|
參考文獻 1. Cameron, A.; Macdowall, J. D., The self heating of commercial powdered activated carbons. J. Chem. Technol. Biotechnol. 1972, 22 (9), 1007-1018. 2. Bai, H.-L.; Lin, Y.-C., 中孔洞吸附材料應用於空氣污染控制. 界面科學會誌. 3. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712. 4. Zhou, J.-H.; He, J.-P.; Ji, Y.-J.; Dang, W.-J.; Liu, X.-L.; Zhao, G.-W.; Zhang, C.-X.; Zhao, J.-S.; Fu, Q.-B.; Hu, H.-P., CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation. Electrochim. Acta 2007, 52 (14), 4691-4695. 5. Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci. 2003, 8 (1), 109-126. 6. Greaves, T. L.; Drummond, C. J., Ionic liquids as amphiphile self-assembly media. Chem. Soc. Rev. 2008, 37 (8), 1709-1726. 7. Anastas, P. T.; Zimmerman, J. B., Peer reviewed: Design through the 12 principles of green engineering. Environ. Sci. Technol. 2003, 37 (5), 94A-101A. 8. Chen, H.-R.; Shi, J.-L.; Hua, Z.-L.; Ruan, M.-L.; Yan, D.-S., Parameter control in the synthesis of ordered porous zirconium oxide. Mater. Lett. 2001, 51 (3), 187-193. 9. Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J., Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 2003, 15 (11), 2280-2286. 10. Sung, P.-H.; Chang, S.-m., Effect of surface acidity on proton conductivity of sulfated and phosphated zirconia. 236th ACS Annual Meeting, Aug. 17-Aug. 21, Philadelphia, PA. USA 2008. 11. Chen, C.-L.; Cheng, S.; Lin, H.-P.; Wong, S.-T.; Mou, C.-Y., Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve. Appl. Catal., A 2001, 215 (1–2), 21-30. 12. Tanabe, K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J., A new hypothesis regarding the surface acidity of binary metal oxides. Bull. Chem. Soc. Jpn. 1974, 47 (5), 1064-1066. 13. Vishwanathan, V.; Roh, H.-S.; Kim, J.-W.; Jun, K.-W., Surface properties and catalytic activity of TiO2–ZrO2 mixed oxides in dehydration of methanol to dimethyl ether. Catal. Lett. 2004, 96 (1-2), 23-28. 14. Chen, D.; Cao, L.; Hanley, T. L.; Caruso, R. A., Facile synthesis of monodisperse mesoporous zirconium titanium oxide microspheres with varying compositions and high surface areas for heavy metal ion sequestration. Adv. Funct. Mater. 2012, 22 (9), 1966-1971. 15. NATIONS, I. F. I. A. F. A. A. O. O. T. U., Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. 2001. 16. 行政院環保署, 空氣污染防制法施行細則. 2003. 17. Tanabe, K.; Hölderich, W. F., Industrial application of solid acid–base catalysts. Appl. Catal., A 1999, 181 (2), 399-434. 18. Patel, S. M.; Chudasama, U. V.; Ganeshpure, P. A., Metal() phosphates as solid acid catalysts for selective cyclodehydration of 1,-diols. Green Chem. 2001, 3 (3), 143-145. 19. Debe, M. K., Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486 (7401), 43-51. 20. Shibata, K.; Kiyoura, T.; Kitagawa, J.; Sumiyoshi, T.; Tanabe, K., Acidic properties of binary metal oxides. Bull. Chem. Soc. Jpn. 1973, 46 (10), 2985-2988. 21. Miller, J. B.; Ko, E. I., Control of mixed oxide textural and acidic properties by the sol-gel method. Catal. Today 1997, 35 (3), 269-292. 22. Kondo, J. N.; Nishitani, R.; Yoda, E.; Yokoi, T.; Tatsumi, T.; Domen, K., A comparative IR characterization of acidic sites on HY zeolite by pyridine and CO probes with silica-alumina and [gamma]-alumina references. Phys. Chem. Chem. Phys. 2010, 12 (37), 11576-11586. 23. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295 (5564), 2418-2421. 24. Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99 (8), 2071-2084. 25. Plechkova, N. V.; Seddon, K. R., Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37 (1), 123-150. 26. Zhou, Y.; Schattka, J. H.; Antonietti, M., Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol−gel nanocasting technique. Nano Lett. 2004, 4 (3), 477-481. 27. Zhou, Y.; Antonietti, M., Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J. Am. Chem. Soc. 2003, 125 (49), 14960-14961. 28. Yoo, K.; Choi, H.; Dionysiou, D. D., Ionic liquid assisted preparation of nanostructured TiO2 particles. Chem. Commun. 2004, (17), 2000-2001. 29. Farag, H.; Hegab, K.; Zein El Abedin, S., Preparation and characterization of zirconia and mixed zirconia/titania in ionic liquids. J. Mater. Sci. 2011, 46 (10), 3330-3336. 30. Ward, A.; Pujari, A.; Costanzo, L.; Masters, A.; Maschmeyer, T., Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia. Nanoscale Res. Lett. 2011, 6 (1), 1-8. 31. Chang, S.-M.; Lee, C.-Y., A salt-assisted approach for the pore-size-tailoring of the ionic-liquid-templated TiO2 photocatalysts exhibiting high activity. Appl. Catal., B 2013, 132–133, 219-228. 32. Ciesla, U.; Schacht, S.; Stucky, G. D.; Unger, K. K.; Schüth, F., Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angewandte Chemie International Edition in English 1996, 35 (5), 541-543. 33. Huang, L.; Li, Q., Enhanced acidity and thermal stability of mesoporous materials with post-treatment with phosphoric acid. Chem. Lett. 1999, 28 (8), 829-830. 34. Elghniji, K.; Soro, J.; Rossignol, S.; Ksibi, M., A simple route for the preparation of P-modified TiO2: Effect of phosphorus on thermal stability and photocatalytic activity. J. Taiwan Inst. Chem. Eng. 2012, 43 (1), 132-139. 35. Goswami, P.; Ganguli, J., Synthesis, characterization and photocatalytic reactions of phosphated mesoporous titania. Bull. Mater. Sci. 2012, 35 (5), 889-896. 36. Parida, K. M.; Pattnayak, P. K., Studies on PO3−4/ZrO2: I. Effect of H3PO4 on textural and acidic properties of ZrO2. J. Colloid Interface Sci. 1996, 182 (2), 381-387. 37. Jing, L.; Qin, X.; Luan, Y.; Qu, Y.; Xie, M., Synthesis of efficient TiO2-based photocatalysts by phosphate surface modification and the activity-enhanced mechanisms. Appl. Surf. Sci. 2012, 258 (8), 3340-3349. 38. Smitha, V. K.; Suja, H.; Jacob, J.; Sugunan, S., Surface properties and catalytic activity of phosphate modified zirconia. Indian J. Chem., Sect. A 2003, 42A, 300-304. 39. Mérida-Robles, J. M.; Olivera-Pastor, P.; Jiménez-López, A.; Rodríguez-Castellón, E., Preparation and properties of fluorinated alumina-pillared α-zirconium phosphate materials. J. Phys. Chem. 1996, 100 (35), 14726-14735. 40. Reddy, B. M.; Khan, A., Recent advances on TiO2‐ZrO2 mixed oxides as catalysts and catalyst supports. Catal. Rev. 2005, 47 (2), 257-296. 41. Manrı́quez, M. E.; López, T.; Gómez, R.; Navarrete, J., Preparation of TiO2–ZrO2 mixed oxides with controlled acid–basic properties. J. Mol. Catal. A: Chem. 2004, 220 (2), 229-237. 42. Kristiani, A.; Jenie, S. N. A.; Laksmono, J.; Tursiloadi, S., Novel sulfated TiO2-ZrO2 mixed oxides prepared by modified sol-gel method. IJAEST 2010. 43. Li, K.-T.; Wang, C.-K.; Wang, I.; Wang, C.-M., Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl. Catal., A 2011, 392 (1–2), 180-183. 44. Li, K.-T.; Wang, I.; Wu, J.-C., Surface and catalytic properties of TiO2–ZrO2 mixed oxides. Catal. Surv. Asia. 2012, 16 (4), 240-248. 45. Chang, S.-m.; Hou, C.-y.; Lo, P.-h.; Chang, C.-t., Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Appl. Catal., B 2009, 90 (1–2), 233-241. 46. Ramadan, A. R.; Yacoub, N.; Amin, H.; Ragai, J., The effect of phosphate anions on surface and acidic properties of TiO2 hydrolyzed from titanium ethoxide. Colloids Surf., A 2009, 352 (1–3), 118-125. 47. 經濟部工業局, 高科技產業揮發性廢氣處理技術及操作處理成本. 2002. 48. 楊昇府, 以Cu/Ce 觸媒應用於氣相氨氧化及其反應動力之研究. 國立中山大學環境工程研究所 碩士論文 2002. 49. He, J.; Chen, J.; Ren, L.; Wang, Y.; Teng, C.; Hong, M.; Zhao, J.; Jiang, B., Fabrication of monodisperse porous zirconia microspheres and their phosphorylation for Friedel–Crafts alkylation of indoles. ACS APPL MATER INTER 2014, 6 (4), 2718-2725. 50. Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P., Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2011, 6 (1), 27. 51. Muhammad, S.; Hussain, S.; Waseem, M.; Naeem, A.; Hussain, J.; Jan, M. T., Surface charge properties of zirconium dioxide. Iran J Sci Technol A 2012, 4, 481-486. 52. Sausville, E. A.; Peisach, J.; Horwitz, S. B., Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry 1978, 17 (14), 2740-2746. 53. Wu, P.; Zeng, Y. Z.; Wang, C. M., Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods. Biomaterials 2004, 25 (6), 1123-1130. 54. Lónyi, F.; Valyon, J., On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater. 2001, 47 (2–3), 293-301. 55. Duffy, J. A.; Ingram, M. D., Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses. J. Inorg. Nucl. Chem. 1975, 37 (5), 1203-1206. 56. Uchiyama, S.; Isobe, T.; Matsushita, S.; Nakajima, K.; Hara, M.; Nakajima, A., Preparation of porous spherical ZrO2–SiO2 composite particles using templating and its solid acidity by H2SO4 treatment. J. Mater. Sci. 2012, 47 (1), 341-349. 57. Ikawa, H.; Yamada, T.; Kojima, K.; Matsumoto, S., X-ray photoelectron spectroscopy study of high- and low-temperature forms of zirconium titanate. J. Am. Ceram. Soc. 1991, 74 (6), 1459-1462. 58. DiNovo, S. T.; Mezey, E. J., Adsorbent regeneration and gas separation utilizing microwave heating. Google Patents: 1982. 59. Barzetti, T.; Selli, E.; Moscotti, D.; Forni, L., Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J. Chem. Soc., Faraday Trans. 1996, 92 (8), 1401-1407. 60. Yashima, T.; Hara, N., Infrared study of cation-exchanged mordenites and Y faujasites adsorbed with ammonia and pyridine. J. Catal. 1972, 27 (2), 329-333.
|