帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:張舒涵
作者(英文):Chang, Shu-Han
論文名稱(中文):製備特定辨識材料修飾量子點於環境感測應用
論文名稱(英文):Modifications of Quantum Dot-Based Probes for Environmental Sensing
指導教授(中文):張淑閔
Roger, Philippe
指導教授(英文):Chang, Sue-Min
Roger, Philippe
口試委員:林宏洲
Pansu, Robert
Mallet, Jean-Maurice
Lebrun, Laurent
郭俊宏
張淑閔
Roger, Philippe
口試委員(英文):Lin, Hong-Cheu
Pansu, Robert
Mallet, Jean-Maurice
Lebrun, Laurent
Kuo, Chun-Hong
Chang, Sue-Min
Roger, Philippe
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:環境工程系所
學號:0251708
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:148
中文關鍵詞:硒化鎘量子點螢光探針功能性直鏈澱粉螢光微凝膠內分泌干擾素雙酚A選擇性
外文關鍵詞:CdSe quantum dotsfluorescence probefunctionalized amylosefluorescent microgelendocrine disrupting chemicalsbisphenol Aselectivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
內分泌干擾素(Endocrine disrupting chemicals, EDCs)對人類健康的危害與時俱增,過往研究發現其會影響人體的內分泌系統,進而誘發癌症等疾病。雙酚A(Bispehenol A)是一種廣泛用於塑料工業中的內分泌干擾素,考量其在食品材料中的潛在危害, 歐盟已頒布其遷移限量(Specific migration limit, SML)為0.05毫克/公斤。量子點與辨識材料結合後可製備出雙酚A感測系統,然而多建立在複雜的螢光感測機制使得靈敏度及應用性受限,且較常使用的辨識材料,如抗體、適體等,其造價較為昂貴並極易受環境影響,而人工合成的分子拓印聚合物(Molecule imprinting polymers, MIPs)中緻密的結構使得待測物較難擴散至特定結合位點,造成探針的感測靈敏度較差且響應時間長,因此發展其他便宜且對雙酚A具有高靈敏度、高選擇性、快速感測的光學量子點探針為本研究目的。鑒於雙酚A與苯環官能基會產生疏水(Hydrophobicity)和π-π的交互作用力(π-π stacking interaction),本研究將利用苯環修飾的直鏈澱粉(Amylose)以及含有苯乙烯共聚物的微凝膠(Microgel)分別與高靈敏的硒化鎘量子點(CdSe quantum dots)結合後,因皆含有與雙酚A化學構型契合的特殊結合位點可於系統當中特定辨識雙酚A,而其感測機制僅涉及直接的電荷轉移與否,分別為螢光回復(Fluorescence recovery)以及螢光淬滅(Fluorescence quenching),最終所形成的兩種奈米尺寸探針使雙酚A能有效快速地與結合位點作用,成功開發出對雙酚A具有高選擇性、高感度和快速響應的量子點探針。這兩種探針皆具有廣泛的檢測範圍(1.0×10-1-1.0×105 μg/L)、低偵測極限(LOD,分別為3.0×10-2及7.0×10-2 μg/L)和快速響應時間(2-5分鐘),且無需繁瑣的前處理即可應用於自來水及飲用水中的感測之中,此外本研究亦探討對於五種內分泌干擾素(phenol、pyrene、 E2、2,2’-BPF、4,4’-BPF)的感測特性,結果皆顯示因為特殊結合位點的存在使兩種探針對雙酚A的感測能力高於其它內分泌干擾素。
Endocrine-disrupting chemicals (EDCs) are a global environmental concern due to their suspected carcinogenic properties. One particularly worrisome phenolic EDC is bisphenol A (BPA), which is widely used as an additive in the plastic industry. In response to the potential threat, the European Union (EU) has set a specific migration limit (SML) of 0.05 mg/kg for BPA in plastic food contact materials (Regulation No 10/2011). To address the hazards of BPA in our daily diet, various quantum dots (QDs)-based sensors have been proposed. These sensors possess easy preparation and the ability to adapt to different sensing requirements. Several materials, such as antibodies, aptamers, and molecule imprinting polymers (MIPs), have been coupled with QDs to construct probes for BPA detection. However, achieving the right balance between sensitivity and cost using these materials has proven challenging.
This project proposed two quantum dots (QDs)-based detection systems. The first system utilizes a functionalized amylose/QDs composite to create an aptamer-mimetic sensing system. The second system employs fluorescent copolymer/QDs microgels as the sensor. These systems created cavities that surrounded specific moieties, enabling enhanced diffusion and selective binding of BPA with functionalized amylose and fluorescent microgel via hydrophobic and π-π stacking interaction. Integrating reception elements with QDs facilitated nanoscale sensing and effective BPA diffusion. Additionally, the fluorescence sensing mechanism of these probes was merely based on the charge transfer in direct interaction, which increased the sensitivity and shortened the response time.
Utimitatly, the probes designed in this project performed excellent sensitivity, selectivity, and fast response via simple “fluorescence on” and “fluorescence quenching,” respectively. These two systems exhibited a considerably wide detection range (1.0×10-1-1.0×105 μg/L), low limit of detection (LOD, 3.0×10-2-7.0×10-2 μg/L), and rapid response time (2-5 min). Moreover, these fluorescent systems can directly detect the analyte in the field water without complicated pretreatment. Furthermore, both systems demonstrated selective sensing for BPA compounds over 5 other phenolic chemicals (phenol, pyrene, E2, 2,2-BPF, and 4,4-BPF). Besides, the preparation and sensing conditions were optimized for each sensor, and the sensing mechanisms were also validated during this thesis.
中文摘要 i
Abstract ii
Content iii
Table Captions vii
Figure Captions viii
Chapter 1. Introduction 1
1.1 Background and Motivation 1
1.2 Design Concept 2
1.3 Objective 3
1.4 Dissertation Content 4
Chapter 2. Literature Review 5
2.1 Bisphenol A (BPA) 5
2.1.1 Endocrine-disrupting Chemicals (EDCs) 5
2.1.2 Properties of BPA 6
2.1.3 Sources of BPA Contamination 7
2.1.4 Potential hazards of BPA 9
2.2 Functional Macromolecules for BPA Recognition 11
2.2.1 Amylose 11
2.2.1.1 Helical Structure in Amylose 12
2.2.1.2 Amylose-based Recognition Material 13
2.2.2 Chitosan 15
2.2.3 β-cyclodextrin (β-CD) 17
2.2.4 Synthetic Materials 18
2.2.4.1 Molecularly Imprinted Polymer (MIP) 19
2.2.4.2 Other Functional Polymer 23
2.2.4.2.1 Cu(0)-mediated Reversible Deactivated Radical Polymerization 24
2.2.4.2.2 Surface Functionalization with Polymers 27
2.3 Quantum Dots (QDs) 29
2.3.1 Preparation of QDs 30
2.3.1.1 Sol-gel Method 30
2.3.1.2 Co-precipitation Method 31
2.3.1.3 Hydrothermal Method 32
2.3.1.4 High-temperature Arrested Precipitation Method 33
2.3.2 Surface Modification of QDs 34
2.3.2.1 Inorganic Shell Passivation 35
2.3.2.2 Amphiphilic Surfactant Combination 36
2.3.2.3 Ligand Exchange 37
2.4 Sensors 39
2.4.1 Fluorescence-based Sensor 42
2.4.1.1 Fluorescence Quenching Sensing System 43
2.4.1.2 Fluorescence Enhancement Sensing System 47
2.5 Comparison and Summary 49
Reference 53
Chapter 3. Experimental Materials and Methods 68
3.1 Chemicals 69
3.2 Synthesis of QDs 71
3.2.1 Water-Soluble QDs (Cys-QDs) 71
3.2.2 Organic QDs (OA-QDs) 71
3.2.3 Modified QDs (Lcys-QDs) via Ligand Exchange 71
3.3 Preparation of Reception Materials 72
3.3.1 Functionalized Amylose (APS) 72
3.3.2 SG Copolymers 73
3.4 Construction of BPA Sensing Systems 74
3.4.1 Functionalized Amylose/QDs Probe (APS-QDs) 74
3.4.2 SG copolymers/QDs Fluorescent Microgels 74
3.5 Characterizations 74
3.5.1 Characterization Instruments 74
3.5.2 Quantum Yields (QYs) 75
3.5.3 Iodine Test for Amylose and APS 75
3.6 Detection of BPA 76
3.6.1 Sensing Test for APS-QDs 76
3.6.2 Sensing Test for Fluorescent Microgels 76
3.6.3 Determination of BPA by HPLC-PDA 77
Reference 78
Chapter 4. QDs-Based Probes for BPA Detection 79
4.1 Characterization of Various QDs 80
4.1.1 Water-Soluble QDs 80
4.1.2 Organic QDs 81
4.1.3 Surface Modification of QDs 83
4.1.4 Summary 85
4.2 Aptamer-Mimetic Probe Based on APS/QDs Composite 86
4.2.1 Functionalized Amylose (APS) 86
4.2.1.1 Verification of Amylose Derivatives 87
4.2.1.2 Iodine test for Amylose and APS 90
4.2.2 APS/QDs Composite Sensing System 91
4.2.2.1 Characterization of APS-QDs 93
4.2.2.2 Interaction with BPA and Sensing Optimization 94
4.2.2.3 Sensing Ability of APS-QDs for BPA and Other EDCs 97
4.2.2.4 Sensing Performance of APS-QDs in Various Aqueous Solutions 101
4.2.3 Summary 106
4.3 SG-Copolymers/QDs Fluorescent Microgels Sensor 107
4.3.1 Linear Copolymer (SG Copolymer) 107
4.3.1.1 Verification of SG Copolymers 108
4.3.2 Fluorescent Microgels Sensor 110
4.3.2.1 Characterization of Fluorescent Microgels 112
4.3.2.2 Optimization of Sensing 114
4.3.2.3 Influence of SG Copolymer Composition on Sensing 117
4.3.2.4 Sensing Mechanism of Fluorescent Microgels 120
4.3.2.5 Selectivity of Fluorescent Microgels 123
4.3.2.6 Sensing Performance of Fluorescent Microgels 126
4.3.3 Summary 132
Reference 133
Chapter 5. Conclusions and Perspectives 139
Appendix A 142
[1] Ji, Z., Liu, J., Sakkiah, S., Guo, W., and Hong, H. (2021). "BPA Replacement Compounds: Current Status and Perspectives." ACS Sustainable Chemistry & Engineering, 9(6), 2433-2446.
[2] Huelsmann, R. D., Will, C., and Carasek, E. (2021). "Determination of Bisphenol A: Old Problem, Recent Creative Solutions Based on Novel Materials." Journal of Separation Science, 44(6), 1148-1173.
[3] Mersha, M. D., Patel, B. M., Patel, D., Richardson, B. N., and Dhillon, H. S. (2015). "Effects of BPA and BPS Exposure Limited to Early Embryogenesis Persist to Impair Non-Associative Learning in Adults." Behavioral and Brain Functions, 11(1), 27.
[4] Zamri, M. F. M. A., Bahru, R., Suja, F., Shamsuddin, A. H., Pramanik, S. K., and Fattah, I. M. R. (2021). "Treatment Strategies for Enhancing the Removal of Endocrine-Disrupting Chemicals in Water and Wastewater Systems." Journal of Water Process Engineering, 41, 102017.
[5] Kahn, L. G., Philippat, C., Nakayama, S. F., Slama, R., and Trasande, L. (2020). "Endocrine-Disrupting Chemicals: Implications for Human Health." The Lancet Diabetes & Endocrinology, 8(8), 703-718.
[6] Windsor, F. M., Ormerod, S. J., and Tyler, C. R. (2018). "Endocrine Disruption in Aquatic Systems: Up-Scaling Research to Address Ecological Consequences." Biological Reviews, 93(1), 626-641.
[7] Karthikeyan, B. S., Ravichandran, J., Mohanraj, K., Vivek-Ananth, R. P., and Samal, A. (2019). "A Curated Knowledgebase on Endocrine Disrupting Chemicals and Their Biological Systems-Level Perturbations." Science of The Total Environment, 692, 281-296.
[8] Liu, G., Li, X., and Campos, L. C. (2017). "Role of the Functional Groups in the Adsorption of Bisphenol A onto Activated Carbon: Thermal Modification and Mechanism." Journal of Water Supply: Research and Technology-Aqua, 66(2), 105-115.
[9] Zielińska, M., Wojnowska-Baryła, I., and Cydzik-Kwiatkowska, A. (2019). "Bisphenol A Removal from Water and Wastewater."
[10] Ballesteros-Gómez, A., Rubio, S., and Pérez-Bendito, D. (2009). "Analytical Methods for the Determination of Bisphenol A in Food." Journal of Chromatography A, 1216(3), 449-469.
[11] Murphy, E. M., Zachara, J. M., and Smith, S. C. (1990). "Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds." Environmental Science & Technology, 24(10), 1507-1516.
[12] Urase, T., and Miyashita, K. (2003). "Factors Affecting the Concentration of Bisphenol A in Leachates from Solid Waste Disposal Sites and Its Fate in Treatment Processes." Journal of Material Cycles and Waste Management, 5(1), 0077-0082.
[13] Chen, Q., Yin, D., Jia, Y., Schiwy, S., Legradi, J., Yang, S., and Hollert, H. (2017). "Enhanced Uptake of BPA in the Presence of Nanoplastics Can Lead to Neurotoxic Effects in Adult Zebrafish." Science of The Total Environment, 609, 1312-1321.
[14] Vogel, S. A. (2009). "The Politics of Plastics: The Making and Unmaking of Bisphenol A “Safety”." American Journal of Public Health, 99(S3), S559-S566.
[15] Cao, X.L., and Corriveau, J. (2008). "Migration of Bisphenol A from Polycarbonate Baby and Water Bottles into Water under Severe Conditions." Journal of Agricultural and Food Chemistry, 56(15), 6378-6381.
[16] Geens, T., Goeyens, L., and Covaci, A. (2011). "Are Potential Sources for Human Exposure to Bisphenol A Overlooked?" International Journal of Hygiene and Environmental Health, 214(5), 339-347.
[17] Yang, H.-S., Cho, S., Lee, M., Eom, Y., Chae, H. G., Park, S.-A., Jang, M., Oh, D. X., Hwang, S. Y., and Park, J. (2021). "Preparation of Sustainable Fibers from Isosorbide: Merits over Bisphenol A Based Polysulfone." Materials & Design, 198, 109284.
[18] Björnsdotter, M. K., de Boer, J., and Ballesteros-Gómez, A. (2017). "Bisphenol A and Replacements in Thermal Paper: A Review." Chemosphere, 182, 691-706.
[19] Xing, J., Zhang, S., Zhang, M., and Hou, J. (2022). "A Critical Review of Presence, Removal and Potential Impacts of Endocrine Disruptors Bisphenol A." Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 254, 109275.
[20] Irshad, K., Rehman, K., Sharif, H., Tariq, M., Murtaza, G., Ibrahim, M., and Akash, M. S. H. (2021). "Bisphenol A as an EDC in Metabolic Disorders." Endocrine Disrupting Chemicals-Induced Metabolic Disorders and Treatment Strategies, 251-263.
[21] Rochester, J. R. (2013). "Bisphenol A and Human Health: A Review of the Literature." Reproductive Toxicology, 42, 132-155.
[22] La Merrill, M. A., Vandenberg, L. N., Smith, M. T., Goodson, W., Browne, P., Patisaul, H. B., Guyton, K. Z., Kortenkamp, A., Cogliano, V. J., Woodruff, T. J., Rieswijk, L., Sone, H., Korach, K. S., Gore, A. C., Zeise, L., and Zoeller, R. T. (2020). "Consensus on the Key Characteristics of Endocrine-Disrupting Chemicals as a Basis for Hazard Identification." Nature Reviews Endocrinology, 16(1), 45-57.
[23] Hassan, Z. K., Elobeid, M. A., Virk, P., Omer, S. A., ElAmin, M., Daghestani, M. H., and AlOlayan, E. M. (2012). "Bisphenol A Induces Hepatotoxicity through Oxidative Stress in Rat Model." Oxidative Medicine and Cellular Longevity, 2012, 194829.
[24] Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., and Brooks, B. W. (2015). "Global Assessment of Bisphenol A in the Environment:Review and Analysis of its Occurrence and Bioaccumulation." Dose-Response, 13(3), 1559325815598308.
[25] Ohore, O. E., and Zhang, S. (2019). "Endocrine Disrupting Effects of Bisphenol A Exposure and Recent Advances on Its Removal by Water Treatment Systems. A Review." Scientific African, 5, e00135.
[26] Suggett, A. (1975). "Polysaccharides." Water a Comprehensive Treatise: Aqueous Solutions of Amphiphiles and Macromolecules, 519-567.
[27] Sarko, A., and Zugenmaier, P. (1980). "Crystal Structures of Amylose and its Derivatives." Fiber Diffraction Methods, 459-482.
[28] Xiao, R., and Grinstaff, M. W. (2017). "Chemical Synthesis of Polysaccharides and Polysaccharide Mimetics." Progress in Polymer Science, 74, 78-116.
[29] Shen, J., and Okamoto, Y. (2016). "Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers." Chemical Reviews, 116(3), 1094-1138.
[30] Chankvetadze, B., Yashima, E., and Okamoto, Y. (1995). "Dimethyl-, Dichloro- and Chloromethylphenylcarbamates of Amylose as Chiral Stationary Phases for High-Performance Liquid Chromatography." Journal of Chromatography A, 694(1), 101-109.
[31] Shen, J., Ikai, T., and Okamoto, Y. (2010). "Synthesis and Chiral Recognition of Novel Amylose Derivatives Containing Regioselectively Benzoate and Phenylcarbamate Groups." Journal of Chromatography A, 1217(7), 1041-1047.
[32] Rappenecker, G., and Zugenmaier, P. (1981). "Detailed Refinement of the Crystal Structure of V-Amylose." Carbohydrate Research, 89(1), 11-19.
[33] Biliaderis, C. G., and Galloway, G. (1989). "Crystallization Behavior of Amylose-V Complexes: Structure-Property Relationships." Carbohydrate Research, 189, 31-48.
[34] Moulay, S. (2013). "Molecular Iodine/Polymer Complexes." Journal of Polymer Engineering, 33(5), 389-443.
[35] Putseys, J. A., Lamberts, L., and Delcour, J. A. (2010). "Amylose-Inclusion Complexes: Formation, Identity and Physico-Chemical Properties." Journal of Cereal Science, 51(3), 238-247.
[36] Wei, W., Qu, K., Ren, J., and Qu, X. (2011). "Chiral Detection Using Reusable Fluorescent Amylose-Functionalized Graphene." Chemical Science, 2(10), 2050-2056.
[37] Immel, S., and Lichtenthaler, F. W. (2000). "The Hydrophobic Topographies of Amylose and Its Blue Iodine Complex." Starch - Stärke, 52(1), 1-8.
[38] Tsuchiya, M., and Kanekiyo, Y. (2011). "Colorimetric Sensing of Polyhydroxy Compounds by an Inclusion Complex of Boronic Acid-Modified Amylose." Analyst, 136(12), 2521-2526.
[39] Kanekiyo, Y., Naganawa, R., and Tao, H. (2003). "pH-Responsive Molecularly Imprinted Polymers." Angewandte Chemie International Edition, 42(26), 3014-3016.
[40] Cao, X., Shen, F., Zhang, M., Bie, J., Liu, X., Luo, Y., Guo, J., and Sun, C. (2014). "Facile Synthesis of Chitosan-Capped ZnS Quantum Dots as an Eco-Friendly Fluorescence Sensor for Rapid Determination of Bisphenol A in Water and Plastic Samples." RSC Advances, 4(32), 16597-16606.
[41] Dehghani, M. H., Ghadermazi, M., Bhatnagar, A., Sadighara, P., Jahed-Khaniki, G., Heibati, B., and McKay, G. (2016). "Adsorptive Removal of Endocrine Disrupting Bisphenol A from Aqueous Solution Using Chitosan." Journal of Environmental Chemical Engineering, 4(3), 2647-2655.
[42] Karrat, A., and Amine, A. (2022). "Paper-Based Analytical Device for One-Step Detection of Bisphenol-A Using Functionalized Chitosan." Chemosensors, 10(11), 450.
[43] Olmo, M. D., Zafra, A., Gonzalez-casado, A., and Vilchez, J. L. (1998). "The Use of β-Cyclodextrin Inclusion Complexes for the Analysis of Bisphenol A Residues in Water by Spectrofluorimetry." International Journal of Environmental Analytical Chemistry, 69(1), 99-110.
[44] Wang, X., Zeng, H., Wei, Y., and Lin, J.-M. (2006). "A Reversible Fluorescence Sensor Based on Insoluble β-Cyclodextrin Polymer for Direct Determination of Bisphenol A (BPA)." Sensors and Actuators B: Chemical, 114(2), 565-572.
[45] Kono, H., Onishi, K., and Nakamura, T. (2013). "Characterization and Bisphenol A Adsorption Capacity of β-Cyclodextrin–Carboxymethylcellulose-Based Hydrogels." Carbohydrate Polymers, 98(1), 784-792.
[46] Alam, A. U., and Deen, M. J. (2020). "Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes." Analytical Chemistry, 92(7), 5532-5539.
[47] Kadam, V. V., Balakrishnan, R. M., and Ettiyappan, J. P. (2021). "Fluorometric Detection of Bisphenol A Using β-Cyclodextrin-Functionalized ZnO QDs." Environmental Science and Pollution Research, 28(10), 11882-11892.
[48] Saha, A., Das, S., and Devi, P. S. (2022). "N-Doped Fluorescent Carbon Nanosheets as a Label-Free Platform for Sensing Bisphenol Derivatives." ACS Applied Nano Materials, 5(4), 4908-4920.
[49] Pang, Y., Cao, Y., Han, J., Xia, Y., He, Z., Sun, L., and Liang, J. (2022). "A Novel Fluorescence Sensor Based on Zn Porphyrin Mofs for the Detection of Bisphenol A with Highly Selectivity and Sensitivity." Food Control, 132, 108551.
[50] Chen, Y., Li, W., Li, J., Zhuo, S., Jiao, S., Wang, S., Sun, J., Li, Q., and Zheng, T. (2021). "Stable Three-Dimensional Porous Silicon-Carbon-Gold Composite Film for Enrichment and Directly Electrochemical Detection of Bisphenol A." Microchemical Journal, 171, 106881.
[51] Dickey, F. H. (1949). "The Preparation of Specific Adsorbents." Proceedings of the National Academy of Sciences, 35(5), 227-229.
[52] Wulff, G. (1972). "The Use of Polymers with Enzyme-Analogous Structures for the Resolution of Racemates." Angrew. Chem. Internat. Edit., 11(4), 341.
[53] Lofgreen, J. E., and Ozin, G. A. (2014). "Controlling Morphology and Porosity to Improve Performance of Molecularly Imprinted Sol–Gel Silica." Chemical Society Reviews, 43(3), 911-933.
[54] Azizi, A., and Bottaro, C. S. (2020). "A Critical Review of Molecularly Imprinted Polymers for the Analysis of Organic Pollutants in Environmental Water Samples." Journal of Chromatography A, 1614, 460603.
[55] Hamed, E. M., and Li, S. F. Y. (2022). "Molecularly Imprinted Polymers-Based Sensors for Bisphenol-A: Recent Developments and Applications in Environmental, Food and Biomedical Analysis." Trends in Environmental Analytical Chemistry, 35, e00167.
[56] Ndunda, E. N. (2020). "Molecularly Imprinted Polymers—a Closer Look at the Control Polymer Used in Determining the Imprinting Effect: A Mini Review." Journal of Molecular Recognition, 33(11), e2855.
[57] Kim, Y., Jeon, J. B., and Chang, J. Y. (2012). "CdSe Quantum Dot-Encapsulated Molecularly Imprinted Mesoporous Silica Particles for Fluorescent Sensing of Bisphenol A." Journal of Materials Chemistry, 22(45), 24075-24080.
[58] Qiu, C., Xing, Y., Yang, W., Zhou, Z., Wang, Y., Liu, H., and Xu, W. (2015). "Surface Molecular Imprinting on Hybrid SiO2-Coated CdTe Nanocrystals for Selective Optosensing of Bisphenol A and Its Optimal Design." Applied Surface Science, 345, 405-417.
[59] Zhang, Z., Chen, L., Yang, F., and Li, J. (2014). "Uniform Core–Shell Molecularly Imprinted Polymers: A Correlation Study between Shell Thickness and Binding Capacity." RSC Advances, 4(60), 31507-31514.
[60] Gong, Z., Li, S., Ma, J., and Zhang, X. (2016). "Self-Flocculated Powdered Activated Carbon with Different Oxidation Methods and Their Influence on Adsorption Behavior." Journal of Hazardous Materials, 304, 222-232.
[61] Sk, A. R., Shahadat, M., Basu, S., Shaikh, Z. A., and Ali, S. W. (2019). "Polyaniline/Carbon Nanotube-Graphite Modified Electrode Sensor for Detection of Bisphenol A." Ionics, 25(6), 2857-2864.
[62] Rojas, R., Harris, N. K., Piotrowska, K., and Kohn, J. (2009). "Evaluation of Automated Synthesis for Chain and Step-Growth Polymerizations: Can Robots Replace the Chemists?" Journal of Polymer Science Part A: Polymer Chemistry, 47(1), 49-58.
[63] Corrigan, N., Jung, K., Moad, G., Hawker, C. J., Matyjaszewski, K., and Boyer, C. (2020). "Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications." Progress in Polymer Science, 111, 101311.
[64] Braunecker, W. A., and Matyjaszewski, K. (2007). "Controlled/Living Radical Polymerization: Features, Developments, and Perspectives." Progress in Polymer Science, 32(1), 93-146.
[65] Webster, O. W. (1991). "Living Polymerization Methods." Science, 251(4996), 887-893.
[66] Truong, N. P., Jones, G. R., Bradford, K. G. E., Konkolewicz, D., and Anastasaki, A. (2021). "A Comparison of RAFT and ATRP Methods for Controlled Radical Polymerization." Nature Reviews Chemistry, 5(12), 859-869.
[67] Lorandi, F., Fantin, M., and Matyjaszewski, K. (2022). "Atom Transfer Radical Polymerization: A Mechanistic Perspective." Journal of the American Chemical Society, 144(34), 15413-15430.
[68] Konkolewicz, D., Wang, Y., Zhong, M., Krys, P., Isse, A. A., Gennaro, A., and Matyjaszewski, K. (2013). "Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms." Macromolecules, 46(22), 8749-8772.
[69] Dworakowska, S., Lorandi, F., Gorczyński, A., and Matyjaszewski, K. (2022). "Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges." Advanced Science, 9(19), 2106076.
[70] Hu, X., Zhu, N., Fang, Z., Li, Z., and Guo, K. (2016). "Continuous Flow Copper-Mediated Reversible Deactivation Radical Polymerizations." European Polymer Journal, 80, 177-185.
[71] Rosen, B. M., and Percec, V. (2009). "Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization." Chemical Reviews, 109(11), 5069-5119.
[72] Konkolewicz, D., Krys, P., Góis, J. R., Mendonça, P. V., Zhong, M., Wang, Y., Gennaro, A., Isse, A. A., Fantin, M., and Matyjaszewski, K. (2014). "Aqueous RDRP in the Presence of Cu0: The Exceptional Activity of CuІ Confirms the SARA ATRP Mechanism." Macromolecules, 47(2), 560-570.
[73] Sun, M., Szczepaniak, G., Dadashi-Silab, S., Lin, T.-C., Kowalewski, T., and Matyjaszewski, K. "Cu-Catalyzed Atom Transfer Radical Polymerization: The Effect of Cocatalysts." Macromolecular Chemistry and Physics, 2200347.
[74] Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., and Kumar, R. (2013). "Surface Modification of Inorganic Nanoparticles for Development of Organic–Inorganic Nanocomposites—a Review." Progress in Polymer Science, 38(8), 1232-1261.
[75] Hansson, S., Trouillet, V., Tischer, T., Goldmann, A. S., Carlmark, A., Barner-Kowollik, C., and Malmström, E. (2013). "Grafting Efficiency of Synthetic Polymers onto Biomaterials: A Comparative Study of Grafting-from Versus Grafting-To." Biomacromolecules, 14(1), 64-74.
[76] Tsujii, Y., Ohno, K., Yamamoto, S., Goto, A., and Fukuda, T. (2006). "Structure and Properties of High-Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization." Surface-Initiated Polymerization I, 1-45.
[77] Pino-Ramos, V. H., Ramos-Ballesteros, A., López-Saucedo, F., López-Barriguete, J. E., Varca, G. H. C., and Bucio, E. (2016). "Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials." Topics in Current Chemistry, 374(5), 63.
[78] Minko, S. (2008). "Grafting on Solid Surfaces: “Grafting to” and “Grafting from” Methods." Polymer Surfaces and Interfaces: Characterization, Modification and Applications, 215-234.
[79] Zdyrko, B., and Luzinov, I. (2011). "Polymer Brushes by the “Grafting to” Method." Macromolecular Rapid Communications, 32(12), 859-869.
[80] Dong, A., Ye, X., Chen, J., Kang, Y., Gordon, T., Kikkawa, J. M., and Murray, C. B. (2011). "A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals." Journal of the American Chemical Society, 133(4), 998-1006.
[81] Wang, W., Aldeek, F., Ji, X., Zeng, B., and Mattoussi, H. (2014). "A Multifunctional Amphiphilic Polymer as a Platform for Surface-Functionalizing Metallic and Other Inorganic Nanostructures." Faraday Discussions, 175(0), 137-151.
[82] Wang, W., Ji, X., Kapur, A., and Mattoussi, H. (2016). "Surface-Functionalizing Metal, Metal Oxide and Semiconductor Nanocrystals with a Multi-Coordinating Polymer Platform." MRS Advances, 1(56), 3741-3747.
[83] Gupta, A., Mehta, S. K., Kunal, K., Mukhopadhyay, K., and Singh, S. (2022). "10 - Quantum Dots as Promising Nanomaterials in Agriculture." Agricultural Nanobiotechnology, 243-296.
[84] Chand, S., Thakur, N., Katyal, S. C., Barman, P. B., Sharma, V., and Sharma, P. (2017). "Recent Developments on the Synthesis, Structural and Optical Properties of Chalcogenide Quantum Dots." Solar Energy Materials and Solar Cells, 168, 183-200.
[85] Andersen, K. E., Fong, C. Y., and Pickett, W. E. (2002). "Quantum Confinement in CdSe nanocrystallites." Journal of Non-Crystalline Solids, 299-302, 1105-1110.
[86] Chukwuocha, E. O., Onyeaju, M. C., and Harry, T. S. T. (2012). "Theoretical Studies on the Effect of Confinement on Quantum Dots Using the Brus Equation." World Journal of Condensed Matter Physics, Vol.02No.02, 5.
[87] Nordell, K. J., Boatman, E. M., and Lisensky, G. C. (2005). "A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals." Journal of Chemical Education, 82(11), 1697.
[88] Cui, L., He, X.-P., and Chen, G.-R. (2015). "Recent Progress in Quantum Dot Based Sensors." RSC Advances, 5(34), 26644-26653.
[89] Gould, T. J., Bewersdorf, J., and Hess, S. T. (2008). "A Quantitative Comparison of the Photophysical Properties of Selected Quantum Dots and Organic Fluorophores." Zeitschrift für Physikalische Chemie, 222(5-6), 833-849.
[90] Ma, H., Jin, Z., Zhang, Z., Li, G., and Ma, G. (2012). "Exciton Spin Relaxation in Colloidal CdSe Quantum Dots at Room Temperature." The Journal of Physical Chemistry A, 116(9), 2018-2023.
[91] Mijatovic, D., Eijkel, J. C. T., and van den Berg, A. (2005). "Technologies for Nanofluidic Systems: Top-Down Vs. Bottom-up—A Review." Lab on a Chip, 5(5), 492-500.
[92] Sumanth Kumar, D., Jai Kumar, B., and Mahesh, H. M. (2018). "Chapter 3 - Quantum Nanostructures (QDs): An Overview." Synthesis of Inorganic Nanomaterials, 59-88.
[93] Schraml-Marth, M., Walther, K. L., Wokaun, A., Handy, B. E., and Baiker, A. (1992). "Porous Silica Gels and TiO2/SiO2 Mixed Oxides Prepared via the Sol-Gel Process: Characterization by Spectroscopic Techniques." Journal of Non-Crystalline Solids, 143, 93-111.
[94] Arachchige, I. U., and Brock, S. L. (2007). "Sol–Gel Methods for the Assembly of Metal Chalcogenide Quantum Dots." Accounts of Chemical Research, 40(9), 801-809.
[95] Gaeeni, M. R., Tohidian, M., and Majles-Ara, M. (2014). "Green Synthesis of CdSe Colloidal Nanocrystals with Strong Green Emission by the Sol–Gel Method." Industrial & Engineering Chemistry Research, 53(18), 7598-7603.
[96] Mishra, S. K., Srivastava, R. K., Prakash, S. G., Yadav, R. S., and Panday, A. C. (2011). "Structural, Photoconductivity and Photoluminescence Characterization of Cadmium Sulfide Quantum Dots Prepared by a Co-Precipitation Method." Electronic Materials Letters, 7(1), 31-38.
[97] Singh, R., Bajpai, A. K., and Shrivastava, A. K. (2019). "Structural, Morphological and Optical Properties of CdSe(S) Quantum Dots." AIP Conference Proceedings, 2100(1), 020009.
[98] Feng, S. H., and Li, G. H. (2017). "Chapter 4 - Hydrothermal and Solvothermal Syntheses." Modern Inorganic Synthetic Chemistry (Second Edition), 73-104.
[99] Liu, X., Ma, C., Yan, Y., Yao, G., Tang, Y., Huo, P., Shi, W., and Yan, Y. (2013). "Hydrothermal Synthesis of CdSe Quantum Dots and Their Photocatalytic Activity on Degradation of Cefalexin." Industrial & Engineering Chemistry Research, 52(43), 15015-15023.
[100] de Mello Donegá, C., Liljeroth, P., and Vanmaekelbergh, D. (2005). "Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals." Small, 1(12), 1152-1162.
[101] Yu, W. W., Qu, L., Guo, W., and Peng, X. (2003). "Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals." Chemistry of Materials, 15(14), 2854-2860.
[102] Peng, Z. A., and Peng, X. (2001). "Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor." Journal of the American Chemical Society, 123(1), 183-184.
[103] Liu, X., and Luo, Y. (2014). "Surface Modifications Technology of Quantum Dots Based Biosensors and Their Medical Applications." Chinese Journal of Analytical Chemistry, 42(7), 1061-1069.
[104] Karakoti, A. S., Shukla, R., Shanker, R., and Singh, S. (2015). "Surface Functionalization of Quantum Dots for Biological Applications." Advances in Colloid and Interface Science, 215, 28-45.
[105] Hu, L., Zhang, C., Zeng, G., Chen, G., Wan, J., Guo, Z., Wu, H., Yu, Z., Zhou, Y., and Liu, J. (2016). "Metal-Based Quantum Dots: Synthesis, Surface Modification, Transport and Fate in Aquatic Environments and Toxicity to Microorganisms." RSC Advances, 6(82), 78595-78610.
[106] Sperling, R. A., and Parak, W. J. (2010). "Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1915), 1333-1383.
[107] Vasudevan, D., Gaddam, R. R., Trinchi, A., and Cole, I. (2015). "Core–Shell Quantum Dots: Properties and Applications." Journal of Alloys and Compounds, 636, 395-404.
[108] Rabouw, F. T., and de Mello Donega, C. (2016). "Excited-State Dynamics in Colloidal Semiconductor Nanocrystals." Topics in Current Chemistry, 374(5), 58.
[109] Silvi, S., Baroncini, M., La Rosa, M., and Credi, A. (2017). "Interfacing Luminescent Quantum Dots with Functional Molecules for Optical Sensing Applications." Photoactive Semiconductor Nanocrystal Quantum Dots: Fundamentals and Applications, 61-87.
[110] Peng, X., Schlamp, M. C., Kadavanich, A. V., and Alivisatos, A. P. (1997). "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility." Journal of the American Chemical Society, 119(30), 7019-7029.
[111] Wolcott, A., Gerion, D., Visconte, M., Sun, J., Schwartzberg, A., Chen, S., and Zhang, J. Z. (2006). "Silica-Coated CdTe Quantum Dots Functionalized with Thiols for Bioconjugation to IgG Proteins." The Journal of Physical Chemistry B, 110(11), 5779-5789.
[112] Gerion, D., Herberg, J., Bok, R., Gjersing, E., Ramon, E., Maxwell, R., Kurhanewicz, J., Budinger, T. F., Gray, J. W., Shuman, M. A., and Chen, F. F. (2007). "Paramagnetic Silica-Coated Nanocrystals as an Advanced MRI Contrast Agent." The Journal of Physical Chemistry C, 111(34), 12542-12551.
[113] Tomczak, N., Liu, R., and Vancso, J. G. (2013). "Polymer-Coated Quantum Dots." Nanoscale, 5(24), 12018-12032.
[114] Amir-Hassan, Z., Mohammad-Reza, N., Mirhosseini, M. M., Fereshteh, M., Mohammad, E., and Ramin, G. (2018). "Bioimaging Based on Antibody-Conjugated Amphiphilic Polymer-Core@Shell Quantum Dots." Emerging Materials Research, 7(4), 209-217.
[115] Le Goas, M., Saber, J., Bolívar, S. G., Rabanel, J.-M., Awogni, J.-M., Boffito, D. C., and Banquy, X. (2022). "(in)Stability of Ligands at the Surface of Inorganic Nanoparticles: A Forgotten Question in Nanomedicine?" Nano Today, 45, 101516.
[116] Zhou, J., Liu, Y., Tang, J., and Tang, W. (2017). "Surface Ligands Engineering of Semiconductor Quantum Dots for Chemosensory and Biological Applications." Materials Today, 20(7), 360-376.
[117] Shrestha, A., Batmunkh, M., Tricoli, A., Qiao, S. Z., and Dai, S. (2019). "Near-Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Post-Synthesis Ligand Exchange, and Applications in Solar Cells." Angewandte Chemie International Edition, 58(16), 5202-5224.
[118] Freeman, R., and Willner, I. (2012). "Optical Molecular Sensing with Semiconductor Quantum Dots (QDs)." Chemical Society Reviews, 41(10), 4067-4085.
[119] Rossi, L. M., Fiorio, J. L., Garcia, M. A. S., and Ferraz, C. P. (2018). "The Role and Fate of Capping Ligands in Colloidally Prepared Metal Nanoparticle Catalysts." Dalton Transactions, 47(17), 5889-5915.
[120] Dai, M.-Q., and Yung, L.-Y. L. (2013). "Ethylenediamine-Assisted Ligand Exchange and Phase Transfer of Oleophilic Quantum Dots: Stripping of Original Ligands and Preservation of Photoluminescence." Chemistry of Materials, 25(11), 2193-2201.
[121] Uyeda, H. T., Medintz, I. L., Jaiswal, J. K., Simon, S. M., and Mattoussi, H. (2005). "Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores." Journal of the American Chemical Society, 127(11), 3870-3878.
[122] Silva, F. O., Carvalho, M. S., Mendonça, R., Macedo, W. A. A., Balzuweit, K., Reiss, P., and Schiavon, M. A. (2012). "Effect of Surface Ligands on the Optical Properties of Aqueous Soluble CdTe Quantum Dots." Nanoscale Research Letters, 7(1), 536.
[123] Cichosz, S., Masek, A., and Zaborski, M. (2018). "Polymer-Based Sensors: A Review." Polymer Testing, 67, 342-348.
[124] Mukherjee, S., Bhattacharyya, S., Ghosh, K., Pal, S., Halder, A., Naseri, M., Mohammadniaei, M., Sarkar, S., Ghosh, A., Sun, Y., and Bhattacharyya, N. (2021). "Sensory Development for Heavy Metal Detection: A Review on Translation from Conventional Analysis to Field-Portable Sensor." Trends in Food Science & Technology, 109, 674-689.
[125] Ragavan, K. V., Rastogi, N. K., and Thakur, M. S. (2013). "Sensors and Biosensors for Analysis of Bisphenol-A." TrAC Trends in Analytical Chemistry, 52, 248-260.
[126] Leepheng, P., Limthin, D., Onlaor, K., Tunhoo, B., Phromyothin, D., and Thiwawong, T. (2021). "Modification of Selective Electrode Based on Magnetic Molecularly Imprinted Polymer for Bisphenol A Determination." Japanese Journal of Applied Physics, 60(SC), SCCJ03.
[127] Jebril, S., Cubillana-Aguilera, L., Palacios-Santander, J. M., and Dridi, C. (2021). "A Novel Electrochemical Sensor Modified with Green Gold Sononanoparticles and Carbon Black Nanocomposite for Bisphenol A Detection." Materials Science and Engineering: B, 264, 114951.
[128] Xu, J., Shang, M., Liu, J., Chen, X., and Cao, Y. (2021). "Simultaneous Self-Assembly of Molecularly Imprinted Magnetic Nanoparticles to Construct a Magnetically Responsive Photonic Crystals Sensor for Bisphenol A." Sensors and Actuators B: Chemical, 338, 129858.
[129] Xu, Z., Wang, R., Chen, Y., Chen, M., Zhang, J., Cheng, Y., Xu, J., and Chen, W. (2021). "Three-Dimensional Assembly and Disassembly of Fe3O4-Decorated Porous Carbon Nanocomposite with Enhanced Transversal Relaxation for Magnetic Resonance Sensing of Bisphenol A." Microchimica Acta, 188(3), 90.
[130] Ren, H., An, Z., and Jang, C.-H. (2019). "Liquid Crystal-Based Aptamer Sensor for Sensitive Detection of Bisphenol A." Microchemical Journal, 146, 1064-1071.
[131] Shin, Y.-H., Teresa Gutierrez-Wing, M., and Choi, J.-W. (2021). "Review—Recent Progress in Portable Fluorescence Sensors." Journal of The Electrochemical Society, 168(1), 017502.
[132] Skorjanc, T., Shetty, D., and Valant, M. (2021). "Covalent Organic Polymers and Frameworks for Fluorescence-Based Sensors." ACS Sensors, 6(4), 1461-1481.
[133] Berezin, M. Y., and Achilefu, S. (2010). "Fluorescence Lifetime Measurements and Biological Imaging." Chemical Reviews, 110(5), 2641-2684.
[134] Popescu, G. (2019). "Fluorescence." Principles of Biophotonics, Volume 2, 5-1-5-8.
[135] Basabe-Desmonts, L., Reinhoudt, D. N., and Crego-Calama, M. (2007). "Design of Fluorescent Materials for Chemical Sensing." Chemical Society Reviews, 36(6), 993-1017.
[136] Mátyus, L., Szöllősi, J., and Jenei, A. (2006). "Steady-State Fluorescence Quenching Applications for Studying Protein Structure and Dynamics." Journal of Photochemistry and Photobiology B: Biology, 83(3), 223-236.
[137] Lakowicz, J. R. (1983). "Quenching of Fluorescence." Principles of Fluorescence Spectroscopy, 257-301.
[138] Gehlen, M. H. (2020). "The Centenary of the Stern-Volmer Equation of Fluorescence Quenching: From the Single Line Plot to the SV Quenching Map." Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 42, 100338.
[139] Douglas, P., and Eaton, K. (2002). "Response Characteristics of Thin Film Oxygen Sensors, Pt and Pd Octaethylporphyrins in Polymer Films." Sensors and Actuators B: Chemical, 82(2), 200-208.
[140] Wu, X., Zhang, Z., Li, J., You, H., Li, Y., and Chen, L. (2015). "Molecularly Imprinted Polymers-Coated Gold Nanoclusters for Fluorescent Detection of Bisphenol A." Sensors and Actuators B: Chemical, 211, 507-514.
[141] Molaei, M. J. (2020). "Principles, Mechanisms, and Application of Carbon Quantum Dots in Sensors: A Review." Analytical Methods, 12(10), 1266-1287.
[142] Tanwar, A. S., Meher, N., Adil, L. R., and Iyer, P. K. (2020). "Stepwise Elucidation of Fluorescence Based Sensing Mechanisms Considering Picric Acid as a Model Analyte." Analyst, 145(14), 4753-4767.
[143] Silva, A. P. (1996). "Recent Evolution of Luminescent Photoinduced Electron Transfer Sensors. A Review." Analyst, 121(12), 1759-1762.
[144] Clapp, A. R., Medintz, I. L., and Mattoussi, H. (2006). "Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores." ChemPhysChem, 7(1), 47-57.
[145] Wang, W., Zhai, F., Xu, F., and Jia, M. (2022). "Enzyme-Free Amplified and One-Step Rapid Detection of Bisphenol A Using Dual-Terminal Labeled Split Aptamer Probes." Microchemical Journal, 183, 107977.
[146] de Silva, A. P., Moody, T. S., and Wright, G. D. (2009). "Fluorescent PET (Photoinduced Electron Transfer) Sensors as Potent Analytical Tools." Analyst, 134(12), 2385-2393.
[147] Li, Y., Xu, J., Wang, L., Huang, Y., Guo, J., Cao, X., Shen, F., Luo, Y., and Sun, C. (2016). "Aptamer-Based Fluorescent Detection of Bisphenol A Using Nonconjugated Gold Nanoparticles and CdTe Quantum Dots." Sensors and Actuators B: Chemical, 222, 815-822.
[148] Rodrigues, S. S. M., Ribeiro, D. S. M., Soares, J. X., Passos, M. L. C., Saraiva, M. L. M. F. S., and Santos, J. L. M. (2017). "Application of Nanocrystalline CdTe Quantum Dots in Chemical Analysis: Implementation of Chemo-Sensing Schemes Based on Analyte-Triggered Photoluminescence Modulation." Coordination Chemistry Reviews, 330, 127-143.
[149] Wang, L., Cao, H.-X., Pan, C.-G., He, Y.-S., Liu, H.-F., Zhou, L.-H., Li, C.-Q., and Liang, G.-X. (2018). "A Fluorometric Aptasensor for Bisphenol A Based on the Inner Filter Effect of Gold Nanoparticles on the Fluorescence of Nitrogen-Doped Carbon Dots." Microchimica Acta, 186(1), 28.
[150] Lee, E.-H., Lim, H. J., Lee, S.-D., and Son, A. (2017). "Highly Sensitive Detection of Bisphenol A by Nanoaptamer Assay with Truncated Aptamer." ACS Applied Materials & Interfaces, 9(17), 14889-14898.
[151] Lee, E.-H., Lee, S. K., Kim, M. J., and Lee, S.-W. (2019). "Simple and Rapid Detection of Bisphenol A Using a Gold Nanoparticle-Based Colorimetric Aptasensor." Food Chemistry, 287, 205-213.
[152] Guo, Z., Tang, J., Li, M., Liu, Y., Yang, H., and Kong, J. (2019). "An Ultrasensitive Fluorescent Aptasensor Based on Truncated Aptamer and AGET ATRP for the Detection of Bisphenol A." Analytical and Bioanalytical Chemistry, 411(29), 7807-7815.
[153] Ren, S., Li, Q., Li, Y., Li, S., Han, T., Wang, J., Peng, Y., Bai, J., Ning, B., and Gao, Z. (2019). "Upconversion Fluorescent Aptasensor for Bisphenol A and 17β-Estradiol Based on a Nanohybrid Composed of Black Phosphorus and Gold, and Making Use of Signal Amplification via DNA Tetrahedrons." Microchimica Acta, 186(3), 151.
[154] Huang, H., Li, Y., Liu, J., Tong, J., and Su, X. (2015). "Detection of Bisphenol A in Food Packaging Based on Fluorescent Conjugated Polymer PPESO3 and Enzyme System." Food Chemistry, 185, 233-238.
[155] Zhang, X., Yang, S., Chen, W., Li, Y., Wei, Y., and Luo, A. (2019). "Magnetic Fluorescence Molecularly Imprinted Polymer Based on FeOx/ZnS Nanocomposites for Highly Selective Sensing of Bisphenol A." Polymers, 11(7), 1210.
[156] Wang, H., Jiang, S., Xu, Z., zhou, S., and Xu, L. (2022). "A Novel Fluorescent Sensor Based on a Magnetic Covalent Organic Framework-Supported, Carbon Dot-Embedded Molecularly Imprinted Composite for the Specific Optosensing of Bisphenol A in Foods." Sensors and Actuators B: Chemical, 361, 131729.
[1] Mahmoud, W. E. (2012). "Functionalized Me-Capped CdSe Quantum Dots Based Luminescence Probe for Detection of Ba2+ Ions." Sensors and Actuators B: Chemical, 164(1), 76-81.
[2] Dai, M.-Q., and Yung, L.-Y. L. (2013). "Ethylenediamine-Assisted Ligand Exchange and Phase Transfer of Oleophilic Quantum Dots: Stripping of Original Ligands and Preservation of Photoluminescence." Chemistry of Materials, 25(11), 2193-2201.
[3] Shunsuke, K., Chiyo, Y., Masami, K., and Yoshio, O. (2008). "Synthesis and Chiral Recognition of Novel Regioselectively Substituted Amylose Derivatives." Chemistry Letters, 37(5), 558-559.
[4] Mazzocchetti, L., Tsoufis, T., Rudolf, P., and Loos, K. (2014). "Enzymatic Synthesis of Amylose Brushes Revisited: Details from X-Ray Photoelectron Spectroscopy and Spectroscopic Ellipsometry." Macromolecular Bioscience, 14(2), 186-194.
[5] Nguyen, T. P. T., Barroca-Aubry, N., Dragoe, D., Mazerat, S., Brisset, F., Herry, J.-M., and Roger, P. (2019). "Facile and Efficient Cu(0)-Mediated Radical Polymerisation of Pentafluorophenyl Methacrylate Grafting from Poly(Ethylene Terephthalate) Film." European Polymer Journal, 116, 497-507.
[6] Williams, A. T. R., Winfield, S. A., and Miller, J. N. (1983). "Relative Fluorescence Quantum Yields Using a Computer-Controlled Luminescence Spectrometer." Analyst, 108(1290), 1067-1071.
[7] Long, G. L., and Winefordner, J. D. (1983). "Limit of Detection a Closer Look at the Iupac Definition." Analytical Chemistry, 55(07), 712A-724A.
[8] Chang, S. H., Roger, P., Salmi-Mani, H., and Chang, S. M. (2023). "Development of an Aptamer-Mimetic Sensing Probe Based on Functionalized Amylose-CdSe Quantum Dots for Bisphenol-A Detection." Sensors and Actuators B: Chemical, 390, 133998.
[9] Hamed, E. M., and Li, S. F. Y. (2022). "Molecularly Imprinted Polymers-Based Sensors for Bisphenol-A: Recent Developments and Applications in Environmental, Food and Biomedical Analysis." Trends in Environmental Analytical Chemistry, 35, e00167.
[10] Chang, S. H., Salmi-Mani, H., Roger, P., and Chang, S. M. (2023). "A microgel of CdSe Quantum Dots for Fluorescent Bisphenol-A Detection" Microchimica Acta, 190,326.
[1] Brus, L. (1986). "Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory." The Journal of Physical Chemistry, 90(12), 2555-2560.
[2] Lin, W., Fritz, K., Guerin, G., Bardajee, G. R., Hinds, S., Sukhovatkin, V., Sargent, E. H., Scholes, G. D., and Winnik, M. A. (2008). "Highly Luminescent Lead Sulfide Nanocrystals in Organic Solvents and Water through Ligand Exchange with Poly(Acrylic Acid)." Langmuir, 24(15), 8215-8219.
[3] Wuister, S. F., de Mello Donegá, C., and Meijerink, A. (2004). "Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of Cdte and Cdse Quantum Dots." The Journal of Physical Chemistry B, 108(45), 17393-17397.
[4] Taylor, A. B., and Zijlstra, P. (2017). "Single-Molecule Plasmon Sensing: Current Status and Future Prospects." ACS Sensors, 2(8), 1103-1122.
[5] Chang, S. H., Salmi-Mani, H., Roger, P., and Chang, S. M. (2023). "A Microgel of CdSe Quantum Dots for Fluorescent Bisphenol A Detection." Microchimica Acta, 190, 326.
[6] Chang, S. H., Roger, P., Salmi-Mani, H., and Chang, S.M. (2023). "Development of an Aptamer-Mimetic Sensing Probe Based on Functionalized Amylose-CdSe Quantum Dots for Bisphenol-A Detection." Sensors and Actuators B: Chemical, 390, 133998.
[7] Dumoulin, Y., Alex, S., Szabo, P., Cartilier, L., and Mateescu, M. A. (1998). "Cross-Linked Amylose as Matrix for Drug Controlled Release. X-Ray and FT-IR Structural Analysis." Carbohydrate Polymers, 37(4), 361-370.
[8] McManis, G. E. (1970). "Infrared Absorption Spectra of Vinyl Esters of Carboxylic Acids." Applied Spectroscopy, 24(5), 495-498.
[9] Wang, Z., Sun, K., Liang, C., Wu, L., Niu, Z., and Gao, J. (2019). "Synergistic Chemisorbing and Electronic Effects for Efficient CO2 Reduction Using Cysteamine-Functionalized Gold Nanoparticles." ACS Applied Energy Materials, 2(1), 192-195.
[10] Sakellari, G. I., Hondow, N., and Gardiner, P. H. E. (2020). "Factors Influencing the Surface Functionalization of Citrate Stabilized Gold Nanoparticles with Cysteamine, 3-Mercaptopropionic Acid or L-Selenocystine for Sensor Applications." Chemosensors, 8(3), 80.
[11] Kaneko, Y., and Kadokawa, J.-i. (2005). "Vine-Twining Polymerization: A New Preparation Method for Well-Defined Supramolecules Composed of Amylose and Synthetic Polymers." The Chemical Record, 5(1), 36-46.
[12] Shunsuke, K., Chiyo, Y., Masami, K., and Yoshio, O. (2008). "Synthesis and Chiral Recognition of Novel Regioselectively Substituted Amylose Derivatives." Chemistry Letters, 37(5), 558-559.
[13] Wang, S., Ji, X., Chen, S., Zhang, C., Wang, Y., Lin, H., and Zhao, L. (2022). "Study of Double-Bonded Carboxymethyl Chitosan/Cysteamine-Modified Chondroitin Sulfate Composite Dressing for Hemostatic Application." European Polymer Journal, 162, 110875.
[14] Leontowich, A. F. G., Calver, C. F., Dasog, M., and Scott, R. W. J. (2010). "Surface Properties of Water-Soluble Glycine-Cysteamine-Protected Gold Clusters." Langmuir, 26(2), 1285-1290.
[15] Madhu, S., Evans, H. A., Doan-Nguyen, V. V. T., Labram, J. G., Wu, G., Chabinyc, M. L., Seshadri, R., and Wudl, F. (2016). "Infinite Polyiodide Chains in the Pyrroloperylene–Iodine Complex: Insights into the Starch–Iodine and Perylene–Iodine Complexes." Angewandte Chemie International Edition, 55(28), 8032-8035.
[16] Hossain, K. M. Z., Calabrese, V., da Silva, M. A., Bryant, S. J., Schmitt, J., Scott, J. L., and Edler, K. J. (2020). "Cationic Surfactants as a Non-Covalent Linker for Oxidised Cellulose Nanofibrils and Starch-Based Hydrogels." Carbohydrate Polymers, 233, 115816.
[17] Yu, X., Houtman, C., and Atalla, R. H. (1996). "The Complex of Amylose and Iodine." Carbohydrate Research, 292, 129-141.
[18] Tao, P., Li, Y., Siegel, R. W., and Schadler, L. S. (2013). "Transparent Luminescent Silicone Nanocomposites Filled with Bimodal Pdms-Brush-Grafted CdSe Quantum Dots." Journal of Materials Chemistry C, 1(1), 86-94.
[19] Tansakul, C., Lilie, E., Walter, E. D., Rivera, F., III, Wolcott, A., Zhang, J. Z., Millhauser, G. L., and Braslau, R. (2010). "Distance-Dependent Fluorescence Quenching and Binding of CdSe Quantum Dots by Functionalized Nitroxide Radicals." The Journal of Physical Chemistry C, 114(17), 7793-7805.
[20] Cao, X., Shen, F., Zhang, M., Bie, J., Liu, X., Luo, Y., Guo, J., and Sun, C. (2014). "Facile Synthesis of Chitosan-Capped ZnS Quantum Dots as an Eco-Friendly Fluorescence Sensor for Rapid Determination of Bisphenol A in Water and Plastic Samples." RSC Advances, 4(32), 16597-16606.
[21] Kim, Y., Jeon, J. B., and Chang, J. Y. (2012). "CdSe Quantum Dot-Encapsulated Molecularly Imprinted Mesoporous Silica Particles for Fluorescent Sensing of Bisphenol A." Journal of Materials Chemistry, 22(45), 24075-24080.
[22] Regueiro, J., and Wenzl, T. (2015). "Development and Validation of a Stable-Isotope Dilution Liquid Chromatography–Tandem Mass Spectrometry Method for the Determination of Bisphenols in Ready-Made Meals." Journal of Chromatography A, 1414, 110-121.
[23] Ribeiro, A. C., Rocha, Â., Soares, R. M. D., Fonseca, L. P., and da Silveira, N. P. (2017). "Synthesis and Characterization of Acetylated Amylose and Development of Inclusion Complexes with Rifampicin." Carbohydrate Polymers, 157, 267-274.
[24] Kannan, N., and Sundaram, M. M. (2001). "Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons—A Comparative Study." Dyes and Pigments, 51(1), 25-40.
[25] Douglas, P., and Eaton, K. (2002). "Response Characteristics of Thin Film Oxygen Sensors, Pt and Pd Octaethylporphyrins in Polymer Films." Sensors and Actuators B: Chemical, 82(2), 200-208.
[26] Lorenc-Grabowska, E. (2016). "Effect of Micropore Size Distribution on Phenol Adsorption on Steam Activated Carbons." Adsorption, 22(4), 599-607.
[27] Kong, L., Perez-Santos, D. M., and Ziegler, G. R. (2019). "Effect of Guest Structure on Amylose-Guest Inclusion Complexation." Food Hydrocolloids, 97, 105188.
[28] Godet, M. C., Tran, V., Colonna, P., Buleon, A., and Pezolet, M. (1995). "Inclusion/Exclusion of Fatty Acids in Amylose Complexes as a Function of the Fatty Acid Chain Length." International Journal of Biological Macromolecules, 17(6), 405-408.
[29] Tufvesson, F., Wahlgren, M., and Eliasson, A.-C. (2003). "Formation of Amylose-Lipid Complexes and Effects of Temperature Treatment. Part 2. Fatty Acids." Starch - Stärke, 55(3-4), 138-149.
[30] Martins, J., and Melo, E. (2001). "Molecular Mechanism of Lateral Diffusion of py10-PC and Free Pyrene in Fluid Dmpc Bilayers." Biophysical Journal, 80(2), 832-840.
[31] Houle, W. A., Brown, H. M., and Griffith, O. H. (1979). "Photoelectric Properties and Detection of the Aromatic Carcinogens Benza[a]Pyrene and Dimethylbenzanthracene." Proc Natl Acad Sci U S A, 76(9), 4180-4184.
[32] Liu, G., Li, X., and Campos, L. C. (2017). "Role of the Functional Groups in the Adsorption of Bisphenol A onto Activated Carbon: Thermal Modification and Mechanism." Journal of Water Supply: Research and Technology-Aqua, 66(2), 105-115.
[33] Hu, J.-Y., and Aizawa, T. (2003). "Quantitative Structure–Activity Relationships for Estrogen Receptor Binding Affinity of Phenolic Chemicals." Water Research, 37(6), 1213-1222.
[34] Hu, J., Jin, X., Kunikane, S., Terao, Y., and Aizawa, T. (2006). "Transformation of Pyrene in Aqueous Chlorination in the Presence and Absence of Bromide Ion:  Kinetics, Products, and Their Aryl Hydrocarbon Receptor-Mediated Activities." Environmental Science & Technology, 40(2), 487-493.
[35] Chakraborty, D., Lischka, H., and Hase, W. L. (2020). "Dynamics of Pyrene-Dimer Association and Ensuing Pyrene-Dimer Dissociation." The Journal of Physical Chemistry A, 124(43), 8907-8917.
[36] King, N. J., and Brown, A. (2022). "Intermolecular Interactions of Pyrene and Its Oxides in Toluene Solution." The Journal of Physical Chemistry A, 126(30), 4931-4940.
[37] Putseys, J. A., Lamberts, L., and Delcour, J. A. (2010). "Amylose-Inclusion Complexes: Formation, Identity and Physico-Chemical Properties." Journal of Cereal Science, 51(3), 238-247.
[38] Yeo, L., Thompson, D. B., and Peterson, D. G. (2016). "Inclusion Complexation of Flavour Compounds by Dispersed High-Amylose Maize Starch (Hams) in an Aqueous Model System." Food Chemistry, 199, 393-400.
[39] Morales, M., de la Fuente, M., and Martín-Folgar, R. (2020). "BPA and its Analogues (BPS and BPF) Modify the Expression of Genes Involved in the Endocrine Pathway and Apoptosis and a Multi Drug Resistance Gene of the Aquatic Midge Chironomus Riparius (Diptera)." Environmental Pollution, 265, 114806.
[40] Pan, L., Pan, L., Wang, T., Wang, Z., Wu, Z., Li, Y., Zuo, C., and Liu, Y. (2017). "Extraction of Bisphenol F Three Isomers from Water with 1-Octyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid." The Canadian Journal of Chemical Engineering, 95(3), 516-523.
[41] Hyde, A. M., Zultanski, S. L., Waldman, J. H., Zhong, Y. L., Shevlin, M., and Peng, F. (2017). "General Principles and Strategies for Salting-out Informed by the Hofmeister Series." Organic Process Research & Development, 21(9), 1355-1370.
[42] Nishida, K., Morita, H., Katayama, Y., Inoue, R., Kanaya, T., Sadakane, K., and Seto, H. (2017). "Salting-out and Salting-in Effects of Amphiphilic Salt on Cloud Point of Aqueous Methylcellulose." Process Biochemistry, 59, 52-57.
[43] Shaaban, H., Mostafa, A., Alhajri, W., Almubarak, L., and AlKhalifah, K. (2018). "Development and Validation of an Eco-Friendly SPE-HPLC-MS Method for Simultaneous Determination of Selected Parabens and Bisphenol A in Personal Care Products: Evaluation of the Greenness Profile of the Developed Method." Journal of Liquid Chromatography & Related Technologies, 41(10), 621-628.
[44] Dang, A., Sieng, M., Pesek, J. J., and Matyska, M. T. (2015). "Determination of Bisphenol A in Receipts and Carbon Paper by HPLC-UV." Journal of Liquid Chromatography & Related Technologies, 38(4), 438-442.
[45] San Vicente, B., Navarro Villoslada, F., and Moreno-Bondi, M. C. (2004). "Continuous Solid-Phase Extraction and Preconcentration of Bisphenol A in Aqueous Samples Using Molecularly Imprinted Columns." Analytical and Bioanalytical Chemistry, 380(1), 115-122.
[46] Brar, A. S., and Goyal, A. K. (2008). "Characterization and Optimization of Poly(Glycidyl Methacrylate-Co-Styrene) Synthesized by Atom Transfer Radical Polymerization." European Polymer Journal, 44(12), 4082-4091.
[47] Groves, P. (2017). "Diffusion Ordered Spectroscopy (DOSY) as Applied to Polymers." Polymer Chemistry, 8(44), 6700-6708.
[48] Stagi, L., Malfatti, L., Caboi, F., and Innocenzi, P. (2021). "Thermal Induced Polymerization of L-Lysine Forms Branched Particles with Blue Fluorescence." Macromolecular Chemistry and Physics, 222(20), 2100242.
[49] Wagner, J. P., McDonald, D. C., II, and Duncan, M. A. (2018). "Spectroscopy of Proton Coordination with Ethylenediamine." The Journal of Physical Chemistry A, 122(23), 5168-5176.
[50] Jiang, Y., Wang, J., Wu, J., and Zhang, Y. (2021). "Preparation of High-Performance Natural Rubber/Carbon Black/Molybdenum Disulfide Composite by Using the Premixture of Epoxidized Natural Rubber and Cysteine-Modified Molybdenum Disulfide." Polymer Bulletin, 78(3), 1213-1230.
[51] Gao, F., Ma, S., Xiao, X., Hu, Y., Zhao, D., and He, Z. (2017). "Sensing Tyrosine Enantiomers by Using Chiral CdSe/CdS Quantum Dots Capped with N-Acetyl-L-Cysteine." Talanta, 163, 102-110.
[52] Koleva, B., Spiteller, M., and Kolev, T. (2010). "Polarized Spectroscopic Elucidation of N-Acetyl-L-Cysteine, L-Cysteine, L-Cystine, L-Ascorbic Acid and a Tool for Their Determination in Solid Mixtures." Amino Acids, 38(1), 295-304.
[53] Liang, G.-X., Gu, M.-M., Zhang, J.-R., and Zhu, J.-J. (2009). "Preparation and Bioapplication of High-Quality, Water-Soluble, Biocompatible, and near-Infrared-Emitting Cdsete Alloyed Quantum Dots." Nanotechnology, 20(41), 415103.
[54] Joumaa, N., Lansalot, M., Théretz, A., Elaissari, A., Sukhanova, A., Artemyev, M., Nabiev, I., and Cohen, J. H. M. (2006). "Synthesis of Quantum Dot-Tagged Submicrometer Polystyrene Particles by Miniemulsion Polymerization." Langmuir, 22(4), 1810-1816.
[55] Wang, Q., and Seo, D. K. (2009). "Preparation of Photostable Quantum Dot-Polystyrene Microbeads through Covalent Organosilane Coupling of CdSe@ZnS Quantum Dots." Journal of Materials Science, 44(3), 816-820.
[56] Kaur, G., and Tripathi, S. K. (2014). "Size Tuning of Maa Capped CdSe and CdSe/CdS Quantum Dots and Their Stability in Different pH Environments." Materials Chemistry and Physics, 143(2), 514-523.
[57] Sambe, H., Hoshina, K., Hosoya, K., and Haginaka, J. (2006). "Simultaneous Determination of Bisphenol A and its Halogenated Derivatives in River Water by Combination of Isotope Imprinting and Liquid Chromatography–Mass Spectrometry." Journal of Chromatography A, 1134(1), 16-23.
[58] Chinedu, S. N., Nwinyi, O. C., Oluwadamisi, A. Y., and Eze, V. N. (2011). "Assessment of Water Quality in Canaanland, Ota, Southwest Nigeria." Agriculture and Biology Journal of North America, 2(4), 577-583.
[59] Hamed, E. M., and Li, S. F. Y. (2022). "Molecularly Imprinted Polymers-Based Sensors for Bisphenol-A: Recent Developments and Applications in Environmental, Food and Biomedical Analysis." Trends in Environmental Analytical Chemistry, 35, e00167.
[60] Kang, T., Um, K., Park, J., Chang, H., Lee, D. C., Kim, C.-K., and Lee, K. (2016). "Minimizing the Fluorescence Quenching Caused by Uncontrolled Aggregation of CdSe/CdS Core/Shell Quantum Dots for Biosensor Applications." Sensors and Actuators B: Chemical, 222, 871-878.
[61] Mátyus, L., Szöllősi, J., and Jenei, A. (2006). "Steady-State Fluorescence Quenching Applications for Studying Protein Structure and Dynamics." Journal of Photochemistry and Photobiology B: Biology, 83(3), 223-236.
[62] Lorenc Grabowska, E. (2016). "Effect of Micropore Size Distribution on Phenol Adsorption on Steam Activated Carbons." Adsorption, 22(4), 599-607.
[63] Wang, H., Zhao, Y. P., Zhu, Y. J., and Shen, J. Y. (2016). "Spectral Properties of Bisphenol F Based on Quantum Chemical Calculations." Vacuum, 128, 198-204.
[64] Nasri, R., Bidel, L. P. R., Rugani, N., Perrier, V., Carrière, F., Dubreucq, E., and Jay-Allemand, C. (2019). "Inhibition of CpLIP2 Lipase Hydrolytic Activity by Four Flavonols (Galangin, Kaempferol, Quercetin, Myricetin) Compared to Orlistat and Their Binding Mechanisms Studied by Quenching of Fluorescence." Molecules, 24(16), 2888.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *