|
參考文獻 1. vom Saal, F. S.Hughes, C., An Extensive New Literature Concerning Low-Dose Effects of Bisphenol a Shows the Need for a New Risk Assessment. Environ. Health Perspect., 2005, 113(8), 926-933. 2. Beltran, A.; Borrull, F.; Marcé, R.Cormack, P., Molecularly-Imprinted Polymers: Useful Sorbents for Selective Extractions. Trac-Trends Anal. Chem., 2010, 29(11), 1363-1375. 3. Wang, H. F.; Zhu, Y. Z.; Lin, J. P.Yan, X. P., Fabrication of Molecularly Imprinted Hybrid Monoliths Via a Room Temperature Ionic Liquid‐Mediated Nonhydrolytic Sol–Gel Route for Chiral Separation of Zolmitriptan by Capillary Electrochromatography. Electrophoresis, 2008, 29(4), 952-959. 4. Tamayo, F.; Turiel, E.Martín-Esteban, A., Molecularly Imprinted Polymers for Solid-Phase Extraction and Solid-Phase Microextraction: Recent Developments and Future Trends. J. Chromatogr. A, 2007, 1152(1), 32-40. 5. Ahmad, W. R.Davis, M. E., Transesterification on ''Imprinted'' Silica. Catal. Lett., 1996, 40(1-2), 109-114. 6. Maier, W. F.BenMustapha, W., Transesterification on Imprinted Silica - Reply. Catal. Lett., 1997, 46(1-2), 137-140. 7. Jiang, X.; Tian, W.; Zhao, C.; Zhang, H.Liu, M., A Novel Sol-Gel-Material Prepared by a Surface Imprinting Technique for the Selective Solid-Phase Extraction of Bisphenol A. Talanta, 2007, 72(1), 119-125. 8. Zhu, R.; Zhao, W.; Zhai, M.; Wei, F.; Cai, Z.; Sheng, N.Hu, Q., Molecularly Imprinted Layer-Coated Silica Nanoparticles for Selective Solid-Phase Extraction of Bisphenol a from Chemical Cleansing and Cosmetics Samples. Anal. Chim. Acta, 2010, 658(2), 209-216. 9. Lopez-Cervantes, J.Paseiro-Losada, P., Determination of Bisphenol a in, and Its Migration from, Pvc Stretch Film Used for Food Packaging. Food Addit. Contam., 2003, 20(6), 596-606. 10. Yeo, M.; Berglund, K.; Hanna, M.; Guo, J. U.; Kittur, J.; Torres, M. D.; Abramowitz, J.; Busciglio, J.; Gao, Y.; Birnbaumer, L.Liedtke, W. B., Bisphenol a Delays the Perinatal Chloride Shift in Cortical Neurons by Epigenetic Effects on the Kcc2 Promoter. P. Natl. Acad. Sci. USA, 2013, 110(11), 4315-4320. 11. Agency, U. E. P., Integrated Risk Information System of Bisphenol A. 1982. 12. Tyl, R. W.; Myers, C. B.; Marr, M. C.; Thomas, B. F.; Keimowitz, A. R.; Brine, D. R.; Veselica, M. M.; Fail, P. A.; Chang, T. Y.; Seely, J. C.; Joiner, R. L.; Butala, J. H.; Dimond, S. S.; Cagen, S. Z.; Shiotsuka, R. N.; Stropp, G. D.Waechter, J. M., Three-Generation Reproductive Toxicity Study of Dietary Bisphenol a in Cd Sprague-Dawley Rats. Toxicol. Sci., 2002, 68(1), 121-146. 13. EFSA, E., Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a Request from the Commission Related to 2, 2-Bis (4-Hydroxyphenyl) Propane (Bisphenol a). EFSA J., 2006, 428, 1-75. 14. Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.Harris, L. R., A Review of the Environmental Fate, Effects, and Exposures of Bisphenol A. Chemosphere, 1998, 36(10), 2149-2173. 15. Chen, M. Y.; Ike, M.Fujita, M., Acute Toxicity, Mutagenicity, and Estrogenicity of Bisphenol-a and Other Bisphenols. Environ. Toxicol., 2002, 17(1), 80-86. 16. Fischer, E., Einfluss Der Configuration Auf Die Wirkung Der Enzyme. 1894, 27(3), 2985-2993. 17. Polyakov, M., Adsorption Properties and Structure of Silica Gel. Zhur Fiz Khim, 1931, 2, 799-805. 18. Pauling, L., A Theory of the Structure and Process of Formation of Antibodies*. J. Am. Chem. Soc., 1940, 62(10), 2643-2657. 19. Dickey, F. H., The Preparation of Specific Adsorbents. P. Natl. Acad. Sci. USA, 1949, 35(5), 227. 20. Wulff, G.Sarhan, A., Use of Polymers with Enzyme-Analogous Structures for the Resolution of Racemates. Angew. Chem. Int. Ed. Engl, 1972, 11(4), 341-342. 21. Arshady, R.Mosbach, K., Synthesis of Substrate‐Selective Polymers by Host‐Guest Polymerization. Macromol. Chem. Phys., 1981, 182(2), 687-692. 22. Haupt, K., Molecularly Imprinted Polymers: The Next Generation. Anal. Chem., 2003, 75(17), 376A-383A. 23. Bruggemann, O.; Haupt, K.; Ye, L.; Yilmaz, E.Mosbach, K., New Configurations and Applications of Molecularly Imprinted Polymers. J. Chromatogr. A, 2000, 889(1-2), 15-24. 24. Mayes, A. G.Whitcombe, M. J., Synthetic Strategies for the Generation of Molecularly Imprinted Organic Polymers. Adv. Drug Deliv. Rev., 2005, 57(12), 1742-1778. 25. Maier, N. M.Lindner, W., Chiral Recognition Applications of Molecularly Imprinted Polymers: A Critical Review. Anal. Bioanal. Chem., 2007, 389(2), 377-397. 26. Haupt, K.; Dzgoev, A.Mosbach, K., Assay System for the Herbicide 2,4-Dichlorophenoxyacetic Acid Using a Molecularly Imprinted Polymer as an Artificial Recognition Element. Anal. Chem., 1998, 70(3), 628-631. 27. Whitcombe, M. J.; Rodriguez, M. E.; Villar, P.Vulfson, E. N., A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting - Synthesis and Characterization of Polymeric Receptors for Cholesterol. J. Am. Chem. Soc., 1995, 117(27), 7105-7111. 28. Wulff, G., Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates - a Way Towards Artificial Antibodies. Angew. Chem. Int. Ed. Engl, 1995, 34(17), 1812-1832. 29. Shea, K. J., Molecular Imprinting of Synthetic Network Polymers - the De-Novo Synthesis of Macromolecular Binding and Catalytic Sites. Abstr. Pap. Am. Chem. S., 1994, 208, 467-POLY. 30. Aboul-Enein, H. Y.; El-Awady, M. I.Heard, C. M., Direct Enantiomeric Resolution of Some Cardiovascular Agents Using Synthetic Polymers Imprinted with (-)-S-Timolol as Chiral Stationary Phase by Thin Layer Chromatography. Pharmazie, 2002, 57(3), 169-171. 31. Jiang, Z.; Yu, Y.Wu, H., Preparation of Cs/Gptms Hybrid Molecularly Imprinted Membrane for Efficient Chiral Resolution of Phenylalanine Isomers. J. Membr. Sci., 2006, 280(1-2), 876-882. 32. Kubo, A.; Shinmori, H.Takeuchi, T., Atrazine-Imprinted Microspheres Prepared Using a Microfluidic Device. Chem. Lett., 2006, 35(6), 588-589. 33. Hsu, C. Y.; Lin, H. Y.; Thomas, J. L.Chou, T. C., Synthesis of and Recognition by Ribonuclease a Imprinted Polymers. Nanotechnology, 2006, 17(4), S77-S83. 34. Baggiani, C.; Giraudi, G.; Giovannoli, C.; Trotta, F.Vanni, A., Chromatographic Characterization of Molecularly Imprinted Polymers Binding the Herbicide 2,4,5-Trichlorophenoxyacetic Acid. J. Chromatogr. A, 2000, 883(1-2), 119-126. 35. Oral, E.Peppas, N. A., Hydrophilic Molecularly Imprinted Poly(Hydroxyethyl-Methacrylate) Polymers. J. Biomed. Mater. Res. Part A, 2006, 78A(1), 205-210. 36. Yao, J.; Li, X.Qin, W., Computational Design and Synthesis of Molecular Imprinted Polymers with High Selectivity for Removal of Aniline from Contaminated Water. Anal. Chim. Acta, 2008, 610(2), 282-288. 37. Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Bülow, L.; Ye, L.Prachayasittikul, V., In Silico Design for Synthesis of Molecularly Imprinted Microspheres Specific Towards Bisphenol a by Precipitation Polymerization. EXCLI J., 2006, 5, 103-117. 38. Holthoff, E. L.Bright, F. V., Molecularly Templated Materials in Chemical Sensing. Anal. Chim. Acta, 2007, 594(2), 147-161. 39. Sanchez, C.Gómez-Romero, P., Functional Hybrid Materials. 2004: Wiley-VCH. 40. Gómez-Romero, P.Sanchez, C., Hybrid Materials. Functional Properties. From Maya Blue to 21st Century Materials. New J. Chem., 2005, 29(1), 57-58. 41. Wang, H.-F.; Zhu, Y.-Z.; Yan, X.-P.; Gao, R.-Y.Zheng, J.-Y., A Room Temperature Ionic Liquid (Rtil)-Mediated, Non-Hydrolytic Sol-Gel Methodology to Prepare Molecularly Imprinted, Silica-Based Hybrid Monoliths for Chiral Separation. Adv. Mater., 2006, 18(24), 3266-+. 42. Zhou, H.; Xu, Y.; Tong, H.; Liu, Y.; Han, F.; Yan, X.Liu, S., Direct Synthesis of Surface Molecularly Imprinted Polymers Based on Vinyl–Sio2 Nanospheres for Recognition of Bisphenol A. J. Appl. Polym. Sci., 2012. 43. Lin, Z.; Sun, L.; Liu, W.; Xia, Z.; Yang, H.Chen, G., Synthesis of Boronic Acid-Functionalized Molecularly Imprinted Silica Nanoparticles for Glycoprotein Recognition and Enrichment. J. Mat. Chem. B, 2014, 2(6), 637-643. 44. Xu, S.; Li, J.Chen, L., Molecularly Imprinted Core-Shell Nanoparticles for Determination of Trace Atrazine by Reversible Addition–Fragmentation Chain Transfer Surface Imprinting. J. Mater. Chem., 2011, 21(12), 4346-4351. 45. Wang, S.; Li, Y.; Ding, M.; Wu, X.; Xu, J.; Wang, R.; Wen, T.; Huang, W.; Zhou, P.Ma, K., Self-Assembly Molecularly Imprinted Polymers of 17β-Estradiol on the Surface of Magnetic Nanoparticles for Selective Separation and Detection of Estrogenic Hormones in Feeds. J. Chromatogr. B, 2011, 879(25), 2595-2600. 46. Gao, R.; Kong, X.; Wang, X.; He, X.; Chen, L.Zhang, Y., Preparation and Characterization of Uniformly Sized Molecularly Imprinted Polymers Functionalized with Core–Shell Magnetic Nanoparticles for the Recognition and Enrichment of Protein. J. Mater. Chem., 2011, 21(44), 17863-17871. 47. Zhao, W.; Sheng, N.; Zhu, R.; Wei, F.; Cai, Z.; Zhai, M.; Du, S.Hu, Q., Preparation of Dummy Template Imprinted Polymers at Surface of Silica Microparticles for the Selective Extraction of Trace Bisphenol a from Water Samples. J. Hazard. Mater., 2010, 179(1), 223-229. 48. Meng, Z. H.; Chen, W.Mulchandani, A., Removal of Estrogenic Pollutants from Contaminated Water Using Molecularly Imprinted Polymers. Environ. Sci. Technol., 2005, 39(22), 8958-8962. 49. Tong, A. J.; Dong, H.Li, L. D., Molecular Imprinting-Based Fluorescent Chemosensor for Histamine Using Zinc (Ii)-Protoporphyrin as a Functional Monomer. Anal. Chim. Acta, 2002, 466(1), 31-37. 50. Carlson, C. A.; Lloyd, J. A.; Dean, S. L.; Walker, N. R.Edmiston, P. L., Sensor for Fluorene Based on the Incorporation of an Environmentally Sensitive Fluorophore Proximal to a Molecularly Imprinted Binding Site. Anal. Chem., 2006, 78(11), 3537-3542. 51. Kim, T. H.; Do Ki, C.; Cho, H.; Chang, T. Y.Chang, J. Y., Facile Preparation of Core-Shell Type Molecularly Imprinted Particles: Molecular Imprinting into Aromatic Polyimide Coated on Silica Spheres. Macromolecules, 2005, 38(15), 6423-6428. 52. Sellergren, B.; Ekberg, B.Mosbach, K., Molecular Imprinting of Amino-Acid Derivatives in Macroporous Polymers - Demonstration of Substrate-Selectivity and Enantio-Selectivity by Chromatographic Resolution of Racemic Mixtures of Amino-Acid Derivatives. J. Chromatogr. A, 1985, 347(1), 1-10. 53. Sellergren, B., Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer. Anal. Chem., 1994, 66(9), 1578-1582. 54. Fogel, R., Making Sense of Sensors - Finding a Needle in a Haystack. Sci. in Afr. 55. Zhu, W.; Tao, S.; Tao, C.-a.; Li, W.; Lin, C.; Li, M.; Wen, Y.Li, G., Hierarchically Imprinted Porous Films for Rapid and Selective Detection of Explosives. Langmuir, 2011, 27(13), 8451-8457. 56. Asher, S. A.; Sharma, A. C.; Goponenko, A. V.Ward, M. M., Photonic Crystal Aqueous Metal Cation Sensing Materials. Anal. Chem., 2003, 75(7), 1676-1683. 57. Wu, Z.; Hu, X.; Tao, C.-a.; Li, Y.; Liu, J.; Yang, C.; Shen, D.Li, G., Direct and Label-Free Detection of Cholic Acid Based on Molecularly Imprinted Photonic Hydrogels. J. Mater. Chem., 2008, 18(45), 5452-5458. 58. Ye, L.; Surugiu, I.Haupt, K., Scintillation Proximity Assay Using Molecularly Imprinted Microspheres. Anal. Chem., 2002, 74(5), 959-964. 59. Alvarez-Lorenzo, C.Concheiro, A., Molecularly Imprinted Polymers for Drug Delivery. J. Chromatogr. B, 2004, 804(1), 231-245. 60. Vasapollo, G.; Del Sole, R.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano, S.Mele, G., Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci., 2011, 12(9), 5908-5945. 61. Allender, C. J.; Richardson, C.; Woodhouse, B.; Heard, C. M.Brain, K. R., Pharmaceutical Applications for Molecularly Imprinted Polymers. Int. J. Pharm., 2000, 195(1-2), 39-43. 62. Ciardelli, G.; Borrelli, C.; Silvestri, D.; Cristallini, C.; Barbani, N.Giusti, P., Supported Imprinted Nanospheres for the Selective Recognition of Cholesterol. Biosens. Bioelectron., 2006, 21(12), 2329-2338. 63. Beach, J. V.Shea, K. J., Designed Catalysts - a Synthetic Network Polymer That Catalyzes the Dehydrofluorination of 4-Fluoro-4-(P-Nitrophenyl)Butan-2-One. J. Am. Chem. Soc., 1994, 116(1), 379-380. 64. Shokat, K. M.; Leumann, C. J.; Sugasawara, R.Schultz, P. G., A New Strategy for the Generation of Catalytic Antibodies. Nature, 1989, 338(6212), 269-271. 65. Skrdla, P. J.; Shnayderman, M.; Wright, L.O'Brien, T. P., Gc-Ms Study of the Formation of Alkoxysilanes from a Sol-Gel Precursor in a Hydrophobic Solution: A Potential New Route to Hybrid Molecular Imprinted Polymers. J. Non-Cryst. Solids, 2006, 352(30-31), 3302-3309. 66. Yang, L.; Lu, T.; Xu, H.; Zhang, W.Ma, B., A Study on the Effect Factors of Sol-Gel Synthesis of Yttrium Aluminum Garnet Nanopowders. J. Appl. Phys., 2010, 107(6). 67. Feng, L.; Li, H.; Yang, M.Wang, X., Synthesis of Sio2/Polystyrene Hybrid Particles Via an Esterification Method. Colloid Polym. Sci., 2010, 288(6), 673-680. 68. Chen, S.; Du, D.; Huang, J.; Zhang, A.; Tu, H.Zhang, A., Rational Design and Application of Molecularly Imprinted Sol-Gel Polymer for the Electrochemically Selective and Sensitive Determination of Sudan I. Talanta, 2011, 84(2), 451-456. 69. Joseph, R.; Zhang, S. M.Ford, W. T., Structure and Dynamics of a Colloidal Silica Poly(Methyl Methacrylate) Composite by C-13 and Si-29 Mas Nmr Spectroscopy. Macromolecules, 1996, 29(4), 1305-1312. 70. Jana, S.; Lim, M. A.; Baek, I. C.; Kim, C. H.Il Seok, S., Non-Hydrolytic Sol-Gel Synthesis of Epoxysilane-Based Inorganic-Organic Hybrid Resins. Mater. Chem. Phys., 2008, 112(3), 1008-1014. 71. Jaehoon, K.; Gracz, H. S.; Roberts, G. W.Kiserow, D. J., Spectroscopic Analysis of Poly(Bisphenol a Carbonate) Using High Resolution 13c and 1h Nmr. Polymer, 2008, 49(2), 394-404. 72. Kaji, H.; Tai, T.Horii, F., One- and Two-Dimensional Mas C-13 Nmr Analyses of Molecular Motions in Poly(2-Hydroxypropyl Ether of Bisphenol-a). Macromolecules, 2001, 34(18), 6318-6324. 73. Xie, X. Q.; Ranade, S. V.DiBenedetto, A. T., A Solid State Nmr Study of Polycarbonate Oligomer Grafted onto the Surface of Amorphous Silica. Polymer, 1999, 40(23), 6297-6306. 74. Zhou, H.; Xu, Y.; Tong, H.; Liu, Y.; Han, F.; Yan, X.Liu, S., Direct Synthesis of Surface Molecularly Imprinted Polymers Based on Vinyl-Sio2 Nanospheres for Recognition of Bisphenol A. 2013, 128(6), 3846-3852.
|