帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:郭彥志
作者(英文):kuo,Yen-chih
論文名稱(中文):以薄膜生物系統處理太陽能電池製程含氮廢水
論文名稱(英文):The Treatment of Nitrogenous Wastewater from the Solar-Cell- Manufacturing Process Using a Membrane Bioreactor System
指導教授(中文):張淑閔
周珊珊
指導教授(英文):Chang,Sue-min
Chou,Shan-shan
口試委員:張淑閔
周珊珊
黃志彬
口試委員(英文):Chang,Sue-min
Chou,Shan-shan
Huang,Chih-pin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院永續環境科技學程
學號:0061515
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:固定式生物硝化技術(BioNET)側流式薄膜生物技術氨氮硝化厭氧脫硝低碳氮比廢水碳源
外文關鍵詞:Biological New Environmental Technology (BioNET)Sidestream Membrane Bioreactor TechnologyNitrificationDenitrificationlow C/N wastewaterCarbon Source
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
隨著科技產業不斷蓬勃發展,各產品製程排放的廢水中,所含氮物質對環境的影響逐漸引起環保單位重視,因氨氮排入於環境水體後,會消耗水中溶氧,造成水質惡化、水體優養化及危害水中生物等,且依據環保署調查結果,光電業及科學園區之氨氮排放量占產業氨氮總排放比率之34%,有必要納入管制。
環保署於2012年起發布增訂氨氮管制排放水標準,要求光電業及科學園區既設工廠限期改善削減排放氨氮濃度,在眾多的含氮廢水削減技術中,薄膜生物處理程序具有可高污泥濃度操作、節省設置空間、低污泥產量等優點,為本研究中增建廢水處理設施之首選技術。
太陽能電池製造工廠屬於光電業中的一環,此產業抗反射膜製作流程會大量使用矽甲烷與氮氣,進而產生氨氮廢水,其具低碳氮比之水質特性,必須額外添加碳源提供生物硝化及脫硝反應所需,本研究藉由實廠薄膜生物程序(O/A/O+MBR),主要探討外加碳源控制操作下,於長時間運轉後對其生物硝化作用、脫硝反應及薄膜產水效能之穩定性。
在本研究薄膜生物程序試車運轉後,連續穩定操作達61天中;硝化槽進流水pH平均為 9.4,在添加鹼劑硝化後,出流水質pH平均為 6.8 具有相當穩定的控制結果;厭氧脫硝反應結果上,外加碳源之碳氮比控制平均於6.12時,氧化還原電位值可操作在-400 mV至-500 mV之間,此條件下經再曝氣槽處理後出流水氨氮及硝酸鹽氮濃度幾乎完全被去除;脫硝後pH平均為7.7不需額外添加酸鹼藥劑即可達排放標準; 在側流式薄膜生物技術應用上,維持穩定之薄膜產水通量與跨膜壓差控制,可推估實廠中薄膜產水通量34 ~38 L/m2-hr 操作下為保守之臨界通量控制,相對於沉浸式薄膜技術上有較大的產水通量效能。
本研究結果中顯示,此低碳氮比廢水氨氮去除率均可控制於 83% ~ 98% 之間,在適當的碳源添加控制下有極佳穩定的除氮效能表現,且能符合新竹科學園區下水道使用排放氨氮分級收費管制限值30 mg/L以下。
In recent years, the rocketing development of industrial manufacturing such as semiconductor or optoelectronic industries in Taiwan has caused a large amount of wastewater being discharged into the environment. Ammonia is one of the main pollutants released from these kinds of wastewater. According to a survey from the Environmental Protection Administration, ammonia containing wastewater from optoelectronic industry and Science Park was 34% of total amount of wastewater produced. Because of its negative impacts on environment such as causing the oxygen depletion and eutrophication phenomenon, ammonia is regulated by Taiwan government and needed to be removed from the wastewater.
In 2012, new standard for the ammonia concentration in the effluent from optoelectronic industry and Science Park was released, thus needing an improvement in treating ammonia containing wastewater. The wastewater from optoelectronic industry contains high concentration of ammonia but low concentration of carbon to nitrogen ratio; thus, carbon source is external added during the nitrification and denitrification processes. Among ammonia treatment technologies, membrane bioreactor becomes a candidate for the treatment of ammonia because of its high sludge retention time (SRT), low sludge production and low footprint.
This study aims to use O/A/O+MBR process to treat the ammonia containing wastewater from the optoelectronic industry. Herein, the effect of internal carbon source on ammonia removal by O/A/O+MBR system was investigated. In addition, long-term operation of the O/A/O+MBR was observed. During 61 days operation, the average pH of the influent of the nitrification reactor was 9.4, while it was maintained around 6.8 at the effluent after pH adjustment. Oxidation Reduction Potential (ORP) of the reactor was in range of -400 mV - -500mV. Under these conditions, ammonia and nitrate were almost reduced. After denitrification process, the average pH of the reactor was 7.7; therefore, it was appropriate to discharge into the water receiving bodies. The flux of the cross flow MBR remained at 34-38 L/m2-h. The results from this study also found that the ammonia removal was 83% - 98% under low C/N ratio.
Under appropriate carbon source addition, the ammonia concentration at the effluent of the bioreactor was lower than 30 mg/L of effluent standard.
摘要 I
Abstract II
誌謝 IV
圖目錄 VII
表目錄 IX

第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 太陽能電池製程與廢水特性 3
2.1.1 太陽能電池製程概述 3
2.1.2 太陽能電池製程廢水分類 5
2.2 含氮廢水生物處理技術原理及應用 7
2.2.1 氨氮硝化 7
2.2.2 影響硝化因子 8
2.2.3 固定式生物硝化技術 11
2.2.4 硝酸鹽氮脫硝 12
2.2.5 影響脫硝因子 13
2.2.6 薄膜生物(MBR)處理程序 14
2.2.7 影響薄膜操作因子 18
2.3 側流式薄膜技術及應用 20
2.3.1 側流式氣提薄膜技術原理 20
2.3.2 側流式氣提薄膜操作行程 21
第三章 實驗設備與方法 25
3.1 研究架構 25
3.2 研究設備 26
3.2.1 廢水水質與水量背景 26
3.2.2 薄膜生物廢水處理系統流程 26
3.2.3 氨氮廢水前處理設備與規格 27
3.2.4 BioNET硝化槽設備與規格 29
3.2.5 厭氧脫硝反應槽設備與規格 30
3.2.6 再曝氣反應槽與薄膜模組設備及規格 31
3.3 分析儀器與方法 35
3.3.1 水質分析儀器 35
3.3.2 水質分析方法 35
第四章 結果與討論 37
4.1 氨氮廢水水質分析 37
4.2 系統試車啟動參數與調整 39
4.2.1 生物系統試車啟動參數 39
4.2.2 薄膜模組試車啟動參數與調整 41
4.3 氨氮廢水前處理功能分析 44
4.3.1 氨氮廢水前處理化學混凝沉澱效能 44
4.3.2 氨氮廢水前處理每日水量負荷 45
4.3.3 氨氮廢水前處理水質緩衝調勻能力 46
4.4 BioNET硝化反應功能分析 47
4.4.1 硝化槽氨氮每日平均進水濃度與體積負荷變化 47
4.4.2 硝化反應中鹼劑添加量與pH值的變化 48
4.4.3 硝化反應中溶氧的變化 50
4.5 厭氧脫硝化反應功能分析 52
4.5.1 脫硝反應中pH值的變化 52
4.5.2 碳源添加量對脫硝氧化還原電位之影響 53
4.5.3 氧化還原電位的變化對脫硝反應的影響 54
4.6 再曝氣反應功能測試 55
4.6.1 再曝氣槽pH水質變化 55
4.6.2 再曝氣槽溶氧變化 56
4.6.3 再曝氣槽MLSS濃度變化 57
4.6.4 再曝氣槽殘留COD濃度的變化 58
4.7 薄膜產水功能測試 60
4.7.1 薄膜跨膜壓力變化與穩定性分析 60
4.7.2 薄膜產水通量與產水效能分析 61
4.8 氨氮廢水處理效能分析 64
第五章 結論與建議 65
5.1 結論 65
5.2 建議 67
參考文獻 68
Bilanovic, D., Battistoni, P., Cecchi, F., Pavan, P., Mata-alvarez, J. (1999).Denitrification under hogh nitrate concenyration and alternating anoxic conditions. Wat. Res. 33(15): 3311-3320.
Biswas, S., Bose, P.,( 2005). Zero-valent iron-assisted autotrophic denitri-fication. J. Environ. Eng. 131 (8), 1212–1220.
Bouhabila E., H. R. Ben, H. Buisson. (2001). Fouling Characterization in Membrane Bioreactor. B. P. pp.76- 78.
Constantin, H., Fick, M. (1997). Influence of C-sources on the denitrification rate of a hogh-nitrate concentrated industrial wastewater. Wat. Res. 31(3): 583-589
Delwiche, C. C.(1956). Denitrification in a symposium inorganic nitrogen metabolism. (Edited by McElroy, W. D. and Glass, B.) Johns Hopkins. Baltimore: 233-259
Ergas, S.J., Reuss, A.F., (2001). Hydrogenotrophic denitrification ofdrinking water using a hollow fibre membrane bioreactor. J. Water Supply: Res. Technol.—AQUA 50 (3), 161–171.
Foglar, L., Briski, F., Sipos, L., Vukovic, M., (2005). High nitrate removal from synthetic wastewater with the mixed bacterial culture. Biores. Technol. 96, 879–888.
Glass, G., Silverstein, J. (1998). Denitrification kinetics of high nitrate concentration water : pH effect on inhibition and nitrite accumulation. Wat. Res. 32(3): 831-839.
Hallin, S., Pell, M. (1998). Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Wat. Res. 32(1): 13-18
Hong, Z., Hanaki, K., and Mastsuo, T. (1994) “Greenhouse Gas-N2o Production DuringDenitrification in Wastewater Treatment” Water Science and Technology 39: 13-21
Huang, C. J. and Liu, J. C., (1999) “Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer", Water Research, 33(16), 3403-3412.
Klemedtsson, L., Jiang, Q., KasimirKlemedtsson, A., and Bakken, L. (1999) “Autotrophic Ammonium-Oxidising Bacteria in Swedish Mor Humus” Soil Biology and Biochemistry 31: 839-847
Lito , P. F., Aniceto, J. P. S., Silva, C.M., (2012), Removal of Anionic Pollutants from Waters and Wastewaters and Materials Perspective for Their Selective Sorption, Water Air Soil Pollut, 223,p.6133–6155
Livingston, A. G. (1994). Extractive membrane bioreactor: A new process technology for detoxifying chemical industry watewaters. J. Chem. Technol. Biotechnol. 60, 117-124.
Nagaoka H., Kono S., Yamanishi S. and Miya A. (1999). Influence of Organic Loading Rate on Membrane Fouling in Membrane Separation Activated Sludge Process. International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan, November 1-4, pp. 242-249
Narkis, N., Rebhun, M., Sheindorf CH.( 1979). Denitrificaton at various carbon to nitrogen ratios. War. Res. 19: 93-98
Itokawa, H., Hanaki, K., and Matsuo, T. (2001) “Nitrous Oxide Production in High-Loading Biological Nitrogen Removal Process under Low Cod/N Ratio Condition” Water Research 35: 657-664.
Izumi K., Madokoro T. and Yamada Y. (1995). The Practical Use of Membrane Process for Domestic Wastewater Treatment. Shigen Kankyo Taisaku, 31(11), pp. 923-930.
Painter H. (1970) A Review of Literature on Inorganic Nitrogen Metabolism in Micro-Organisms, Wat. Res., 4(6): 393.
Sharma, B., and Ahlert, R.C. (1977) “Nitrification and Nitrogen Removal” Water Research 11: 897-925.
Stenstrom, M.K., and Poduska, R.A. (1980) “The Effect of Dissolved Oxygen Concentration on Nitrification “Water Research 14: 643-649.
Stephenson, T., Judd, S., Jefferson, B., Brindle, K. (2000) Membrane bioreacters for wastewater treatment. IWA, London.
Tanaka, H., Uzman, S., and Dunn, I.J. (1981) “Kinetics of Nitrification Using a Fluidized Sand Bed Reactor with Attached “Growth.Biotechnology and Bioengineering 23: 1683-1702.
Tom S., S. Judd, B. Jefferson and K. Brindle. (2000). Membrane Bioreactors for Wastewater Treatment. IWA, London.
U.S. Environmental Protection Agency (1975), "Nitrogen Control",Office of wastewater Enforcement and Compliance, Washington, D.C.
Wid, H. E., Sawyer, C. N., McMahon, T. C. (1971). Factors affecting nitrification kinetics. J. WPCF. 43(9): 1945-1954
Yamamoto K., Hiasa M., Mahmood T. and Matsuo T., (1989). Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank. Wat. Sci. Tech., 21, pp. 43-54.
范姜仁茂.,(2009)薄膜生物反應器(MBR)於廢水處理之技術評析,工業防治,第109期
傅崇德.,(2013)氨氮管制之現況及處理技術展望,桃園市大學校院產業環保技術服務團,環保簡訊,第 20 期
科學工業園區管理局., (2013)新竹、竹南及龍潭園區污水下水道可容納排入水質標準暨使用費計價基準修訂草案簡報
黃志彬,(2002)高科技工業廢水處理操作效能提升研析,第一屆高科技工業環保技術及安全衛生學術及實務研討會,第23-35頁
陳子秦., (2008) 太陽能電池產業製程及污染防治簡介,經濟部工業局產業資訊網,環保技術e報,第58期
社團法人台灣環境管理協會., (2013)科學園區氨氮削減技術評估及納管廠商氨氮削減輔導計畫,成果報告初稿
游惠宋., (2013)高科技產業氨氮廢水生物處理程序,高科技產業能源與環境保護國際研討會
康美祝,(2002) MBR除氮系統特性之研究,國立中央大學環境工程研究所,碩士論文
許鎮龍,(2000)生物擔體渠道淨化二級生物處理放流水氮化物之特性探討,國立中央大學環境工程研究所,博士論文
彭淑惠,(2014),含TMAH廢水生物處理及生物毒性減量評估,國立交通大學工學院永續環境科技學程,碩士論文
張子龍,(2006)MBR系統於高氨氮廢水之研究,國立臺北科技大學環境規劃與管理研究所,碩士論文
黃紹謙,(2009)模型廠薄膜生物反應系統處理低碳氮比廢水之研究,國立交通大學環境工程研究所,碩士論文
簡筑伃,(2013)操作因子對薄膜生物反應器處理成效與溶解性微生物產物特性之探討,國立中央大學環境工程研究所,碩士論文
陳依旻,(2011)薄膜生物處理系統(MBR)中溶解性微生物產物(SMP)特性與影響之研究,國立中央大學環境成研究所,碩士論文.
徐崇銘,(2013薄膜生物反應器處理觸控面板廠廢水之效能,屏東科技大學環境工程與科學系,碩士論文
徐美綸,(2003)半導體及光電事業排放含氮有機物之生物分解特性研究,國立中山大學環境工程研究所,碩士論文
賴家宏,(2015)A2O生物處理程序對廢水中氨氮及TMAH去除效率之研究,弘光科技大學環境工程研究所,碩士論文
於維芬,(2010)污泥停留時間對於薄膜生物反應槽中胞外聚合物形成與積垢速率之影響,國立交通大學環境工程研究所,碩士論文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *