帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:瞿佑任
作者(英文):Chu, Yu-Jen
論文名稱(中文):二氧化鈦表面特性對光催化還原二氧化碳反應活性探討
論文名稱(英文):Surface-property-controlled photocatalytic activity of TiO2 for CO2 reduction
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
口試委員:吳紀聖
白曛綾
陳郁文
口試委員(英文):Wu, Chi-Sheng
Bai, Hsun-Ling
Chen, Yu-Wen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:0051725
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:74
中文關鍵詞:光催化還原 CO2人工光合作用鐵摻雜表面氫氧官能基密度光強度
外文關鍵詞:Photoreduction of CO2,artificial photosynthesisiron-dopingsurface hydroxyl group densitylight intensity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:35
  • 收藏收藏:0
本研究利用溶膠-凝膠法製備以二氧化鈦(TiO2)為基材的光觸媒,仿照綠色植物 進行人工光合作用還原 CO2 產生 CH4,並釐清材料表面性質(如、氫氧官能基密度與鐵 修飾濃度)與環境因子(如、分散方式以及光強度)對於還原活性之影響。研究結果指 出 Thiele modulus 於本系統中介於 0.012 - 0.019,顯示速率限制步驟為化學反應,而可 忽略掉質傳上的影響。負載方式以直接分散法,具有最佳 CH4 產生量(1.52 μmol g-1), 而對於TiO2經過含水的氧氣前處理後,表面氫氧官能基密度由3.7提升至7.2 #OH nm-2, 初始反應速率則由 0.39 μmol g-1 h-1 提升至 1.19 μmol g-1 h-1,還原活性提升 3.1 倍,來自 於 TiO2 表面經光誘導後變為超親水性質與去除表面積碳所致。另種改善表面性質的方 式,是利用 0.1 at.%鐵表面修飾的 Fe-TiO2 光觸媒,在表面氫氧官能基密度為 11.6 #OH nm-2 時,初始反應速率達到 1.72 μmol g-1 h-1,其量子效率為 6.8%,相較單純 TiO2 光催 化還原活性提升 1.5 倍(1.13 μmol g-1 h-1)。而表面鐵摻雜量達 40 at.%時,最高甲烷產 量(3.35 μmol g-1)相較於 0.1 at.%狀況,提升了 1.9 倍的 CO2 還原活性。而對於釐清電 荷利用率與再結合速率,將光觸媒於不同光強度測試中,得到最佳光強度操作闕值位於 147μW cm-2。
In this study, the photocatalytic behavior of pure and Fe-surface-doped TiO2 photocatalsts for CO2 reduction is carried out under different loading types of the catalysts, humidity, and light intensity to clarify the contributions of doped Fe ions and density of hydroxyl groups to the photocatalytic activity. Direct dispersion of the photocatalysts in the reactor showed the highest CH4 yield for the gaseous system. The Thiele modulus in the range of 0.012-0.019 indicates the surface reaction, rather than mass diffusion, determines the kinetics. Pre-treatment of the catalysts with UV irradiation in the presence of O2 and H2O vapor increased surface density of hydroxyl groups, thus raising the reductive activity by 3.1 times. Incorporation of Fe ion in the surface lattice further improved the reductive activity in the humified CO2 atmosphere by 1.5 times due to enhanced surface acidity, though it reduced the activity a bit in the absence of H2O vapor. The optimal light intensity for the most efficient reduction is 147 μW cm-2. The highest quantum efficiency of 6.8 % was achieved when 0.1 at.% Fe-doped TiO2 was irradiated with UV light under the optimal light intensity and in the presence of water vapor. The highest accumulated CH4 yield of 3.35 μmol g-1 was produced by 40.0 at.% Fe-doped TiO2 after 4-hour irradiation. The lower reduction potential of the holes resulting from the segregated iron oxide clusters retard the oxidation of the products.
摘要...............................................I
Abstract...............................................II
致謝...............................................III
目錄...............................................IV
表目錄...............................................VI
圖目錄...............................................VII
第一章、前言...............................................1
1.1 研究動機...............................................1
1.2 研究目的...............................................2
第二章、文獻回顧...............................................3
2.1 光觸媒簡介...............................................3
2.1.1 二氧化鈦光觸媒...............................................3
2.1.2 光催化反應原理...............................................6
2.1.3 光觸媒表面金屬修飾...............................................7
2.2 光觸媒還原二氧化碳...............................................10
2.2.1 二氧化碳特性...............................................10
2.2.2 光催化還原二氧化碳反應機制...............................................14
2.3 光觸媒反應環境影響因素...............................................15
2.3.1 光觸媒分散方式...............................................16
2.3.2 光強度...............................................18
2.3.3 水氣濃度...............................................19
第三章、研究方法...............................................22
3.1 藥品...............................................23
3.2 光觸媒材料合成方法...............................................24
3.3 材料鑑定分析...............................................26
3.3.1 紫外光-可見光光譜儀(UV-Visible Spectrophotometer)...............................................26
3.3.2 等溫氮氣吸脫附分析(Nitrogen Adsorption-Desorption Isotherm Measrurment)...............................................27
3.3.3 X光粉末繞射儀(X-ray Powder Diffraction Spectrum, XRD)...............................................27
3.3.4 化學分析電子儀(Electron Spectroscopy for Chemical Analysis, ESCA)...............................................28
3.3.5 感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry, ICP-MS)...............................................28
3.3.6 飛行時間二次離子質譜儀(Time-of-Flight Secondary Ion Mass Spectrometer, TOF-SIMS)...............................................29
3.3.7 電子式掃描顯微鏡(Scanning Electron Microscopy, SEM)...............................................29
3.3.8 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)...............................................30
3.3.9 熱重分析儀(Thermogravimetric Analysis, TGA)...............................................30
3.4 二氧化碳還原系統...............................................31
3.4.1 人工光合作用系統實驗設備...............................................31
3.4.2 氣相層析儀器之參數設定...............................................33
3.4.3 光催化還原實驗操作步驟...............................................33
第四章、結果與討論...............................................36
4.1 材料特性鑑定...............................................36
4.2 光觸媒分散方式...............................................43
4.3 前處理步驟...............................................48
4.4 水氣存在與否對於光催化還原系統影響...............................................50
4.4.1 單純TiO2系統在有無水氣存在下的還原催化活性...............................................50
4.4.2 Fe-TiO2系統在有無水氣存在下的還原催化活性...............................................53
4.5 光強度對於光催化還原系統影響...............................................56
4.5.1 光強度對單純TiO2系統CH4產生量的影響...............................................57
4.5.2 光強度對Fe-TiO2系統CH4產生量的影響...............................................59
4.6 鐵離子修飾濃度對於光催化還原活性影響...............................................62
第五章、結論...............................................66
未來建議...............................................67
參考文獻...............................................68
附錄A...............................................73
附錄B...............................................74
1. Caldeira, K.; Jain, A. K.; Hoffert, M. I., Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 2003, 299 (5615), 2052-4.
2. Allen, M. R.; Frame, D. J.; Huntingford, C.; Jones, C. D.; Lowe, J. A.; Meinshausen, M.; Meinshausen, N., Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009, 458 (7242), 1163-6.
3. Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S. C.; Frieler, K.; Knutti, R.; Frame, D. J.; Allen, M. R., Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature 2009, 458 (7242), 1158-62.
4. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637.
5. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M., Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites- Effects of the Structure of the Active Sites and the Addition of Pt. the Journal of Physical Chemistry B 1997, 101, 2632-2636.
6. Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang, D.; Ye, J., Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels. Scientific reports 2013, 3, 1667.
7. Chang, S. M.; Liu, W. S., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl. Catal. B: Environ 2011, 101 (3-4), 333-342.
8. Chang, S. M.; Liu, W. S., Surface doping of TiO2 of photocatalysts transition metal ions (V, Mn, Fe, Cu, Ce, and W)-physicochemical and photocatalytic properties In press.
9. Uner, D.; Oymak, M. M., On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal. Today 2012, 181, 82-88.
10. Vesborg, P. C. K.; In, S.-i.; Olsen, J. L.; Henriksen, T. R.; Abrams, B. L.; Hou, Y.; Kleiman-Shwarsctein, A.; Hansen, O.; Chorkendorff, I., Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in μ-Reactors. The Journal of physical Chemistry C 2010, 114 (25), 11162-11168.
11. 胥穎亞; 張淑閔. 鋯離子摻雜與金沈積對中孔洞二氧化鈦微結構與光催化還原二氧化碳研究. 碩士論文, 國立交通大學, 新竹市, 2011.
12. 林宸嶢; 張淑閔. 鍛燒溫度對釩離子摻雜二氧化鈦光觸媒物化與光催化還原二氧化碳特性研究. 碩士論文, 國立交通大學, 新竹市, 2011.
13. Du, J.; Lai, X.; Yang, N.; Zhai, J.; Kisailus, D.; Su, F.; Wang, D.; Jiang, L., Hierarchically Ordered Macro−Mesoporous TiO2−Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano 2011, 5, 590-596.
14. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
15. Janisch, R.; Gopal, P.; Spaldin, N. A., Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter 2005, 17 (27), R657-R689.
16. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahneman, D. W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69-96.
17. Gaya, U. I.; Abdullah, A. H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2008, 9 (1), 1-12.
18. Fujishima, A.; Zhang, X.; Tryk, D., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63 (12), 515-582.
19. Mills, A.; Hunte, S. L., An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 1997, 108, 1-35.
20. Nishikawa, M.; Mitani, Y.; Nosaka, Y., Photocatalytic Reaction Mechanism of Fe(III)-Grafted TiO2Studied by Means of ESR Spectroscopy and Chemiluminescence Photometry. The Journal of Physical Chemistry C 2012, 116 (28), 14900-14907.
21. Franch, M. I.; Ayllo ́n, J. A.; Peral, J.; Dome`nech, X., Enhanced photocatalytic degradation of maleic acid by Fe(III) adsorption onto the TiO2 surface. Catal. Today 2005, 101, 245-252.
22. Murakami, N.; Chiyoya, T.; Tsubota, T.; Ohno, T., Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength. Applied Catalysis A: General 2008, 348 (1), 148-152.
23. Yue, C.; Trudeau, M. L.; Antonelli, D., Mesoporous tantalum oxide photocatalysts for Schrauzer-type conversion of dinitrogen to ammonia. Can. J. Chem. 2005, 83 (4), 308-314.
24. Ambrus, Z.; Balázs, N.; Alapi, T.; Wittmann, G.; Sipos, P.; Dombi, A.; Mogyorósi, K., Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Appl. Catal. B: Environ 2008, 81 (1-2), 27-37.
25. Khalid, N. R.; Hong, Z.; Ahmed, E.; Zhang, Y.; Chan, H.; Ahmad, M., Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl. Surf. Sci. 2012, 258 (15), 5827-5834.
26. Centi, G.; Perathoner, S.; Rak, Z. S., Reduction of greenhouse gas emissions by catalytic processes. Appl. Catal. B: Environ 2003, 41 (1-2), 143-155.
27. de Richter, R.; Caillol, S., Fighting global warming: The potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O-3, BC and other major contributors to climate change. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2011, 12, 1-19.
28. Buesseler, K. O.; Doney, S. C.; Karl, D. M.; Boyd, P. W.; Caldeira, K.; Chai, F.; Coale, K. H.; de Baar, H. J. W.; Falkowski, P. G.; Johnson, K. S.; Lampitt, R. S.; Michaels, A. F.; Naqvi, S. W. A.; Smetacek, V.; Takeda, S.; Watson, A. J., Ocean Iron Fertilization—Moving Forward in a Sea of Uncertainty. Science 2008, 319, 162.
29. Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P., Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research 2006, 45, 2558-2568.
30. Yui, T.; Tamaki, Y.; Sekizawa, K.; Ishitani, O., Photocatalytic Reduction of CO2: From Molecules to Semiconductors. Top. Curr. Chem. 2011, 303, 151-184.
31. Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A., Efficient and Clean Photoreduction of CO2 to CO by Enzyme-Modified TiO2 Nanoparticles Using Visible Light. JACS 2010, 132, 2132-2133.
32. Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J. C.-S.; Wu, H.-H., Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol. Catal. Lett. 2009, 131 (3-4), 381-387.
33. Truong, Q. D.; Liu, J.-Y.; Chung, C.-C.; Ling, Y.-C., Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal. Commun. 2012, 19, 85-89.
34. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P., Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134 (27), 11276-81.
35. Hou, W.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B., Photocatalytic Conversion of CO2to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catal. 2011, 1 (8), 929-936.
36. He, H.; Zapol, P.; Curtiss, L. A., Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase (101) surfaces. Energy & Environmental Science 2012, 5 (3), 6196.
37. Liu, C.; Cundari, T. R.; Wilson, A. K., CO2Reduction on Transition Metal (Fe, Co, Ni, and Cu) Surfaces: In Comparison with Homogeneous Catalysis. The Journal of Physical Chemistry C 2012, 116 (9), 5681-5688.
38. Chen, D.; Li, F.; Ray, A. K., External and internal masstransfer effect on photocatalytic degradation. Catal. Today 2001, 66, 475-4885.
39. Thiele, E. W., Relation between Catalytic Activity and Size of Particle Ind. Eng. Chem. 1939, 31 (7), 916-20.
40. Ollis, D. F., Kinetic Disguises in Heterogeneous Photocatalysis. Top. Catal. 2005, 35 (3-4), 217-223.
41. Mills, A.; Wang, J.; Ollis, D. F., Kinetics of liquid phase semiconductor photoassisted reactions: Supporting observations for a pseudo-steady-state model. The Journal of Physical Chemistry B 2006, 110, 14386-14390.
42. Egerton, T. A.; King, C. J., Influence of light-intensity on photoactivity in TiO2 pigmented systems. Journal of the Oil & Colour Chemists Association 1979, 62 (10), 386-391.
43. Mills, A.; Wang, J.; Ollis, F. D., Dependence of the kinetics of liquid-phase photocatalyzed reactions on oxygen concentration and light intensity. J. Catal. 2006, 243 (1), 1-6.
44. Ohko, Y.; Hashimoto, K.; Fujishima, A., Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films. J. Phys. Chem. A 1997, 101, 8057-8062.
45. Elsellami, L.; Vocanson, F.; Dappozze, F.; Puzenat, E.; Païsse, O.; Houas, A.; Guillard, C., Kinetic of adsorption and of photocatalytic degradation of phenylalanine effect of pH and light intensity. Applied Catalysis A: General 2010, 380, 142-148.
46. Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle. the journal of physical Chemistry B 2003, 107, 1028-1035.
47. Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol. Energy Mater. Sol. Cells 2007, 91 (19), 1765-1774.
48. Bikondoa, O.; Pang, C. L.; Ithnin, R.; Muryn, C. A.; Onishi, H.; Thornton, G., Direct visualization of defect-mediated dissociation of water on TiO2(110). Nature Materials 2006, 5 (3), 189-192.
49. Maruo, Y. Y.; Yamada, T.; Tsuda, M., Reactivity of CO2 and H2O on TiO2 catalysts studied by gas phase FT-IR method and deactivation mechanism. Journal of Physics: Conference Series 2012, 379, 012036.
50. 劉維斯; 張淑閔. 晶體內部與表面摻雜釩離子對二氧化鈦光觸媒物化特性與光催化活性之影響. 碩士論文, 國立交通大學, 新竹市, 2009.
51. Yang, L.; Kruse, B., Revised Kubelka–Munk theory. I. Theory and application. Journal of the Optical Society of America A 2004, 21, 1993-1941.
52. Patterson, A. L., The Scherrer Formula for I-Ray Particle Size Determination. Physical review 1939, 56, 978-982.
53. Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E., OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19, 160-165.
54. Perry, R. H.; Green, D. W., Perry's Chemical Engineers' Handbook. McGraw Hill: New York, 1997.
55. Bourikas, K.; Hiemstra, T.; Van Riemsdijk, W. H., Ion Pair Formation and Primary Charging Behavior of Titanium Oxide (Anatase and Rutile). Langmuir 2001, 17, 749-756.
56. Egerton, T. A.; Harris, E.; Lawson, E. J.; Mile, B.; Rowlands, C. C., An EPR study of diffusion of iron into rutile. PCCP 2001, 3 (3), 497-504.
57. Moulijn, J. A.; van Diepen, A. E.; Kapteijn, F., Catalyst deactivation is it predictable? What to do? 2001, 212, 3-16.
58. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport Phenomena. 2 ed.; Wiley: New York 2001.
59. Yang, C.-C.; Yu, Y.-H.; Linden, B. v. d.; Wu, J. C. S.; Mul, G., Artificial Photosynthesis over Crystalline TiO2-Based Catalysts- Fact or Fiction? JACS 2010, 132, 8398-8406.
60. Gracia, F.; Holgado, J. P.; Caballero, A.; Gonzalez-Elipe, A. R., Structural, Optical, and Photoelectrochemical Properties of Mn+-TiO2 Model Thin Film Photocatalysts. The Journal of Physical Chemistry B 2004, 108, 17466-17476.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *