帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:林亞銳
作者(英文):Lin, Ya-Rui
論文名稱(中文):製備多孔性磷酸化TixZr1-xO2之固態酸吸附材與其特性鑑定
論文名稱(英文):Fabrication and characterization of porous phosphated TixZr1-xO2 solid acids
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:董瑞安
吳紀聖
陳郁文
口試委員(英文):Doong, Ruey-An
Wu, Chi-Sheng
Chen, Yu-Wen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0151727
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:68
中文關鍵詞:固態酸磷酸化鈦鋯混合金屬氧化物表面酸性氨氣升溫脫附
外文關鍵詞:Solid acidPhosphatedTiO2-ZrO2Surface acidityNH3-TPD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
本研究以離子液體輔助水熱法合成多孔性磷酸化TixZr1-xO2固態酸吸附材,並利用N2吸脫附, XRD, TEM, ESCA, ICP-MS, pyridine-FTIR 以及NH3-TPD進行材料微結構,化學組成與表面酸性的鑑定。結果顯示0.4P-Ti0.5Zr0.5O2樣品具有最高的比表面積278 m2/g,元素的莫耳比P/Ti/Zr = 2:1:1,磷酸為表面酸性的主要來源,此外Ti4+與Zr4+離子不同的氧配位數也為材料帶來額外的酸性位置,樣品表面酸性型態以Bronsted acid為主,P5+的高電負度分別在表面創造以P-OH與Ti-OH/Zr-OH為主的弱與中弱酸Bronsted acid,總酸性位置數量可高達1.27 mmol/g。由於Ti4+、Zr4+、與P5+在結構當中能在高溫鍛燒的情況下互相抑制彼此晶相的形成,材料在650 C以下仍可維持高比表面積,NH3氣重複吸脫附的結果顯示材料由於脫水反應,NH3脫附量僅在第一次循環後降低10%,在後續的循環過程中即維持穩定,顯示材料未來在應用上的高重複使用性。
In this study, phosphated TixZr1-xO2 solid acids with porous structures were prepared by using an ionic-liquid-assisted hydrothermal method. The microstructures, chemical compositions, and surface acidity of resulting materials were characterized by N2 adsorption/desorption, XRD, TEM, ESCA, ICP-MS, pyridine-FTIR and NH3-TPD. The 0.4P-Ti0.5Zr0.5O2 powders, in which the P/Ti/Zr = 2:1:1, exhibited the highest surface area of 278 m2/g. Phosphate species dominates surface acidity. In addition, the different oxygen coordinations between the Ti4+ and the Zr4+ ions bring extra surface acid sites. Brönsted acids are the primary type of the acids. High elecronagativity of the P5+ ions leads to weak and medium Brönsted acidity on the P-OH and Ti-OH/Zr-OH sites, respectively. The total amount of acidic sites is 1.27 mmol/g. There are little amounts of Lewis acid sites on the surface until 650 C. The Ti4+, Zr4+ and P5+ ions in the matrix inhibit the grain growth during thermal treatment and maintain the high surface areas. The sample exhibited high thermal stability during repeated NH3 adsorption and desorption cycles. The quantity of the desorbed NH3 molecule declined only by 10% due to dehydroxylation after the first cycle and maintained constant in the following cycles, indicating the high reusability of the material in the applications.
主目錄
摘要 I
Abstract II
誌謝 III
主目錄 IV
表目錄 VI
圖目錄 VIII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 固態酸簡介 4
2.1.1 發展背景與環境汙染防治應用 4
2.1.2 表面酸的種類及二元金屬氧化物酸性來源 6
2.2 多孔性磷酸化TiO2-ZrO2混合金屬氧化物材料性質 7
2.2.1 離子液體對於材料孔洞結構的影響 7
van der waals force 11
2.2.2 磷酸對於材料性質之影響 12
2.2.3 TiO2-ZrO2比例對於材料性質之影響 17
2.2.4 不同鍛燒溫度對於表面物種型態影響 20
2.3 氨氣的物化特性、來源與危害與常見的氨氣處理技術 24
第三章 研究方法 27
3.1 實驗架構 27
3.2 藥品 28
3.3 磷酸化TiO2-ZrO2合成方法 28
3.4 材料特性鑑定分析 30
3.4.1 熱重分析儀(Thermogravimetric Analyzer) 30
3.4.2 X光粉末繞射儀(Powder X-ray Diffraction) 31
3.4.3 等溫氮氣吸脫附分析(N2 adsorption-desorption) 31
3.4.4 高解析穿透式電子顯微鏡(High Resolution Transmission Electron Microscope) 32
3.4.5 感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 32
3.4.6 化學分析電子能譜儀(Electron Spectroscopy for Chemical Analysis) 32
3.4.7 氨氣程式升溫脫附分析(NH3-TPD) 33
3.4.8 Pyridine-FTIR 34
第四章 結果與討論 36
4.1 微結構 36
4.1.1 不同磷酸含量對微結構的影響 36
4.1.2 不同鈦鋯金屬混和比例對微結構的影響 43
4.2 表面酸性 46
4.2.1 不同磷酸含量對表面酸性的影響 46
4.2.2 不同鈦鋯金屬混和比例對表面酸性的影響 50
4.3 鍛燒對於0.4P-Ti0.5Zr0.5O2樣品微結構及表面酸性的影響 52
4.3.1 微結構 52
4.3.2 表面酸性與表面化學組成 54
4.3.3 重複吸附與表面酸性種類 55
第五章 總結 59
參考文獻 60
附錄一 66
參考文獻
1. Cameron, A.; Macdowall, J. D., The self heating of commercial powdered activated carbons. J. Chem. Technol. Biotechnol. 1972, 22 (9), 1007-1018.
2. Bai, H.-L.; Lin, Y.-C., 中孔洞吸附材料應用於空氣污染控制. 界面科學會誌.
3. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.
4. Zhou, J.-H.; He, J.-P.; Ji, Y.-J.; Dang, W.-J.; Liu, X.-L.; Zhao, G.-W.; Zhang, C.-X.; Zhao, J.-S.; Fu, Q.-B.; Hu, H.-P., CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation. Electrochim. Acta 2007, 52 (14), 4691-4695.
5. Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci. 2003, 8 (1), 109-126.
6. Greaves, T. L.; Drummond, C. J., Ionic liquids as amphiphile self-assembly media. Chem. Soc. Rev. 2008, 37 (8), 1709-1726.
7. Anastas, P. T.; Zimmerman, J. B., Peer reviewed: Design through the 12 principles of green engineering. Environ. Sci. Technol. 2003, 37 (5), 94A-101A.
8. Chen, H.-R.; Shi, J.-L.; Hua, Z.-L.; Ruan, M.-L.; Yan, D.-S., Parameter control in the synthesis of ordered porous zirconium oxide. Mater. Lett. 2001, 51 (3), 187-193.
9. Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J., Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 2003, 15 (11), 2280-2286.
10. Sung, P.-H.; Chang, S.-m., Effect of surface acidity on proton conductivity of sulfated and phosphated zirconia. 236th ACS Annual Meeting, Aug. 17-Aug. 21, Philadelphia, PA. USA 2008.
11. Chen, C.-L.; Cheng, S.; Lin, H.-P.; Wong, S.-T.; Mou, C.-Y., Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve. Appl. Catal., A 2001, 215 (1–2), 21-30.
12. Tanabe, K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J., A new hypothesis regarding the surface acidity of binary metal oxides. Bull. Chem. Soc. Jpn. 1974, 47 (5), 1064-1066.
13. Vishwanathan, V.; Roh, H.-S.; Kim, J.-W.; Jun, K.-W., Surface properties and catalytic activity of TiO2–ZrO2 mixed oxides in dehydration of methanol to dimethyl ether. Catal. Lett. 2004, 96 (1-2), 23-28.
14. Chen, D.; Cao, L.; Hanley, T. L.; Caruso, R. A., Facile synthesis of monodisperse mesoporous zirconium titanium oxide microspheres with varying compositions and high surface areas for heavy metal ion sequestration. Adv. Funct. Mater. 2012, 22 (9), 1966-1971.
15. NATIONS, I. F. I. A. F. A. A. O. O. T. U., Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. 2001.
16. 行政院環保署, 空氣污染防制法施行細則. 2003.
17. Tanabe, K.; Hölderich, W. F., Industrial application of solid acid–base catalysts. Appl. Catal., A 1999, 181 (2), 399-434.
18. Patel, S. M.; Chudasama, U. V.; Ganeshpure, P. A., Metal() phosphates as solid acid catalysts for selective cyclodehydration of 1,-diols. Green Chem. 2001, 3 (3), 143-145.
19. Debe, M. K., Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486 (7401), 43-51.
20. Shibata, K.; Kiyoura, T.; Kitagawa, J.; Sumiyoshi, T.; Tanabe, K., Acidic properties of binary metal oxides. Bull. Chem. Soc. Jpn. 1973, 46 (10), 2985-2988.
21. Miller, J. B.; Ko, E. I., Control of mixed oxide textural and acidic properties by the sol-gel method. Catal. Today 1997, 35 (3), 269-292.
22. Kondo, J. N.; Nishitani, R.; Yoda, E.; Yokoi, T.; Tatsumi, T.; Domen, K., A comparative IR characterization of acidic sites on HY zeolite by pyridine and CO probes with silica-alumina and [gamma]-alumina references. Phys. Chem. Chem. Phys. 2010, 12 (37), 11576-11586.
23. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295 (5564), 2418-2421.
24. Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99 (8), 2071-2084.
25. Plechkova, N. V.; Seddon, K. R., Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37 (1), 123-150.
26. Zhou, Y.; Schattka, J. H.; Antonietti, M., Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol−gel nanocasting technique. Nano Lett. 2004, 4 (3), 477-481.
27. Zhou, Y.; Antonietti, M., Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J. Am. Chem. Soc. 2003, 125 (49), 14960-14961.
28. Yoo, K.; Choi, H.; Dionysiou, D. D., Ionic liquid assisted preparation of nanostructured TiO2 particles. Chem. Commun. 2004, (17), 2000-2001.
29. Farag, H.; Hegab, K.; Zein El Abedin, S., Preparation and characterization of zirconia and mixed zirconia/titania in ionic liquids. J. Mater. Sci. 2011, 46 (10), 3330-3336.
30. Ward, A.; Pujari, A.; Costanzo, L.; Masters, A.; Maschmeyer, T., Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia. Nanoscale Res. Lett. 2011, 6 (1), 1-8.
31. Chang, S.-M.; Lee, C.-Y., A salt-assisted approach for the pore-size-tailoring of the ionic-liquid-templated TiO2 photocatalysts exhibiting high activity. Appl. Catal., B 2013, 132–133, 219-228.
32. Ciesla, U.; Schacht, S.; Stucky, G. D.; Unger, K. K.; Schüth, F., Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angewandte Chemie International Edition in English 1996, 35 (5), 541-543.
33. Huang, L.; Li, Q., Enhanced acidity and thermal stability of mesoporous materials with post-treatment with phosphoric acid. Chem. Lett. 1999, 28 (8), 829-830.
34. Elghniji, K.; Soro, J.; Rossignol, S.; Ksibi, M., A simple route for the preparation of P-modified TiO2: Effect of phosphorus on thermal stability and photocatalytic activity. J. Taiwan Inst. Chem. Eng. 2012, 43 (1), 132-139.
35. Goswami, P.; Ganguli, J., Synthesis, characterization and photocatalytic reactions of phosphated mesoporous titania. Bull. Mater. Sci. 2012, 35 (5), 889-896.
36. Parida, K. M.; Pattnayak, P. K., Studies on PO3−4/ZrO2: I. Effect of H3PO4 on textural and acidic properties of ZrO2. J. Colloid Interface Sci. 1996, 182 (2), 381-387.
37. Jing, L.; Qin, X.; Luan, Y.; Qu, Y.; Xie, M., Synthesis of efficient TiO2-based photocatalysts by phosphate surface modification and the activity-enhanced mechanisms. Appl. Surf. Sci. 2012, 258 (8), 3340-3349.
38. Smitha, V. K.; Suja, H.; Jacob, J.; Sugunan, S., Surface properties and catalytic activity of phosphate modified zirconia. Indian J. Chem., Sect. A 2003, 42A, 300-304.
39. Mérida-Robles, J. M.; Olivera-Pastor, P.; Jiménez-López, A.; Rodríguez-Castellón, E., Preparation and properties of fluorinated alumina-pillared α-zirconium phosphate materials. J. Phys. Chem. 1996, 100 (35), 14726-14735.
40. Reddy, B. M.; Khan, A., Recent advances on TiO2‐ZrO2 mixed oxides as catalysts and catalyst supports. Catal. Rev. 2005, 47 (2), 257-296.
41. Manrı́quez, M. E.; López, T.; Gómez, R.; Navarrete, J., Preparation of TiO2–ZrO2 mixed oxides with controlled acid–basic properties. J. Mol. Catal. A: Chem. 2004, 220 (2), 229-237.
42. Kristiani, A.; Jenie, S. N. A.; Laksmono, J.; Tursiloadi, S., Novel sulfated TiO2-ZrO2 mixed oxides prepared by modified sol-gel method. IJAEST 2010.
43. Li, K.-T.; Wang, C.-K.; Wang, I.; Wang, C.-M., Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl. Catal., A 2011, 392 (1–2), 180-183.
44. Li, K.-T.; Wang, I.; Wu, J.-C., Surface and catalytic properties of TiO2–ZrO2 mixed oxides. Catal. Surv. Asia. 2012, 16 (4), 240-248.
45. Chang, S.-m.; Hou, C.-y.; Lo, P.-h.; Chang, C.-t., Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Appl. Catal., B 2009, 90 (1–2), 233-241.
46. Ramadan, A. R.; Yacoub, N.; Amin, H.; Ragai, J., The effect of phosphate anions on surface and acidic properties of TiO2 hydrolyzed from titanium ethoxide. Colloids Surf., A 2009, 352 (1–3), 118-125.
47. 經濟部工業局, 高科技產業揮發性廢氣處理技術及操作處理成本. 2002.
48. 楊昇府, 以Cu/Ce 觸媒應用於氣相氨氧化及其反應動力之研究. 國立中山大學環境工程研究所 碩士論文 2002.
49. He, J.; Chen, J.; Ren, L.; Wang, Y.; Teng, C.; Hong, M.; Zhao, J.; Jiang, B., Fabrication of monodisperse porous zirconia microspheres and their phosphorylation for Friedel–Crafts alkylation of indoles. ACS APPL MATER INTER 2014, 6 (4), 2718-2725.
50. Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P., Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2011, 6 (1), 27.
51. Muhammad, S.; Hussain, S.; Waseem, M.; Naeem, A.; Hussain, J.; Jan, M. T., Surface charge properties of zirconium dioxide. Iran J Sci Technol A 2012, 4, 481-486.
52. Sausville, E. A.; Peisach, J.; Horwitz, S. B., Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry 1978, 17 (14), 2740-2746.
53. Wu, P.; Zeng, Y. Z.; Wang, C. M., Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods. Biomaterials 2004, 25 (6), 1123-1130.
54. Lónyi, F.; Valyon, J., On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater. 2001, 47 (2–3), 293-301.
55. Duffy, J. A.; Ingram, M. D., Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses. J. Inorg. Nucl. Chem. 1975, 37 (5), 1203-1206.
56. Uchiyama, S.; Isobe, T.; Matsushita, S.; Nakajima, K.; Hara, M.; Nakajima, A., Preparation of porous spherical ZrO2–SiO2 composite particles using templating and its solid acidity by H2SO4 treatment. J. Mater. Sci. 2012, 47 (1), 341-349.
57. Ikawa, H.; Yamada, T.; Kojima, K.; Matsumoto, S., X-ray photoelectron spectroscopy study of high- and low-temperature forms of zirconium titanate. J. Am. Ceram. Soc. 1991, 74 (6), 1459-1462.
58. DiNovo, S. T.; Mezey, E. J., Adsorbent regeneration and gas separation utilizing microwave heating. Google Patents: 1982.
59. Barzetti, T.; Selli, E.; Moscotti, D.; Forni, L., Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J. Chem. Soc., Faraday Trans. 1996, 92 (8), 1401-1407.
60. Yashima, T.; Hara, N., Infrared study of cation-exchanged mordenites and Y faujasites adsorbed with ammonia and pyridine. J. Catal. 1972, 27 (2), 329-333.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *