixed Pxide. Journal of the Chemical Society, 1997. 2: p. 1990-1998.
17. Hino, M. and Arata, K., Synthesis of Solid Superacid of Tungsten Oxide Supported on Zirconia and its Catalytic Action for Reactions of Butane and Pentane. Journal of the Chemical Society-Chemical Communications, 1988. 18: p.1259-1260.
18. Zarubica, A., et al., Temperature Imposed Textural and Surface Synergism Affecting the Isomerization Activity of Sulfated Zirconia Catalysts. Journal of the Serbian Chemical Society, 2009. 74(12): p. 1429-1442.
19. Stojkovic, N., et al., A Comparative Study of n-Hexane Isomerization over Solid Acids Catalysts: Sulfated and Phosphated Zirconia. Chemical Industry & Chemical Engineering Quarterly, 2012. 18(2): p. 209-220.
20. Benito, H.E., et al., Synthesis and Physicochemical Characterization of Titanium Oxide and Sulfated Titanium Oxide Obtained by Thermal Hydrolysis of Titanium Tetrachloride. Brazillian Journal of Chemical Engineering, 2014. 31(3): p. 737-745.
21. Huang, L. and Li, Q., Enhanced Acidity and Thermal Stability of Mesoporous Materials with Post-treatment with Phosphoric Acid. Chemistry Letters, 1999. 28(8): p. 829-830.
22. Saepurahman, M.A.A. and Chong, F.K., Dual-effects of Adsorption and Photodegradation of Methylene Blue by Tungstem-loeaed Titanium Dioxide. Chemical Engineering Journal, 2010. 158: p. 418-425.
23. Barton, D.G., et al., Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures. The Journal of Physical Chemistry B, 1999. 103: p.630-640.
24. Kumbhar, P.S. and Yadav, G.D., Catalysis by Sulfur-promoted Superacidic Zirconia: Condensation Reactions of Hydroquinone with Aniline and Substituted Anilines. Chemical Engineering Science, 1989. 44(11): p.2535-2544.
25. Reddy, B.M., et al., Surface Characterization of Sulfate, Molybdate, and Tungstate Promoted TiO2-ZrO2 Solid Acid Catalysts by XPS and Other Techniques. Applied Catalysis A: General, 2002. 228: p. 269-278.
26. Smart, J.C.R., et al., Applying the Ecosystem Service Concept to Air Quality Management in the UK: A Case Study for Ammonia. Environmetrics, 2010. 22: p. 649-661.
27. 行政院環保署, 空氣污染防制法施行細則. 2003.
28. 經濟部工業局, 高科技產業揮發性廢氣處理技術及操作成本. 2002.
29. Lind, B.-B., et al., Nutrient Recovery from Human Urine by Struvite Crystallization with Ammonia Adsorption on Zeolite and Wollastonite. Bioresource Technology, 2000. 73: p. 169-174.
30. Cortes-Jacome, M.A., et al., Migration and Oxidation of Tungsten Species at the Origin of Acidity and Catalytic Activity on WO3-ZrO2 Catalysts. Applied Catalysis A : General, 2007. 318: p. 178-189.
31. Sajjad, A.K. L., et al., WO3/TiO2 Composite with Morphology Change via Hydrothermal Template-free Route as an Efficient Visible Light Photocatalyst. Chemical Engineering Journal, 2011. 166(3): p. 906-915.
32. Sajjad, A.K.L., et al., One Step Activation of WOx/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Applied Catalysis B: Environmental, 2009. 91: p. 397-405.
33. Uchiyama, S., et al., Preparation of Porous Spherical ZrO2–SiO2 Composite Particles Using Templating and Its Solid Acidity by H2SO4 Treatment. Journal of Materials Science, 2012. 47: p. 341-349.
34. Wang, A.-Q., et al., New Magnetic Nanocomposites of ZrO2–Al2O3–Fe3O4 as Green Solid Acid Catalysts in Organic Reactions. Catalysis Science & Technology, 2013. 4: p. 71-80.
35. Okada, T., et al., Chemically Stable Magnetic Nanoparticles for Metal Adsorption and Solid Acid Catalysis in Aqueous Media. Journal of Materials Chemistry A, 2014. 2: p.5751-5758.
36. Alfaya, A.A.S., et al., Silica-zirconia-phosphate Composites: A Study of Their Synthesis, Proton Exchange Capacity and Ammonia Gas Adsorption. Microporous and Mesoporous Materials, 2000. 39: p.57-65.
37. Seiyama, T., Metal Oxides and their Catalytic Action. 1978.
38. Tnanbe, K., Solid Acids and Bases: Their Catalytic Properties. 1989.
39. Ma, Y.-Y., et al., Synthesis of the ZrO2-SiO2 Microspheres as a Mesoporous Candidate Material. Journal of Porous Materials, 2012. 19(6):p. 1047-1052.
40. Joy, K., et al., Band Gap Tuning in Nanocomposite ZrO2-SnO2 Thin Film Achieved through Sol-gel Co-deposition Method. Journal of Sol-gel Science and Technology, 2012. 61(1): p. 179-184.
41. Guo, C.-L., et al., CO Methanation over ZrO2/Al2O3 Supported Ni Catalysts: A Comprehensive Study. Fuel Processing Technology, 2014. 124: p.61-69.
42. Manrı́quez, M.E., et al., Preparation of TiO2–ZrO2 Mixed Oxides with Controlled Acid–basic Properties. Journal of Molecular Catalysis A: Chemical, 2004. 220(2): p. 229-237.
43. Hu, G.-Q., et al., Synthesis of 1-Bromooctane Catalyzed by Solid Super Acid SO42-/ZrO2-ZnO. Asian Journal of Chemistry, 2014. 26(4): p. 1212-1214.
44. Park, Y.-M., et al., Tungsten Oxide Zirconia as Solid Superacid Catalyst for Esterificationof Waste Acid Oil (Dark Oil). Bioresource Technology, 2010. 101: p. 6589-6593.
45. Sunita, G., et al., Synthesis of Biodiesel over Zirconia-supported Isopoly and Heteropoly Tungstate Catalysts. Catalysis Communications, 2008. 9: p. 696-702.
46. Ramos-Delgado, N.A., et al., Synthesis by Sol-gel of WO3/TiO¬2 for Solar Photocatalytic Degradation of Malathion Pesticide. Catalysis Today, 2013. 209: p. 35-40.
47. Ma, Z., et al., Catalytic Decomposition of CFC-12 over Solid Acids WO3/MxOy (M = Ti, Sn, Fe). Journal of Molecular Catalysis A: Chemical, 2000. 159: p. 335-345.
48. Kitano, T., et al., Effect of High-temperature Calcination on the Generation of Bronsted Acid Sites on WO3/Al2O3. ChemCatChem, 2014. 6: p. 2011-2020.
49. Nedumaran, D. and Pandurangan, A., Effect of Tungsten Loading on Zirconia Impregnated MCM-41 and Its Catalytic Activity on Transesterification Reaction. Journal of Porous Materials, 2013. 20: p.897-908.
50. Khder, A.S. and Ahmed, A.I., Selective Nitration of Phenol over Nanosized Tungsten Oxide Supported on Sulfated SnO2 as a Solid Acid Catalyst. Applied Catalysis A: General, 2009. 354: p. 153-160.
51. Smitha, V.K., et al., Surface properties and catalytic activity of phosphate modified zirconia. Indian Journal of Chemistry-Section A, 2003. 42: p. 300-304.
52. Sinhamahapatra, A., et al., Mesoporous Zirconium Phosphate Catalyzed Reactions: Synthesis of Industrially Important Chemicals in Solivent-free Conditions. Applied Catalysis A: General, 2010. 385: p.22-30.
53. Santos, V.C., et al., Physicochemical Properties of WOx/ZrO2 Catalysts for Palmitic Acid Esterification. Applied Catalysis B: Environmental, 2015. 162: p. 75-84.
54. Zhao, D., et al., Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chemistry of Materials, 2000. 12(2): p.275-279.
55. Michel, P., et al., Dehydration and Crystallization Process on Sol-gel Zirconia-Thermal and Spectroscopic Study. Journal of Thermal Analysis and Calorimetry, 2004. 76: p. 755-761.
56. Reddy, B.M., et al., An XPS Study of the Dispersion of MoO3 on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2 and SiO2-TiO2-ZrO2 Mixed Oxides. Applied Catalysis A: General, 2001. 211: p.19-30.
57. Manriquez, M.E., et al., Preparation of TiO2-ZrO2 Mixed Oxides with Controlled Acid-basic Properties. Journal of Molecular Catalysis A: Chemical, 2004. 220: p.229-237.
58. Pan, J.H., et al., Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties. Chemistry of Materials, 2006. 18: p. 847-853.
59. Sun W.-D., et al., Study of the Alkylation of Isobutane with n-Butene over WO3/ZrO2 Strong Solid Acid. 1. Effect of the Preparation Method, WO3 Loading, and Calcination Temperature. Industial & Engineering Chemistry Research, 2000. 39: p. 3717-3725.
60. Sohn, J.R. and Lee, C.K., Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activites for Acid Catalysis. Bulletin of the Korean Chemistry Society, 2007. 28(12): p. 2459-2465.
61. Park, G.G., et al., Pore Size Effect of the DMFC Catalyst Supported on Porous Materials. International Journal of Hydrogen Energy, 2003. 28: p.645-650.
62. Adeeva, A., et al., Acid Sites in Sulfated and Metal-Promoted Zirconium Dioxide Catalysts. Journal of Catalysis, 1995. 151: p. 364-372.
63. Yori, J.C., et al., Phosphate as Prommter of Zirconia for Alkane Isomerization Reactions. Catalysis Letters, 1998. 52: p. 227-229.
64. Yu, J.C., et al., Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chemistry of Materials, 2003. 15: p.2280-2286.
65. Leturcq, G., et al., Solubility Study of Ti, Zr-based Ceramics Designed to Immobilize Long-lived Radionuclides. American Mineralogist, 2001. 86: p. 871-880.
66. Dupin, J.-C., et al., Systematic XPS Studies of Metal Oxides, Hydroxides and Peroxides. Physical Chemistry Chemical Physics, 2000. 2: p. 1319-1324.
67. Weingarten, R., et al., Design of Solid Acid Catalysts for Aqueous-phase Dehydration of Carbohydrates: The Role of Lewis and Bronsted Acid Sites. Journal of Catalysis, 2011. 279: p.174-182.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *