|
1. American clean energy and security act of 2009. 2009. 2. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013, 52 (29), 7372-7408. 3. (a) Zhang, Q.; Gao, T.; Andino, J. M.; Li, Y., Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor. Appl. Catal. B-Environ. 2012, 123, 257-264; (b) Peng, Y.-P.; Yeh, Y.-T.; Shah, S. I.; Huang, C. P., Concurrent photoelectrochemical reduction of CO2 and oxidation of methyl orange using nitrogen-doped TiO2. Appl. Catal. B-Environ. 2012, 123, 414-423. 4. Ganesh, I.; Kumar, P. P.; Annapoorna, I.; Sumliner, J. M.; Ramakrishna, M.; Hebalkar, N. Y.; Padmanabham, G.; Sundararajan, G., Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci. 2014, 293, 229-247. 5. Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C. M. A.; Lee, A. F.; Wu, J. C. S., On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catal. Commun. 2012, 25, 78-82. 6. Ovcharov, M. L.; Shvalagin, V. V.; Granchak, V. M., Photocatalytic reduction of CO2 on mesoporous TiO2 modified with Ag/Cu bimetallic nanostructures. Theor. Exp. Chem. 2014, 50 (3), 175-180. 7. Chang, S.-M.; Liu, W.-S., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl. Catal. B-Environ. 2011, 101 (3–4), 333-342. 8. Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A., High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9 (2), 731-7. 9. Qin, S.; Xin, F.; Liu, Y.; Yin, X.; Ma, W., Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. J. Colloid Interface Sci. 2011, 356 (1), 257-261. 10. Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y., Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core–shell structure. Angew. Chem. Int. Ed. 2013, 52 (22), 5776-5779. 11. Wu, W.; Bhattacharyya, K.; Gray, K.; Weitz, E., Photoinduced reactions of surface-bound species on titania nanotubes and platinized titania nanotubes: an in situ FTIR study. J. Phys. Chem. C. 2013, 117 (40), 20643-20655. 12. Liu, L.; Gao, F.; Zhao, H.; Li, Y., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B-Environ. 2013, 134–135, 349-358. 13. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. 2013, 52 (29), 7372-7408. 14. Hashimoto, K.; Irie, H.; Fujishima, A., TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 1 2005, 44 (12), 8269-8285. 15. Gratzel, M., Photoelectrochemical cells. 2001, 414 (6861), 338-344. 16. Phase diagrams for ceramists figure. J. Am. Ceram. Soc. 1975, 4150~4999. 17. 林宸嶢, 鍛燒溫度對釩離子摻雜二氧化鈦光觸媒物化與光催化還原二氧化碳特性研究. 2011, 碩士論文. 18. Ding, Z.; Lu, G. Q.; Greenfield, P. F., Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B 2000, 104 (19), 4815-4820. 19. Quang Duc, T.; Thi Hang, L.; Liu, J.-Y.; Chung, C.-C.; Ling, Y.-C., Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO2 to CH3OH. Appl. Catal. A-Gen. 2012, 437, 28-35. 20. Janisch, R. G., P.; Spaldin, Transition metal-doped TiO2 and ZnO—present status of the field. 2005, 17 (27), R657-R689. 21. 林榮良, TiO2光催化原理和應用例子. 2002, Vol. 60, No. 3, pp.457~461. 22. Tatsuto Yui, Y. T., Keita Sekizawa, Osamu Ishitani, Photocatalytic reduction of CO2: from molecules to semiconductors. Top. Curr. Chem. 2011, 303, 2011, pp 151-184. 23. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95 (3), 735-758. 24. Tseng, I. H.; Chang, W.-C.; Wu, J. C. S., Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B-Environ. 2002, 37 (1), 37-48. 25. Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T., Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J. Photochem. Photobiol. 1998, 115 (3), 223-226. 26. Liu, B.-J.; Torimoto, T.; Yoneyama, H., Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem. Photobiol. 1998, 113 (1), 93-97. 27. Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J.-S.; Wu, H.-H., Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catal. Lett. 2009, 131 (3-4), 381-387. 28. Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal. B-Environ. 2010, 100 (1–2), 386-392. 29. Fujishima, A.; Zhang, X.; Tryk, D. A., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63 (12), 515-582. 30. 胥穎亞, 鋯離子摻雜與金沈積對中孔洞二氧化鈦微結構與光催化還原二氧化碳研究. 碩士論文. 31. 盧泓;蔡嘉恩, 二氧化鈦光觸媒的應用. 2013. 32. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B-Environ. 2009, 89 (3–4), 494-502. 33. Lin, H.; Huang, C. P.; Li, W.; Ni, C.; Shah, S. I.; Tseng, Y.-H., Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B-Environ. 2006, 68 (1–2), 1-11. 34. Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J. Y., Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 1998, 102 (52), 10871-10878. 35. Grela, M. A.; Colussi, A. J., Kinetics of stochastic charge transfer and recombination events in semiconductor colloids. relevance to photocatalysis efficiency. J. Phys. Chem. 1996, 100 (46), 18214-18221. 36. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277 (5698), 637-638. 37. Ikeda, S.; Sugiyama, N.; Pal, B.; Marci, G.; Palmisano, L.; Noguchi, H.; Uosaki, K.; Ohtani, B., Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions: Correlation with electron-hole recombination kinetics. Phys. Chem. Chem. Phys. 2001, 3 (2), 267-273. 38. Li, Q.; Zong, L.; Li, C.; Yang, J., Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl. Surf. Sci. 2014, 314, 458-463. 39. Marcì, G.; García-López, E. I.; Palmisano, L., Photocatalytic CO2 reduction in gas–solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light. Catal. Lett. 2014, 53, 38-41. 40. Tang, C.; Hou, W.; Liu, E.; Hu, X.; Fan, J., CeF3/TiO2 composite as a novel visible-light-driven photocatalyst based on upconversion emission and its application for photocatalytic reduction of CO2. J. Lumin. 2014, 154, 305-309. 41. Jiao, J.; Wei, Y.; Zhao, Z.; Liu, J.; Li, J.; Duan, A.; Jiang, G., Photocatalysts of 3D ordered macroporous TiO2-supported CeO2 nanolayers: design, preparation, and their catalytic performances for the reduction of CO2 with H2O under simulated solar irradiation. Ind. Eng. Chem. Res. 2014, 53 (44), 17345-17354. 42. Song, G.; Xin, F.; Chen, J.; Yin, X., Photocatalytic reduction of CO2 in cyclohexanol on CdS–TiO2 heterostructured photocatalyst. Appl. Catal. A-Gen. 2014, 473, 90-95. 43. Gui, M. M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A. R., Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol. Energ. Mat. Sol. Cells. 2014, 122, 183-189. 44. Liu, Y.; Ji, G.; Dastageer, M. A.; Zhu, L.; Wang, J.; Zhang, B.; Chang, X.; Gondal, M. A., Highly-active direct Z-scheme Si/TiO2 photocatalyst for boosted CO2 reduction into value-added methanol. RSC Adv. 2014, 4 (100), 56961-56969. 45. Tahir, M.; Amin, N. S., Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Appl. Catal. A-Gen. 2013, 467, 483-496. 46. Tu, W.; Zhou, Y.; Liu, Q.; Yan, S.; Bao, S.; Wang, X.; Xiao, M.; Zou, Z., An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 2013, 23 (14), 1743-1749. 47. Xie, S.; Wang, Y.; Zhang, Q.; Fan, W.; Deng, W.; Wang, Y., Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem. Commun. 2013, 49 (24), 2451-2453. 48. Liu, E.; Kang, L.; Wu, F.; Sun, T.; Hu, X.; Yang, Y.; Liu, H.; Fan, J., Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance. Plasmonics 2014, 9 (1), 61-70. 49. Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; N. Kondo, J.; Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A., Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 1998, (3), 357-358. 50. Bendavid, L. I.; Carter, E. A., First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces. J. Phys. Chem. B 2013, 117 (49), 15750-15760. 51. Wang, S.; Meng, K. K.; Zhao, L.; Jiang, Q.; Lian, J. S., Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceram. Int. 2014, 40 (4), 5107-5110. 52. Nakamura, M.; Sirghi, L.; Aoki, T.; Hatanaka, Y., Study on hydrophilic property of hydro-oxygenated amorphous TiOx:OH thin films. Surf. Sci. 2002, 507–510, 778-782. 53. Zhang, H.; Yu, X.; McLeod, J. A.; Sun, X., First-principles study of Cu-doping and oxygen vacancy effects on TiO2 for water splitting. Chem. Phys. Lett. 2014, 612, 106-110. 54. Srinivas, B.; Shubhamangala, B.; Lalitha, K.; Anil Kumar Reddy, P.; Durga Kumari, V.; Subrahmanyam, M.; De, B. R., Photocatalytic reduction of CO2 over Cu-TiO2/molecular sieve 5A composite. Photochem. Photobiol. 2011, 87 (5), 995-1001. 55. Liu, L.; Zhao, C.; Pitts, D.; Zhao, H.; Li, Y., CO2 photoreduction with H2O vapor by porous MgO-TiO2 microspheres: effects of surface MgO dispersion and CO2 adsorption-desorption dynamics. Catal. Sci. Tech. 2014, 4 (6), 1539-1546. 56. Liu, L.; Zhao, C.; Li, Y., Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2–x nanoparticles at room temperature. J. Phys. Chem. C 2012, 116 (14), 7904-7912. 57. Yang, L.; Kruse, B., Revised Kubelka-Munk theory. I. Theory and application. J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 2004, 21 (10), 1933-41. 58. Patterson, A. L., The scherrer formula for i-ray particle size determination. Phys. Rev. 1939, 56, 978-982. 59. 瞿佑任, 二氧化鈦表面特性對光催化還原二氧化碳反應活性探討. 2013, 碩士論文. 60. Yang, C.; Hirose, Y.; Nakao, S.; Hoang, N. L. H.; Hasegawa, T., Metal-induced solid-phase crystallization of amorphous TiO2 thin films. Appl. Phys. Lett. 2012, 101 (5). 61. 張立信, Surface Chemical Analysis Techniques. 2012, 19, 4. 62. Chang, S.-M.; Doong, R.-A., The effect of chemical states of dopants on the microstructures and band gaps of metal-doped ZrO2 thin films at different temperatures. J. Phys. Chem. B 2004, 108 (46), 18098-18103. 63. Chang, S.-M.; Hsu, Y.-Y.; Chan, T.-S., Chemical capture of phosphine by a sol−gel-derived Cu/TiO2 adsorbent −interaction mechanisms. J. Phys. Chem. C. 2011, 115 (5), 2005-2013. 64. Slamet; Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J., Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal. Commun. 2005, 6 (5), 313-319. 65. Thinon, O.; Rachedi, K.; Diehl, F.; Avenier, P.; Schuurman, Y., Kinetics and mechanism of the water–gas shift reaction over platinum supported catalysts. Top. Catal. 2009, 52 (13-20), 1940-1945. 66. 劉維斯, 晶體內部與表面摻雜釩離子對二氧化鈦光觸媒物化特性與光催化活性之影響. 2009, 碩士論文. 67. Chang, S.-M.; Liu, W.-S., The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Appl. Catal. B-Environ. 2014, 156–157, 466-475. 68. Sasirekha, N.; Basha, S. J. S.; Shanthi, K., Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal. B-Environ. 2006, 62 (1–2), 169-180. 69. Uner, D.; Oymak, M. M., On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal. Today 2012, 181 (1), 82-88. 70. Hernández-Alonso, M. D.; García-Rodríguez, S.; Suárez, S.; Portela, R.; Sánchez, B.; Coronado, J. M., Operando DRIFTS study of the role of hydroxyls groups in trichloroethylene photo-oxidation over titanate and TiO2 nanostructures. Catal. Today 2013, 206, 32-39.
|