帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:王宥喆
作者(英文):Wang,You-Zhe
論文名稱(中文):摻雜銅離子於二氧化鈦表面對光催化還原二氧化碳特性探討
論文名稱(英文):CO2 reductive behavior on surface doped Cu-TiO2 photocatalysts
指導教授(中文):張淑閔
指導教授(英文):Chang,Sue-Min
口試委員:吳紀聖
董瑞安
陳郁文
口試委員(英文):Wu,Chi-Sheng
Doong,Ruey-An
Chen,Yu-Wen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0151710
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:銅摻雜二氧化鈦光觸媒二氧化碳還原表面摻雜DRIFT即時監測
外文關鍵詞:Cu-doped TiO2 photocatalystsCO2 reductionSurface dopingDRIFT monitoring
相關次數:
  • 推薦推薦:0
  • 點閱點閱:145
  • 評分評分:*****
  • 下載下載:78
  • 收藏收藏:0
本研究利用溶膠-凝膠法製備表面摻雜銅離子之二氧化鈦光觸媒材料以進行光催化還原CO2產CH4的研究,研究中將分別探討Cu-TiO2的材料性質(包括Cu離子價態及表面摻雜厚度)與光催化系統條件(包括環境氣氛及光源)對光催化活性之影響。研究結果指出1 at.% Cu-TiO2在第一小時的CH4產率(1.28 µmolg-1)是P-25的3.6倍,而CH4產率在10 at.% Cu-TiO2系統中則隨時間緩升,四小時後的總產率是第一小時的10倍,ESCA結果顯示Cu離子在1 at.%及5 at.% Cu-TiO2¬樣品中以Cu+為主,而在10 at.%及20 at.% Cu-TiO2中則以Cu2+為主,兩種不同Cu物種型態造成不同還原動力特性,另外表面摻雜厚度為60 nm時觸媒有最好的CH4產率,低於此厚度,表面Cu離子含量不足以有效抑制電荷再結合,超過此厚度,捕捉的電子不易傳遞至表面而降低電荷利用率。環境氣氛調控下發現,H2O及CO2彼此間處於競爭狀態,讓兩者同時佔據表面反應位置會有最高反應效率。在激發光源上我們發現以UVB光源活化光觸媒在強度為40 μW cm-2時有最好光催化活性,由於電荷利用效率遠低於產生速率,過多表面電荷將導致再結合速率上升,因此CH4產率並不隨著光強度的增強而提升。藉由DRIFT分析還原過程中化學鍵結變化的結果指出,CO2於表面接受電子後先並形成CO2-,接著質子化產生CH4或先形成碳酸鹽類再形成CH4。
In this study, we doped Cu ions into TiO2 surface lattice through a sol-gel method and investigated the photocatalytic behavior of the Cu-TiO2 photocatalysts for reduction of CO2 into CH4. The effects of doping concentrations, doping thicknesses, and operational conditions on the reductive kinetics were examined. In addition, the types of dopants and the surface speciation were characterized to clarify the roles of Cu ions in the reductive kinetics and mechanisms. Results showed that the 1 at.% Cu-TiO2 powders produced 1.28 µmolg-1 CH4 in the first hour, which was 3.6 times higher than the yield by P-25. The 10 at.% Cu-TiO2 sample was less photoactive in the beginning, but progressively generated CH4 with the irradiation time. The total yield after irradiating for four hours was ten times higher than that within the first hour. ESCA analysis indicates that Cu+ ions were predominant in the 1 at.% and 5 at.% Cu-TiO2 samples, while Cu2+ ions were the majority in the 10 at.% and 20 at.% Cu-TiO2 samples. The two types of the Cu ions and their distributions in the surface lattice lead to the different reductive behaviors. The optimal doping thickness for the highest reductive rate was 60 nm. Lower than the thickness, the Cu loading is insufficient to effectively inhibit charge recombination. On the other hand, the trapped charge carriers in the deeper surface are unable to tunnel to the adsorbed species when the doping thickness is higher than the critical value, thus reducing the activity. CO2 and H2O molecules in the reductive system compete to occupy the surface active sites. Simultaneous adsorption of the two reactants performed the highest reductive efficiency. Irradiation with UVB light with 40 μWcm-2 led to the highest CH4 yield. Because the interfacial charge transfer was inefficient, higher light intensity did not enhance the reducing rate. In-situ DRIFT monitoring reveals that CO2 molecules receive electrons to form CO2- species after adsorption. The CO2- species is then converted into CH4 through protonation, or turned into carbonates species followed by transformation toward CH4.
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 光觸媒簡介 3
2.1.1 光觸媒之發展背景及種類 3
2.1.2 二氧化鈦光觸媒 4
2.2 光觸媒還原二氧化碳 7
2.2.1 光催化反應原理 7
2.2.2 光催化還原二氧化碳反應機制 8
2.2.3 系統相態種類與差異 9
2.2.4 電子電洞對利用效率 10
2.3 共觸媒修飾 12
2.3.1 共觸媒種類與差異 12
2.3.2 銅鈦光觸媒結構與性質 15
2.4 光觸媒表面反應行為 19
2.4.1 共觸媒反應情形 19
2.4.2 FTIR-DRIFT對表面行為探討 19
第三章 研究方法 22
3.1 實驗架構 22
3.2 藥品 23
3.3 光觸媒材料合成方法 23
3.3.1 表面銅摻雜二氧化鈦合成方式 23
3.3.2 調控表面摻雜厚度之合成方式 25
3.4 應用於個別儀器分析之材料合成方式 26
3.4.1 用於ESCA分析之樣品製備方式 26
3.4.2 用於GIXRD分析之樣品製備方式 27
3.4.3 用於SEM分析之樣品製備方式 28
3.5 材料鑑定分析 28
3.5.1 紫外光-可見光光譜儀(UV-Visible Spectrophotometer) 28
3.5.2 等溫氮氣吸脫附分析(Nitrogen Adsorption-Desorption Isotherm Measrurment) 29
3.5.3 X光粉末繞射儀(X-ray Powder Diffraction Spectrum, XRD) 29
3.5.4 化學分析電子儀(Electron Spectroscopy for Chemical Analysis, ESCA) 30
3.5.5 感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry, ICPMS) 31
3.5.6 飛行時間二次離子質譜儀(Time-of-Flight Secondary Ion Mass Spectrometer, TOF-SIMS) 31
3.5.7 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 31
3.5.8 電子式掃描顯微鏡(Scanning Electron Microscopy, SEM) 32
3.5.9 二氧化碳程式升溫脫附分析(CO2-TPD) 32
3.6 光催二氧化碳還原系統 33
3.6.1 人工光催系統設備 33
3.6.2 氣相層析儀器之參數設定 34
3.6.3 光催化還原實驗操作步驟 34
3.7 Diffuse reflectance infrared Fourier transforms(DRIFT)即時監測系統 35
3.7.1 In-situ光催還原反應監測設備 35
3.7.2 光催還原反應即時監測系統架設步驟 36
第四章 結果與討論 37
4.1 材料特性鑑定 37
4.1.1 銅離子摻雜濃度調控 37
4.1.2 表面摻雜厚度調控 44
4.2 光催化反應效率 50
4.2.1 Cu-TiO2表面不同Cu濃度之光催效率 50
4.2.2 不同前處理步驟的光催化效率 52
4.2.3 不同光源光強度之光催效率 54
4.2.4 Cu-TiO2表面摻雜厚度之光催效率 55
4.3 光催表面行為 58
第五章 結論 63
1. American clean energy and security act of 2009. 2009.
2. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013, 52 (29), 7372-7408.
3. (a) Zhang, Q.; Gao, T.; Andino, J. M.; Li, Y., Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor. Appl. Catal. B-Environ. 2012, 123, 257-264; (b) Peng, Y.-P.; Yeh, Y.-T.; Shah, S. I.; Huang, C. P., Concurrent photoelectrochemical reduction of CO2 and oxidation of methyl orange using nitrogen-doped TiO2. Appl. Catal. B-Environ. 2012, 123, 414-423.
4. Ganesh, I.; Kumar, P. P.; Annapoorna, I.; Sumliner, J. M.; Ramakrishna, M.; Hebalkar, N. Y.; Padmanabham, G.; Sundararajan, G., Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci. 2014, 293, 229-247.
5. Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C. M. A.; Lee, A. F.; Wu, J. C. S., On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catal. Commun. 2012, 25, 78-82.
6. Ovcharov, M. L.; Shvalagin, V. V.; Granchak, V. M., Photocatalytic reduction of CO2 on mesoporous TiO2 modified with Ag/Cu bimetallic nanostructures. Theor. Exp. Chem. 2014, 50 (3), 175-180.
7. Chang, S.-M.; Liu, W.-S., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl. Catal. B-Environ. 2011, 101 (3–4), 333-342.
8. Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A., High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9 (2), 731-7.
9. Qin, S.; Xin, F.; Liu, Y.; Yin, X.; Ma, W., Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. J. Colloid Interface Sci. 2011, 356 (1), 257-261.
10. Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y., Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core–shell structure. Angew. Chem. Int. Ed. 2013, 52 (22), 5776-5779.
11. Wu, W.; Bhattacharyya, K.; Gray, K.; Weitz, E., Photoinduced reactions of surface-bound species on titania nanotubes and platinized titania nanotubes: an in situ FTIR study. J. Phys. Chem. C. 2013, 117 (40), 20643-20655.
12. Liu, L.; Gao, F.; Zhao, H.; Li, Y., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B-Environ. 2013, 134–135, 349-358.
13. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. 2013, 52 (29), 7372-7408.
14. Hashimoto, K.; Irie, H.; Fujishima, A., TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 1 2005, 44 (12), 8269-8285.
15. Gratzel, M., Photoelectrochemical cells. 2001, 414 (6861), 338-344.
16. Phase diagrams for ceramists figure. J. Am. Ceram. Soc. 1975, 4150~4999.
17. 林宸嶢, 鍛燒溫度對釩離子摻雜二氧化鈦光觸媒物化與光催化還原二氧化碳特性研究. 2011, 碩士論文.
18. Ding, Z.; Lu, G. Q.; Greenfield, P. F., Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B 2000, 104 (19), 4815-4820.
19. Quang Duc, T.; Thi Hang, L.; Liu, J.-Y.; Chung, C.-C.; Ling, Y.-C., Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO2 to CH3OH. Appl. Catal. A-Gen. 2012, 437, 28-35.
20. Janisch, R. G., P.; Spaldin, Transition metal-doped TiO2 and ZnO—present status of the field. 2005, 17 (27), R657-R689.
21. 林榮良, TiO2光催化原理和應用例子. 2002, Vol. 60, No. 3, pp.457~461.
22. Tatsuto Yui, Y. T., Keita Sekizawa, Osamu Ishitani, Photocatalytic reduction of CO2: from molecules to semiconductors. Top. Curr. Chem. 2011, 303, 2011, pp 151-184.
23. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95 (3), 735-758.
24. Tseng, I. H.; Chang, W.-C.; Wu, J. C. S., Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B-Environ. 2002, 37 (1), 37-48.
25. Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T., Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J. Photochem. Photobiol. 1998, 115 (3), 223-226.
26. Liu, B.-J.; Torimoto, T.; Yoneyama, H., Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem. Photobiol. 1998, 113 (1), 93-97.
27. Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J.-S.; Wu, H.-H., Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catal. Lett. 2009, 131 (3-4), 381-387.
28. Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal. B-Environ. 2010, 100 (1–2), 386-392.
29. Fujishima, A.; Zhang, X.; Tryk, D. A., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63 (12), 515-582.
30. 胥穎亞, 鋯離子摻雜與金沈積對中孔洞二氧化鈦微結構與光催化還原二氧化碳研究. 碩士論文.
31. 盧泓;蔡嘉恩, 二氧化鈦光觸媒的應用. 2013.
32. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O., Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B-Environ. 2009, 89 (3–4), 494-502.
33. Lin, H.; Huang, C. P.; Li, W.; Ni, C.; Shah, S. I.; Tseng, Y.-H., Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B-Environ. 2006, 68 (1–2), 1-11.
34. Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J. Y., Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 1998, 102 (52), 10871-10878.
35. Grela, M. A.; Colussi, A. J., Kinetics of stochastic charge transfer and recombination events in semiconductor colloids. relevance to photocatalysis efficiency. J. Phys. Chem. 1996, 100 (46), 18214-18221.
36. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277 (5698), 637-638.
37. Ikeda, S.; Sugiyama, N.; Pal, B.; Marci, G.; Palmisano, L.; Noguchi, H.; Uosaki, K.; Ohtani, B., Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions: Correlation with electron-hole recombination kinetics. Phys. Chem. Chem. Phys. 2001, 3 (2), 267-273.
38. Li, Q.; Zong, L.; Li, C.; Yang, J., Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl. Surf. Sci. 2014, 314, 458-463.
39. Marcì, G.; García-López, E. I.; Palmisano, L., Photocatalytic CO2 reduction in gas–solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light. Catal. Lett. 2014, 53, 38-41.
40. Tang, C.; Hou, W.; Liu, E.; Hu, X.; Fan, J., CeF3/TiO2 composite as a novel visible-light-driven photocatalyst based on upconversion emission and its application for photocatalytic reduction of CO2. J. Lumin. 2014, 154, 305-309.
41. Jiao, J.; Wei, Y.; Zhao, Z.; Liu, J.; Li, J.; Duan, A.; Jiang, G., Photocatalysts of 3D ordered macroporous TiO2-supported CeO2 nanolayers: design, preparation, and their catalytic performances for the reduction of CO2 with H2O under simulated solar irradiation. Ind. Eng. Chem. Res. 2014, 53 (44), 17345-17354.
42. Song, G.; Xin, F.; Chen, J.; Yin, X., Photocatalytic reduction of CO2 in cyclohexanol on CdS–TiO2 heterostructured photocatalyst. Appl. Catal. A-Gen. 2014, 473, 90-95.
43. Gui, M. M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A. R., Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol. Energ. Mat. Sol. Cells. 2014, 122, 183-189.
44. Liu, Y.; Ji, G.; Dastageer, M. A.; Zhu, L.; Wang, J.; Zhang, B.; Chang, X.; Gondal, M. A., Highly-active direct Z-scheme Si/TiO2 photocatalyst for boosted CO2 reduction into value-added methanol. RSC Adv. 2014, 4 (100), 56961-56969.
45. Tahir, M.; Amin, N. S., Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Appl. Catal. A-Gen. 2013, 467, 483-496.
46. Tu, W.; Zhou, Y.; Liu, Q.; Yan, S.; Bao, S.; Wang, X.; Xiao, M.; Zou, Z., An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 2013, 23 (14), 1743-1749.
47. Xie, S.; Wang, Y.; Zhang, Q.; Fan, W.; Deng, W.; Wang, Y., Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem. Commun. 2013, 49 (24), 2451-2453.
48. Liu, E.; Kang, L.; Wu, F.; Sun, T.; Hu, X.; Yang, Y.; Liu, H.; Fan, J., Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance. Plasmonics 2014, 9 (1), 61-70.
49. Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; N. Kondo, J.; Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A., Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 1998, (3), 357-358.
50. Bendavid, L. I.; Carter, E. A., First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces. J. Phys. Chem. B 2013, 117 (49), 15750-15760.
51. Wang, S.; Meng, K. K.; Zhao, L.; Jiang, Q.; Lian, J. S., Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceram. Int. 2014, 40 (4), 5107-5110.
52. Nakamura, M.; Sirghi, L.; Aoki, T.; Hatanaka, Y., Study on hydrophilic property of hydro-oxygenated amorphous TiOx:OH thin films. Surf. Sci. 2002, 507–510, 778-782.
53. Zhang, H.; Yu, X.; McLeod, J. A.; Sun, X., First-principles study of Cu-doping and oxygen vacancy effects on TiO2 for water splitting. Chem. Phys. Lett. 2014, 612, 106-110.
54. Srinivas, B.; Shubhamangala, B.; Lalitha, K.; Anil Kumar Reddy, P.; Durga Kumari, V.; Subrahmanyam, M.; De, B. R., Photocatalytic reduction of CO2 over Cu-TiO2/molecular sieve 5A composite. Photochem. Photobiol. 2011, 87 (5), 995-1001.
55. Liu, L.; Zhao, C.; Pitts, D.; Zhao, H.; Li, Y., CO2 photoreduction with H2O vapor by porous MgO-TiO2 microspheres: effects of surface MgO dispersion and CO2 adsorption-desorption dynamics. Catal. Sci. Tech. 2014, 4 (6), 1539-1546.
56. Liu, L.; Zhao, C.; Li, Y., Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2–x nanoparticles at room temperature. J. Phys. Chem. C 2012, 116 (14), 7904-7912.
57. Yang, L.; Kruse, B., Revised Kubelka-Munk theory. I. Theory and application. J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 2004, 21 (10), 1933-41.
58. Patterson, A. L., The scherrer formula for i-ray particle size determination. Phys. Rev. 1939, 56, 978-982.
59. 瞿佑任, 二氧化鈦表面特性對光催化還原二氧化碳反應活性探討. 2013, 碩士論文.
60. Yang, C.; Hirose, Y.; Nakao, S.; Hoang, N. L. H.; Hasegawa, T., Metal-induced solid-phase crystallization of amorphous TiO2 thin films. Appl. Phys. Lett. 2012, 101 (5).
61. 張立信, Surface Chemical Analysis Techniques. 2012, 19, 4.
62. Chang, S.-M.; Doong, R.-A., The effect of chemical states of dopants on the microstructures and band gaps of metal-doped ZrO2 thin films at different temperatures. J. Phys. Chem. B 2004, 108 (46), 18098-18103.
63. Chang, S.-M.; Hsu, Y.-Y.; Chan, T.-S., Chemical capture of phosphine by a sol−gel-derived Cu/TiO2 adsorbent −interaction mechanisms. J. Phys. Chem. C. 2011, 115 (5), 2005-2013.
64. Slamet; Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J., Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal. Commun. 2005, 6 (5), 313-319.
65. Thinon, O.; Rachedi, K.; Diehl, F.; Avenier, P.; Schuurman, Y., Kinetics and mechanism of the water–gas shift reaction over platinum supported catalysts. Top. Catal. 2009, 52 (13-20), 1940-1945.
66. 劉維斯, 晶體內部與表面摻雜釩離子對二氧化鈦光觸媒物化特性與光催化活性之影響. 2009, 碩士論文.
67. Chang, S.-M.; Liu, W.-S., The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Appl. Catal. B-Environ. 2014, 156–157, 466-475.
68. Sasirekha, N.; Basha, S. J. S.; Shanthi, K., Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal. B-Environ. 2006, 62 (1–2), 169-180.
69. Uner, D.; Oymak, M. M., On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal. Today 2012, 181 (1), 82-88.
70. Hernández-Alonso, M. D.; García-Rodríguez, S.; Suárez, S.; Portela, R.; Sánchez, B.; Coronado, J. M., Operando DRIFTS study of the role of hydroxyls groups in trichloroethylene photo-oxidation over titanate and TiO2 nanostructures. Catal. Today 2013, 206, 32-39.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *