|
1. 費國偉, 以濕式洗滌法去除發光二極體產業含氨廢氣之效率探討. 2012. 2. Rodrigues, C.C., et al., Ammonia Adsorption in a Fixed Bed of Activated Carbon. Bioresource Technology, 2007. 98: p. 886-891. 3. Park, S.-J. and Kim, B.-J., Ammonia Removal of Activated Carbon Fibers Produced by Oxyfluorination. Journal of Colloid and Interface Science, 2005. 291: p. 597-599. 4. Zaccheria, F., et al., New Concepts in Solid Acid Catalysis: Some Opportunities Offered by Dispersed Copper Oxide. Topics in Catalysis, 2014. 57: p. 1085-1093. 5. Miao, Z., et al., One-pot Synthesis of Mesoporous ZrPW Solid Acid Catalyst for Liquid Phase Benzylation of Anisole. Catalysis Science & Technology, 2014. 4: p. 838-850. 6. Arghya, D., et al., Hierarchically Porous Titanium Phosphate Nanoparticles: An Efficient Solid Acid Catalyst for Microwave Assisted Conversion of Biomass and Carbohydrates into 5-hydroxymethylfurfural. Journal of Materials Chemistry, 2012. 22(28): p. 14094-14100. 7. Tanabe, K., et al., A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides. Bulletin of the Chemical Society of Japan, 1974. 47(5): p. 1064-1066. 8. Shamshuddin, S.Z.M., et al., Synthesis, Characterization and Catalytic Activity Studies on Cordierite Honeycomb Coated with ZrO2 Based Solid Super Acids. Comptes Rendus Chimie, 2012. 15(9): p. 799-807. 9. Reddy, B.M. and A. Khan., Recent Advances on TiO2‐ZrO2 Mixed Oxides as Catalysts and Catalyst Supports. Catalysis Reviews, 2005. 47(2): p. 257-296. 10. Boffito, D.C., et al., Ultrasonic Enhancement of the Acidity, Surface Area and Free Fatty Acids Esterification Catalytic Activity of Sulphated ZrO2–TiO2 Systems. Journal of Catalysis, 2013. 297: p. 17-26. 11. Chai, S.-H., et al., Sustainable Production of Acrolein: Catalytic Gas-phase Dehydration of Glycerol over Dispersed Tungsten Oxides on Alumina, Zirconia and Silica. Catalysis Today, 2014. 234: p. 215-222. 12. Hino, M. and Arata, K., Synthesis of a Highly Active Superacid of Platinum-supported Zirconia for Reaction of Butane. Journal of the Chemical Society, Chemical Communications, 1995. 7: p. 789-790. 13. Papp, J., et al., Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts. Chermistry of Materials, 1994. 6: p. 496-500. 14. Hengne, A.M., et al., Surface Synergism of Ag-Ni-ZrO2 Nannocomposite for Catalytic Transfer Hydrogenation of Bio-derived Platform Molecules. The Royal Society of Chemistry, 2014. 4: p. 9730-9736. 15. Semelsberger, T.A., et al., Generating Hydrogen-rich Fuel-cell Feeds from Dimethyl Ether (DME) Using Physical Mixtures of a Commerical Cu/Zn/Al2O3 Catalyst and Several Solid-acid Catalysts. Applied Catalysis B: Environmental, 2006. 65: p. 291-300. 16. Patel, A., et al., Effect of the Addition of Sn to Zirconia on the Acidic Properties of the Sulfated Mixed Pxide. Journal of the Chemical Society, 1997. 2: p. 1990-1998. 17. Hino, M. and Arata, K., Synthesis of Solid Superacid of Tungsten Oxide Supported on Zirconia and its Catalytic Action for Reactions of Butane and Pentane. Journal of the Chemical Society-Chemical Communications, 1988. 18: p.1259-1260. 18. Zarubica, A., et al., Temperature Imposed Textural and Surface Synergism Affecting the Isomerization Activity of Sulfated Zirconia Catalysts. Journal of the Serbian Chemical Society, 2009. 74(12): p. 1429-1442. 19. Stojkovic, N., et al., A Comparative Study of n-Hexane Isomerization over Solid Acids Catalysts: Sulfated and Phosphated Zirconia. Chemical Industry & Chemical Engineering Quarterly, 2012. 18(2): p. 209-220. 20. Benito, H.E., et al., Synthesis and Physicochemical Characterization of Titanium Oxide and Sulfated Titanium Oxide Obtained by Thermal Hydrolysis of Titanium Tetrachloride. Brazillian Journal of Chemical Engineering, 2014. 31(3): p. 737-745. 21. Huang, L. and Li, Q., Enhanced Acidity and Thermal Stability of Mesoporous Materials with Post-treatment with Phosphoric Acid. Chemistry Letters, 1999. 28(8): p. 829-830. 22. Saepurahman, M.A.A. and Chong, F.K., Dual-effects of Adsorption and Photodegradation of Methylene Blue by Tungstem-loeaed Titanium Dioxide. Chemical Engineering Journal, 2010. 158: p. 418-425. 23. Barton, D.G., et al., Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures. The Journal of Physical Chemistry B, 1999. 103: p.630-640. 24. Kumbhar, P.S. and Yadav, G.D., Catalysis by Sulfur-promoted Superacidic Zirconia: Condensation Reactions of Hydroquinone with Aniline and Substituted Anilines. Chemical Engineering Science, 1989. 44(11): p.2535-2544. 25. Reddy, B.M., et al., Surface Characterization of Sulfate, Molybdate, and Tungstate Promoted TiO2-ZrO2 Solid Acid Catalysts by XPS and Other Techniques. Applied Catalysis A: General, 2002. 228: p. 269-278. 26. Smart, J.C.R., et al., Applying the Ecosystem Service Concept to Air Quality Management in the UK: A Case Study for Ammonia. Environmetrics, 2010. 22: p. 649-661. 27. 行政院環保署, 空氣污染防制法施行細則. 2003. 28. 經濟部工業局, 高科技產業揮發性廢氣處理技術及操作成本. 2002. 29. Lind, B.-B., et al., Nutrient Recovery from Human Urine by Struvite Crystallization with Ammonia Adsorption on Zeolite and Wollastonite. Bioresource Technology, 2000. 73: p. 169-174. 30. Cortes-Jacome, M.A., et al., Migration and Oxidation of Tungsten Species at the Origin of Acidity and Catalytic Activity on WO3-ZrO2 Catalysts. Applied Catalysis A : General, 2007. 318: p. 178-189. 31. Sajjad, A.K. L., et al., WO3/TiO2 Composite with Morphology Change via Hydrothermal Template-free Route as an Efficient Visible Light Photocatalyst. Chemical Engineering Journal, 2011. 166(3): p. 906-915. 32. Sajjad, A.K.L., et al., One Step Activation of WOx/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Applied Catalysis B: Environmental, 2009. 91: p. 397-405. 33. Uchiyama, S., et al., Preparation of Porous Spherical ZrO2–SiO2 Composite Particles Using Templating and Its Solid Acidity by H2SO4 Treatment. Journal of Materials Science, 2012. 47: p. 341-349. 34. Wang, A.-Q., et al., New Magnetic Nanocomposites of ZrO2–Al2O3–Fe3O4 as Green Solid Acid Catalysts in Organic Reactions. Catalysis Science & Technology, 2013. 4: p. 71-80. 35. Okada, T., et al., Chemically Stable Magnetic Nanoparticles for Metal Adsorption and Solid Acid Catalysis in Aqueous Media. Journal of Materials Chemistry A, 2014. 2: p.5751-5758. 36. Alfaya, A.A.S., et al., Silica-zirconia-phosphate Composites: A Study of Their Synthesis, Proton Exchange Capacity and Ammonia Gas Adsorption. Microporous and Mesoporous Materials, 2000. 39: p.57-65. 37. Seiyama, T., Metal Oxides and their Catalytic Action. 1978. 38. Tnanbe, K., Solid Acids and Bases: Their Catalytic Properties. 1989. 39. Ma, Y.-Y., et al., Synthesis of the ZrO2-SiO2 Microspheres as a Mesoporous Candidate Material. Journal of Porous Materials, 2012. 19(6):p. 1047-1052. 40. Joy, K., et al., Band Gap Tuning in Nanocomposite ZrO2-SnO2 Thin Film Achieved through Sol-gel Co-deposition Method. Journal of Sol-gel Science and Technology, 2012. 61(1): p. 179-184. 41. Guo, C.-L., et al., CO Methanation over ZrO2/Al2O3 Supported Ni Catalysts: A Comprehensive Study. Fuel Processing Technology, 2014. 124: p.61-69. 42. Manrı́quez, M.E., et al., Preparation of TiO2–ZrO2 Mixed Oxides with Controlled Acid–basic Properties. Journal of Molecular Catalysis A: Chemical, 2004. 220(2): p. 229-237. 43. Hu, G.-Q., et al., Synthesis of 1-Bromooctane Catalyzed by Solid Super Acid SO42-/ZrO2-ZnO. Asian Journal of Chemistry, 2014. 26(4): p. 1212-1214. 44. Park, Y.-M., et al., Tungsten Oxide Zirconia as Solid Superacid Catalyst for Esterificationof Waste Acid Oil (Dark Oil). Bioresource Technology, 2010. 101: p. 6589-6593. 45. Sunita, G., et al., Synthesis of Biodiesel over Zirconia-supported Isopoly and Heteropoly Tungstate Catalysts. Catalysis Communications, 2008. 9: p. 696-702. 46. Ramos-Delgado, N.A., et al., Synthesis by Sol-gel of WO3/TiO¬2 for Solar Photocatalytic Degradation of Malathion Pesticide. Catalysis Today, 2013. 209: p. 35-40. 47. Ma, Z., et al., Catalytic Decomposition of CFC-12 over Solid Acids WO3/MxOy (M = Ti, Sn, Fe). Journal of Molecular Catalysis A: Chemical, 2000. 159: p. 335-345. 48. Kitano, T., et al., Effect of High-temperature Calcination on the Generation of Bronsted Acid Sites on WO3/Al2O3. ChemCatChem, 2014. 6: p. 2011-2020. 49. Nedumaran, D. and Pandurangan, A., Effect of Tungsten Loading on Zirconia Impregnated MCM-41 and Its Catalytic Activity on Transesterification Reaction. Journal of Porous Materials, 2013. 20: p.897-908. 50. Khder, A.S. and Ahmed, A.I., Selective Nitration of Phenol over Nanosized Tungsten Oxide Supported on Sulfated SnO2 as a Solid Acid Catalyst. Applied Catalysis A: General, 2009. 354: p. 153-160. 51. Smitha, V.K., et al., Surface properties and catalytic activity of phosphate modified zirconia. Indian Journal of Chemistry-Section A, 2003. 42: p. 300-304. 52. Sinhamahapatra, A., et al., Mesoporous Zirconium Phosphate Catalyzed Reactions: Synthesis of Industrially Important Chemicals in Solivent-free Conditions. Applied Catalysis A: General, 2010. 385: p.22-30. 53. Santos, V.C., et al., Physicochemical Properties of WOx/ZrO2 Catalysts for Palmitic Acid Esterification. Applied Catalysis B: Environmental, 2015. 162: p. 75-84. 54. Zhao, D., et al., Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chemistry of Materials, 2000. 12(2): p.275-279. 55. Michel, P., et al., Dehydration and Crystallization Process on Sol-gel Zirconia-Thermal and Spectroscopic Study. Journal of Thermal Analysis and Calorimetry, 2004. 76: p. 755-761. 56. Reddy, B.M., et al., An XPS Study of the Dispersion of MoO3 on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2 and SiO2-TiO2-ZrO2 Mixed Oxides. Applied Catalysis A: General, 2001. 211: p.19-30. 57. Manriquez, M.E., et al., Preparation of TiO2-ZrO2 Mixed Oxides with Controlled Acid-basic Properties. Journal of Molecular Catalysis A: Chemical, 2004. 220: p.229-237. 58. Pan, J.H., et al., Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties. Chemistry of Materials, 2006. 18: p. 847-853. 59. Sun W.-D., et al., Study of the Alkylation of Isobutane with n-Butene over WO3/ZrO2 Strong Solid Acid. 1. Effect of the Preparation Method, WO3 Loading, and Calcination Temperature. Industial & Engineering Chemistry Research, 2000. 39: p. 3717-3725. 60. Sohn, J.R. and Lee, C.K., Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activites for Acid Catalysis. Bulletin of the Korean Chemistry Society, 2007. 28(12): p. 2459-2465. 61. Park, G.G., et al., Pore Size Effect of the DMFC Catalyst Supported on Porous Materials. International Journal of Hydrogen Energy, 2003. 28: p.645-650. 62. Adeeva, A., et al., Acid Sites in Sulfated and Metal-Promoted Zirconium Dioxide Catalysts. Journal of Catalysis, 1995. 151: p. 364-372. 63. Yori, J.C., et al., Phosphate as Prommter of Zirconia for Alkane Isomerization Reactions. Catalysis Letters, 1998. 52: p. 227-229. 64. Yu, J.C., et al., Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chemistry of Materials, 2003. 15: p.2280-2286. 65. Leturcq, G., et al., Solubility Study of Ti, Zr-based Ceramics Designed to Immobilize Long-lived Radionuclides. American Mineralogist, 2001. 86: p. 871-880. 66. Dupin, J.-C., et al., Systematic XPS Studies of Metal Oxides, Hydroxides and Peroxides. Physical Chemistry Chemical Physics, 2000. 2: p. 1319-1324. 67. Weingarten, R., et al., Design of Solid Acid Catalysts for Aqueous-phase Dehydration of Carbohydrates: The Role of Lewis and Bronsted Acid Sites. Journal of Catalysis, 2011. 279: p.174-182.
|