帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:曾楷勛
作者(英文):Tseng, Kai-Hsun
論文名稱(中文):高吸附與辨識能力之有機無機複合拓印高分子製備與鑑定
論文名稱(英文):Fabrication and Characterizations of Imprinted Organic-Inorganic Hybrids Exhibiting High Adsorption and Recognition Capability
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:董瑞安
陳三元
張淑閔
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0151723
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:分子拓印辨識能力有機無機複合吸附效能環境荷爾蒙
外文關鍵詞:Molecular imprintingRecognition capabilityOrganic-inorganic hybridAdsorption capacityEndocrine disrupting chemicals
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本研究利用有機物聚合法及溶膠-凝膠法製備以雙酚A為模板的有機無機複合拓印高分子,藉由無機物的剛性結構提高對模板分子的拓印程度,並以有機物的膨潤性增進標的物於高分子內的傳輸效能,以達到高吸附量與辨識能力的目的。研究顯示當交聯劑四乙氧基矽烷(Tetraethyl orthosilicate)與3-(甲基丙烯醯氧)丙基三甲氧基矽烷(3-(Methacryloyloxy)propyl trimethoxysilane) 莫耳比例為15:10時拓印高分子有最佳質地及吸附量。TGA分析指出材料中有機物與無機物間的重量比例為1:1,模板分子萃取率近100%。等溫吸附數據及Langmuir模式模擬結果得出拓印高分子最大吸附量可高達65.8 mg/g。由29Si及13C NMR圖譜分析可知雙酚A模板於合成過程中以Si-O-C共價鍵結方式拓印於高分子內,完整的孔洞結構大幅提升高分子對雙酚A的吸附量,使拓印因子(α)有2.5優異表現,此外拓印高分子對結構類似物質Phenol、Bis(2-hydroxyphenyl)methane、4-tert-butylphenol及17β- Estradiol的選擇性因子(β)為78.2、11.5、2.3和趨近於無限大,在HPLC層析實驗中對phenol及4-tert-butylphenol得到分離因子為31.8及3.9,重複實驗證實拓印高分子的無機孔洞擁有良好的穩定性,在5次的吸附及萃取循環中相對標準偏差為3.9%。整體結果顯示有機無機複合拓印高分子對雙酚A具高吸附量與選擇性,可作為分離、層析或感測元件的先進材料。
Abstract
In this study, a BPA-imprinted organic-inorganic hybrid, which exhibits high adsorption and recognition capability, was successfully fabricated by using polymerization and sol-gel processes. Rigidity of inorganic framework improves imprinting extend. In addition, flexible organic moiety allows high mass transfer in the imprinted polymer. Tetraethyl orthosilicate (TEOS) and 3-(methacryloyloxy)propyl trimethoxysilane (MEMO) were used as the inorganic and organic cross linkers, respectively, and an optimal TEOS-to-MEMO molar ratio for the highest adsorption capacity was 15:10. TGA analysis indicates that the imprinted polymer contains equal mass in the organic and inorganic components. Almost 100% imprinted molecules were extracted from the imprinted matrix to leave a high quantity of available sites (1.881020 /g) for rebinding the target. The maximum binding capacity, which was calculated from Langmuir model, was 65.8 mg/g. The 29Si and 13C NMR spectra reveal that the BPA molecules were imprinted into the cavities in terms of formation of Si-O-C covalent bonding. A high level of imprinting led to a imprinting factor (α) of 2.5, and resulted in the selectivity factor (β) of 78.2, 11.5, 2.3 and infinity for Phenol, Bis(2-hydroxyphenyl)methane (2HDPM), 4-tert-butylphenol (4TBP) and 17β- Estradiol (E2) analogues, respectively. Moreover, the separation factor (s) for phenol and 4TBP was 31.8 and 3.9, respectively, in the HPLC column test. Recoverability of the hybrid shows a small relative standard deviation of 3.9% reveling a high stability of imprinted cavities. These results in this study clearly indicate that the hybrid exhibits outstanding adsorption and recognition performance, which is highly promising for the applications in separation, chromatography and sensing.
目 錄
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章、前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章、文獻回顧 3
2.1 雙酚A 3
2.2 分子拓印技術概念與發展 5
2.3 分子拓印方式 6
2.3.1 共價鍵結 7
2.3.2 非共價鍵結 8
2.3.3 共價鍵與非共價鍵結特性比較 9
2.4 分子拓印材料 11
2.4.1 有機分子拓印 11
2.4.2 無機分子拓印 12
2.4.3 有機無機複合分子拓印 13
2.4.4 分子拓印材料的特性與鑑定 16

2.5 分子拓印材料應用 18
2.5.1 分離與層析 18
2.5.2 感測器 19
2.5.3 藥物傳輸 20
2.5.4 觸媒 21
第三章、研究方法 22
3.1 實驗材料 24
3.2 分子拓印高分子合成方法 25
3.3 儀器分析 27
3.3.1 傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectrometer, FTIR) 27
3.3.2 熱重分析儀 (Thermal gravimetric analysis, TGA) 27
3.3.3 等溫氮氣吸脫附分析 (Nitrogen adsorption-desorption isotherm Measurement) 30
3.3.4 紫外光-可見光光譜儀 (UV-visible spectrophotometer, UV-Vis) 30
3.3.5 固態核磁共振光譜儀 (Solid-State Nuclear magnetic resonance NMR Spectroscopy, NMR) 30
3.3.6高效能液相層析儀 (High performance liquid chromatography, HPLC) 31
3.4 吸附特性 32
3.4.1 吸附能力測試 32
3.4.2 拓印因子評估 33
3.4.3 Scatchard分析 33
3.4.4 拓印選擇性測試 34
第四章、結果與討論 35
4.1 分子拓印高分子製備 35
4.2 交聯劑組成最佳化 36
4.3 高分子特性鑑定 40
4.4 拓印高分子組成及孔洞分析 42
4.4.1 拓印高分子組成分析 42
4.4.2 拓印高分子模板移除效率及有效孔洞數量 44
4.4.3 拓印高分子孔洞結構探討 46
4.5 分子拓印高分子吸附特性 50
4.5.1 拓印與未拓印高分子吸附 50
4.5.2 等溫吸附 (Binding isotherm) 51
4.5.3 Scatchard分析 53
4.5.4 選擇性吸附 55
4.5.5 HPLC分析 58
4.5.6 重複吸附實驗 60
第五章、結論 61
參考文獻 62
參考文獻
1. vom Saal, F. S.Hughes, C., An Extensive New Literature Concerning Low-Dose Effects of Bisphenol a Shows the Need for a New Risk Assessment. Environ. Health Perspect., 2005, 113(8), 926-933.
2. Beltran, A.; Borrull, F.; Marcé, R.Cormack, P., Molecularly-Imprinted Polymers: Useful Sorbents for Selective Extractions. Trac-Trends Anal. Chem., 2010, 29(11), 1363-1375.
3. Wang, H. F.; Zhu, Y. Z.; Lin, J. P.Yan, X. P., Fabrication of Molecularly Imprinted Hybrid Monoliths Via a Room Temperature Ionic Liquid‐Mediated Nonhydrolytic Sol–Gel Route for Chiral Separation of Zolmitriptan by Capillary Electrochromatography. Electrophoresis, 2008, 29(4), 952-959.
4. Tamayo, F.; Turiel, E.Martín-Esteban, A., Molecularly Imprinted Polymers for Solid-Phase Extraction and Solid-Phase Microextraction: Recent Developments and Future Trends. J. Chromatogr. A, 2007, 1152(1), 32-40.
5. Ahmad, W. R.Davis, M. E., Transesterification on ''Imprinted'' Silica. Catal. Lett., 1996, 40(1-2), 109-114.
6. Maier, W. F.BenMustapha, W., Transesterification on Imprinted Silica - Reply. Catal. Lett., 1997, 46(1-2), 137-140.
7. Jiang, X.; Tian, W.; Zhao, C.; Zhang, H.Liu, M., A Novel Sol-Gel-Material Prepared by a Surface Imprinting Technique for the Selective Solid-Phase Extraction of Bisphenol A. Talanta, 2007, 72(1), 119-125.
8. Zhu, R.; Zhao, W.; Zhai, M.; Wei, F.; Cai, Z.; Sheng, N.Hu, Q., Molecularly Imprinted Layer-Coated Silica Nanoparticles for Selective Solid-Phase Extraction of Bisphenol a from Chemical Cleansing and Cosmetics Samples. Anal. Chim. Acta, 2010, 658(2), 209-216.
9. Lopez-Cervantes, J.Paseiro-Losada, P., Determination of Bisphenol a in, and Its Migration from, Pvc Stretch Film Used for Food Packaging. Food Addit. Contam., 2003, 20(6), 596-606.
10. Yeo, M.; Berglund, K.; Hanna, M.; Guo, J. U.; Kittur, J.; Torres, M. D.; Abramowitz, J.; Busciglio, J.; Gao, Y.; Birnbaumer, L.Liedtke, W. B., Bisphenol a Delays the Perinatal Chloride Shift in Cortical Neurons by Epigenetic Effects on the Kcc2 Promoter. P. Natl. Acad. Sci. USA, 2013, 110(11), 4315-4320.
11. Agency, U. E. P., Integrated Risk Information System of Bisphenol A. 1982.
12. Tyl, R. W.; Myers, C. B.; Marr, M. C.; Thomas, B. F.; Keimowitz, A. R.; Brine, D. R.; Veselica, M. M.; Fail, P. A.; Chang, T. Y.; Seely, J. C.; Joiner, R. L.; Butala, J. H.; Dimond, S. S.; Cagen, S. Z.; Shiotsuka, R. N.; Stropp, G. D.Waechter, J. M., Three-Generation Reproductive Toxicity Study of Dietary Bisphenol a in Cd Sprague-Dawley Rats. Toxicol. Sci., 2002, 68(1), 121-146.
13. EFSA, E., Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a Request from the Commission Related to 2, 2-Bis (4-Hydroxyphenyl) Propane (Bisphenol a). EFSA J., 2006, 428, 1-75.
14. Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.Harris, L. R., A Review of the Environmental Fate, Effects, and Exposures of Bisphenol A. Chemosphere, 1998, 36(10), 2149-2173.
15. Chen, M. Y.; Ike, M.Fujita, M., Acute Toxicity, Mutagenicity, and Estrogenicity of Bisphenol-a and Other Bisphenols. Environ. Toxicol., 2002, 17(1), 80-86.
16. Fischer, E., Einfluss Der Configuration Auf Die Wirkung Der Enzyme. 1894, 27(3), 2985-2993.
17. Polyakov, M., Adsorption Properties and Structure of Silica Gel. Zhur Fiz Khim, 1931, 2, 799-805.
18. Pauling, L., A Theory of the Structure and Process of Formation of Antibodies*. J. Am. Chem. Soc., 1940, 62(10), 2643-2657.
19. Dickey, F. H., The Preparation of Specific Adsorbents. P. Natl. Acad. Sci. USA, 1949, 35(5), 227.
20. Wulff, G.Sarhan, A., Use of Polymers with Enzyme-Analogous Structures for the Resolution of Racemates. Angew. Chem. Int. Ed. Engl, 1972, 11(4), 341-342.
21. Arshady, R.Mosbach, K., Synthesis of Substrate‐Selective Polymers by Host‐Guest Polymerization. Macromol. Chem. Phys., 1981, 182(2), 687-692.
22. Haupt, K., Molecularly Imprinted Polymers: The Next Generation. Anal. Chem., 2003, 75(17), 376A-383A.
23. Bruggemann, O.; Haupt, K.; Ye, L.; Yilmaz, E.Mosbach, K., New Configurations and Applications of Molecularly Imprinted Polymers. J. Chromatogr. A, 2000, 889(1-2), 15-24.
24. Mayes, A. G.Whitcombe, M. J., Synthetic Strategies for the Generation of Molecularly Imprinted Organic Polymers. Adv. Drug Deliv. Rev., 2005, 57(12), 1742-1778.
25. Maier, N. M.Lindner, W., Chiral Recognition Applications of Molecularly Imprinted Polymers: A Critical Review. Anal. Bioanal. Chem., 2007, 389(2), 377-397.
26. Haupt, K.; Dzgoev, A.Mosbach, K., Assay System for the Herbicide 2,4-Dichlorophenoxyacetic Acid Using a Molecularly Imprinted Polymer as an Artificial Recognition Element. Anal. Chem., 1998, 70(3), 628-631.
27. Whitcombe, M. J.; Rodriguez, M. E.; Villar, P.Vulfson, E. N., A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting - Synthesis and Characterization of Polymeric Receptors for Cholesterol. J. Am. Chem. Soc., 1995, 117(27), 7105-7111.
28. Wulff, G., Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates - a Way Towards Artificial Antibodies. Angew. Chem. Int. Ed. Engl, 1995, 34(17), 1812-1832.
29. Shea, K. J., Molecular Imprinting of Synthetic Network Polymers - the De-Novo Synthesis of Macromolecular Binding and Catalytic Sites. Abstr. Pap. Am. Chem. S., 1994, 208, 467-POLY.
30. Aboul-Enein, H. Y.; El-Awady, M. I.Heard, C. M., Direct Enantiomeric Resolution of Some Cardiovascular Agents Using Synthetic Polymers Imprinted with (-)-S-Timolol as Chiral Stationary Phase by Thin Layer Chromatography. Pharmazie, 2002, 57(3), 169-171.
31. Jiang, Z.; Yu, Y.Wu, H., Preparation of Cs/Gptms Hybrid Molecularly Imprinted Membrane for Efficient Chiral Resolution of Phenylalanine Isomers. J. Membr. Sci., 2006, 280(1-2), 876-882.
32. Kubo, A.; Shinmori, H.Takeuchi, T., Atrazine-Imprinted Microspheres Prepared Using a Microfluidic Device. Chem. Lett., 2006, 35(6), 588-589.
33. Hsu, C. Y.; Lin, H. Y.; Thomas, J. L.Chou, T. C., Synthesis of and Recognition by Ribonuclease a Imprinted Polymers. Nanotechnology, 2006, 17(4), S77-S83.
34. Baggiani, C.; Giraudi, G.; Giovannoli, C.; Trotta, F.Vanni, A., Chromatographic Characterization of Molecularly Imprinted Polymers Binding the Herbicide 2,4,5-Trichlorophenoxyacetic Acid. J. Chromatogr. A, 2000, 883(1-2), 119-126.
35. Oral, E.Peppas, N. A., Hydrophilic Molecularly Imprinted Poly(Hydroxyethyl-Methacrylate) Polymers. J. Biomed. Mater. Res. Part A, 2006, 78A(1), 205-210.
36. Yao, J.; Li, X.Qin, W., Computational Design and Synthesis of Molecular Imprinted Polymers with High Selectivity for Removal of Aniline from Contaminated Water. Anal. Chim. Acta, 2008, 610(2), 282-288.
37. Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Bülow, L.; Ye, L.Prachayasittikul, V., In Silico Design for Synthesis of Molecularly Imprinted Microspheres Specific Towards Bisphenol a by Precipitation Polymerization. EXCLI J., 2006, 5, 103-117.
38. Holthoff, E. L.Bright, F. V., Molecularly Templated Materials in Chemical Sensing. Anal. Chim. Acta, 2007, 594(2), 147-161.
39. Sanchez, C.Gómez-Romero, P., Functional Hybrid Materials. 2004: Wiley-VCH.
40. Gómez-Romero, P.Sanchez, C., Hybrid Materials. Functional Properties. From Maya Blue to 21st Century Materials. New J. Chem., 2005, 29(1), 57-58.
41. Wang, H.-F.; Zhu, Y.-Z.; Yan, X.-P.; Gao, R.-Y.Zheng, J.-Y., A Room Temperature Ionic Liquid (Rtil)-Mediated, Non-Hydrolytic Sol-Gel Methodology to Prepare Molecularly Imprinted, Silica-Based Hybrid Monoliths for Chiral Separation. Adv. Mater., 2006, 18(24), 3266-+.
42. Zhou, H.; Xu, Y.; Tong, H.; Liu, Y.; Han, F.; Yan, X.Liu, S., Direct Synthesis of Surface Molecularly Imprinted Polymers Based on Vinyl–Sio2 Nanospheres for Recognition of Bisphenol A. J. Appl. Polym. Sci., 2012.
43. Lin, Z.; Sun, L.; Liu, W.; Xia, Z.; Yang, H.Chen, G., Synthesis of Boronic Acid-Functionalized Molecularly Imprinted Silica Nanoparticles for Glycoprotein Recognition and Enrichment. J. Mat. Chem. B, 2014, 2(6), 637-643.
44. Xu, S.; Li, J.Chen, L., Molecularly Imprinted Core-Shell Nanoparticles for Determination of Trace Atrazine by Reversible Addition–Fragmentation Chain Transfer Surface Imprinting. J. Mater. Chem., 2011, 21(12), 4346-4351.
45. Wang, S.; Li, Y.; Ding, M.; Wu, X.; Xu, J.; Wang, R.; Wen, T.; Huang, W.; Zhou, P.Ma, K., Self-Assembly Molecularly Imprinted Polymers of 17β-Estradiol on the Surface of Magnetic Nanoparticles for Selective Separation and Detection of Estrogenic Hormones in Feeds. J. Chromatogr. B, 2011, 879(25), 2595-2600.
46. Gao, R.; Kong, X.; Wang, X.; He, X.; Chen, L.Zhang, Y., Preparation and Characterization of Uniformly Sized Molecularly Imprinted Polymers Functionalized with Core–Shell Magnetic Nanoparticles for the Recognition and Enrichment of Protein. J. Mater. Chem., 2011, 21(44), 17863-17871.
47. Zhao, W.; Sheng, N.; Zhu, R.; Wei, F.; Cai, Z.; Zhai, M.; Du, S.Hu, Q., Preparation of Dummy Template Imprinted Polymers at Surface of Silica Microparticles for the Selective Extraction of Trace Bisphenol a from Water Samples. J. Hazard. Mater., 2010, 179(1), 223-229.
48. Meng, Z. H.; Chen, W.Mulchandani, A., Removal of Estrogenic Pollutants from Contaminated Water Using Molecularly Imprinted Polymers. Environ. Sci. Technol., 2005, 39(22), 8958-8962.
49. Tong, A. J.; Dong, H.Li, L. D., Molecular Imprinting-Based Fluorescent Chemosensor for Histamine Using Zinc (Ii)-Protoporphyrin as a Functional Monomer. Anal. Chim. Acta, 2002, 466(1), 31-37.
50. Carlson, C. A.; Lloyd, J. A.; Dean, S. L.; Walker, N. R.Edmiston, P. L., Sensor for Fluorene Based on the Incorporation of an Environmentally Sensitive Fluorophore Proximal to a Molecularly Imprinted Binding Site. Anal. Chem., 2006, 78(11), 3537-3542.
51. Kim, T. H.; Do Ki, C.; Cho, H.; Chang, T. Y.Chang, J. Y., Facile Preparation of Core-Shell Type Molecularly Imprinted Particles: Molecular Imprinting into Aromatic Polyimide Coated on Silica Spheres. Macromolecules, 2005, 38(15), 6423-6428.
52. Sellergren, B.; Ekberg, B.Mosbach, K., Molecular Imprinting of Amino-Acid Derivatives in Macroporous Polymers - Demonstration of Substrate-Selectivity and Enantio-Selectivity by Chromatographic Resolution of Racemic Mixtures of Amino-Acid Derivatives. J. Chromatogr. A, 1985, 347(1), 1-10.
53. Sellergren, B., Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer. Anal. Chem., 1994, 66(9), 1578-1582.
54. Fogel, R., Making Sense of Sensors - Finding a Needle in a Haystack. Sci. in Afr.
55. Zhu, W.; Tao, S.; Tao, C.-a.; Li, W.; Lin, C.; Li, M.; Wen, Y.Li, G., Hierarchically Imprinted Porous Films for Rapid and Selective Detection of Explosives. Langmuir, 2011, 27(13), 8451-8457.
56. Asher, S. A.; Sharma, A. C.; Goponenko, A. V.Ward, M. M., Photonic Crystal Aqueous Metal Cation Sensing Materials. Anal. Chem., 2003, 75(7), 1676-1683.
57. Wu, Z.; Hu, X.; Tao, C.-a.; Li, Y.; Liu, J.; Yang, C.; Shen, D.Li, G., Direct and Label-Free Detection of Cholic Acid Based on Molecularly Imprinted Photonic Hydrogels. J. Mater. Chem., 2008, 18(45), 5452-5458.
58. Ye, L.; Surugiu, I.Haupt, K., Scintillation Proximity Assay Using Molecularly Imprinted Microspheres. Anal. Chem., 2002, 74(5), 959-964.
59. Alvarez-Lorenzo, C.Concheiro, A., Molecularly Imprinted Polymers for Drug Delivery. J. Chromatogr. B, 2004, 804(1), 231-245.
60. Vasapollo, G.; Del Sole, R.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano, S.Mele, G., Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci., 2011, 12(9), 5908-5945.
61. Allender, C. J.; Richardson, C.; Woodhouse, B.; Heard, C. M.Brain, K. R., Pharmaceutical Applications for Molecularly Imprinted Polymers. Int. J. Pharm., 2000, 195(1-2), 39-43.
62. Ciardelli, G.; Borrelli, C.; Silvestri, D.; Cristallini, C.; Barbani, N.Giusti, P., Supported Imprinted Nanospheres for the Selective Recognition of Cholesterol. Biosens. Bioelectron., 2006, 21(12), 2329-2338.
63. Beach, J. V.Shea, K. J., Designed Catalysts - a Synthetic Network Polymer That Catalyzes the Dehydrofluorination of 4-Fluoro-4-(P-Nitrophenyl)Butan-2-One. J. Am. Chem. Soc., 1994, 116(1), 379-380.
64. Shokat, K. M.; Leumann, C. J.; Sugasawara, R.Schultz, P. G., A New Strategy for the Generation of Catalytic Antibodies. Nature, 1989, 338(6212), 269-271.
65. Skrdla, P. J.; Shnayderman, M.; Wright, L.O'Brien, T. P., Gc-Ms Study of the Formation of Alkoxysilanes from a Sol-Gel Precursor in a Hydrophobic Solution: A Potential New Route to Hybrid Molecular Imprinted Polymers. J. Non-Cryst. Solids, 2006, 352(30-31), 3302-3309.
66. Yang, L.; Lu, T.; Xu, H.; Zhang, W.Ma, B., A Study on the Effect Factors of Sol-Gel Synthesis of Yttrium Aluminum Garnet Nanopowders. J. Appl. Phys., 2010, 107(6).
67. Feng, L.; Li, H.; Yang, M.Wang, X., Synthesis of Sio2/Polystyrene Hybrid Particles Via an Esterification Method. Colloid Polym. Sci., 2010, 288(6), 673-680.
68. Chen, S.; Du, D.; Huang, J.; Zhang, A.; Tu, H.Zhang, A., Rational Design and Application of Molecularly Imprinted Sol-Gel Polymer for the Electrochemically Selective and Sensitive Determination of Sudan I. Talanta, 2011, 84(2), 451-456.
69. Joseph, R.; Zhang, S. M.Ford, W. T., Structure and Dynamics of a Colloidal Silica Poly(Methyl Methacrylate) Composite by C-13 and Si-29 Mas Nmr Spectroscopy. Macromolecules, 1996, 29(4), 1305-1312.
70. Jana, S.; Lim, M. A.; Baek, I. C.; Kim, C. H.Il Seok, S., Non-Hydrolytic Sol-Gel Synthesis of Epoxysilane-Based Inorganic-Organic Hybrid Resins. Mater. Chem. Phys., 2008, 112(3), 1008-1014.
71. Jaehoon, K.; Gracz, H. S.; Roberts, G. W.Kiserow, D. J., Spectroscopic Analysis of Poly(Bisphenol a Carbonate) Using High Resolution 13c and 1h Nmr. Polymer, 2008, 49(2), 394-404.
72. Kaji, H.; Tai, T.Horii, F., One- and Two-Dimensional Mas C-13 Nmr Analyses of Molecular Motions in Poly(2-Hydroxypropyl Ether of Bisphenol-a). Macromolecules, 2001, 34(18), 6318-6324.
73. Xie, X. Q.; Ranade, S. V.DiBenedetto, A. T., A Solid State Nmr Study of Polycarbonate Oligomer Grafted onto the Surface of Amorphous Silica. Polymer, 1999, 40(23), 6297-6306.
74. Zhou, H.; Xu, Y.; Tong, H.; Liu, Y.; Han, F.; Yan, X.Liu, S., Direct Synthesis of Surface Molecularly Imprinted Polymers Based on Vinyl-Sio2 Nanospheres for Recognition of Bisphenol A. 2013, 128(6), 3846-3852.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *