帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:侯棈榮
作者(英文):Hou, Ching-Jung
論文名稱(中文):利用溶膠-凝膠法製備高辨識能力的17β-estradiol分子拓印材料
論文名稱(英文):Fabrication of 17β-estradiol imprinted silica with high recognition capability using a sol-gel method
指導教授(中文):張淑閔
指導教授(英文):Chang, Sue-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9519522
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:94
中文關鍵詞:分子拓印高分子雌二醇溶膠-凝膠法
外文關鍵詞:molecularly imprinted polymer17β-estradiolsol-gel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
17β-estradiol(E2)是內分泌干擾物中含苯環的類固醇荷爾蒙,對於野生動物及人類會造成內分泌系統干擾的負面影響,因此,針對E2發展高效能偵測方法引起廣大興趣,分子拓印高分子對於目標分子具有高選擇性和親和性,是最新發展出篩選與濃縮標的物的重要材料,本研究目的為利用溶膠-凝膠法(sol-gel)製備和鑑定17β-estradiol(E2)的分子拓印有機無機混合材料,並藉由材料與吸附能力分析了解分子拓印與最佳化製備條件。官能性單體苯基三甲氧基矽氧烷(PTMOS)和 3-氨基丙基三甲基矽氧烷(APTES)是用來當作官能性單體並分別藉由π-π作用力和氫鍵作用來和E2產生鍵結。此外,四乙烷基矽烷(TEOS)當作交聯劑並建構多孔隙凝膠,甲基三甲氧基矽烷(MTMOS)的添加可以增加材料的柔韌性。當TEOS/PTMOS/APTES/MTMOS/E2莫爾比為20:2:2:2:1時,材料於乙腈中對E2的吸附量為0.36 mg E2/g MIPs而拓印因數為1.8,其中,PTMOS和APTES分別決定材料的辨識力和吸附能量,當pH=3和水/Si莫爾比值為=3.3時,材料在乙腈中呈現最高吸附能力0.44 mg E2/g MIPs和拓印因數1.9,此外,分子拓印材料於甲苯溶劑中的吸附能力更提高至28.2 mg E2/g MIPs。分子拓印材料在經過模板萃取之後,比表面積很明顯地從288 m2/g提高到658 m2/g,孔體積也從0.25 cm3/g提高到0.59 cm3/g,另外,分子拓印材料的吸附平衡時間為4小時。分子拓印材料對於1-萘酚(1-naphthol)的選擇性(selectivity factor)為3.1而壬基苯酚(nonylphenol)的選擇性為2.3,這些結果證明拓印作用確實藉由溶膠-凝膠法產生在有機無機混合材料上。
17β-estradiol (E2) is a phenolic steroid hormone of endocrine disrupted contaminants. It has adverse effects and cause abnormality on the endocrine system of wildlife and humans. The high selectivity and affinity of molecularly imprinted polymers (MIPs) toward target molecules make them receive much attention on separation and sensing of E2. The aim of this study was to develop and characterize E2 imprinted organic-inorganic hybrid silica using a sol-gel process. Phenyltrimethoxysilane (PTMOS) and 3-aminopropyltriethoxysilane (APTES) were used as functional monomers to selectively bind E2 via π-π stacking interactions and hydrogen bonding, respectively. In addition, tetraethoxylsilane (TEOS) was used as a cross-linker to polymerize the highly porous gels. To enhance the mechanical elasticity, methyltrimethoxysilane (MTMOS) was incorporated into the gels. The recipes and sol-gel parameters were optimized to reach the highest imprinted capabilities. The imprinted material with the optimal TEOS/PTMOS/APTES/MTMOS/E2 molar ratio of 20/2/2/2/1 exhibited an adsorption capacity of 0.36 mg/g and an imprinted factor of 1.8 in acetonitrile. The PTMOS and APTES dominated the recognitions and binding quantities, respectively. The imprinted material showed the highest adsorption capacity of 0.44 mg/g and the imprinted factor of 1.9 in acetonitrile when the sol-gel process was proceeded at water/Si=3.3 and pH=3. Moreover, the adsorption capacity was remarkably enhanced to 28.2 mg/g in toluene. After removal of E2, the specific surface areas and pore volume of imprinted silica was increased significantly from 288 m2/g to 658 m2/g and 0.25 cm3/g to 0.59 cm3/g, respectively. In addition, the adsorption equilibrium time was 4 hr for the imprinted polymers. The imprinted silica performed high selectivity factor of 3.1 for 1-naphthol and 2.3 for nonylphenol in competitive adsorption systems. These results clearly demonstrated that the imprinted effect was successfully conducted in the organic-inorganic silica hybrids through the sol-gel process.
中文摘要 I
Abstract II
誌謝 IV
Table of contents V
Table captions VII
Figure Captions VIII
Chapter 1. Introduction and Motivation 1
1-1 Motivation 1
1-2 Objectives 3
Chapter 2. Background and theory 4
2-1 Endocrine disrupted chemicals 4
2-1-1 Introduction 4
2-1-2 Analytical methods 7
2-2 General strategy of molecularly imprinted method 8
2-2-1 Concept 8
2-2-2 Imprinting methods 10
2-2-3 Synthesis 12
2-3-4 Template 14
2-3-5 Functional monomers 14
2-3-6 Cross-linkers 16
2-3-7 Porogens 18
2-3 The inorganic - MIPs 18
2-3-1 Sol-gel process 18
2-3-2 Merits of Sol-gel process in molecular imprinting 22
2-3-3 pH effect 25
2-3-4 Water/siloxane 26
2-3-5 Organic-inorganic hybrid MIPs 26
2-4 Applications of MIPs 28
2-4-1 Sensing materials 29
2-4-2 Separations 33
Chapter 3. Materials and Methods 34
3-1 Chemicals 34
3-2 Sol-gel process to MIPs 37
3-2-1 Non-covalent MIPs 37
3-2-2 Covalent MIPs 40
3-3 Characterization 42
3-3-1 Specific Surface Areas (BET) 42
3-3-2 Fourier Transform Infrared Spectrometer (FTIR) 42
3-3-3 Thermogravimetric Analysis (TGA) 42
3-4 Adsorption 43
3-4-1 Equilibrium 43
3-4-2 pH effect 44
3-4-3 Solvents 44
3-4-4 Selectivities 45
Chapter 4. Results and Discussion 47
4-1 Optimization of constituents and sol-gel process of MIPs 47
4-1-1 Porogens 47
4-1-2 Functional monomers 48
4-1-3 Cross-linkers 51
4-1-4 TEOS/MTMOS ratios 52
4-1-5 Catalysts 53
4-1-6 Water/Si ratios 54
4-1-7 pH values 56
4-2 Characterizations 58
4-2-1 Functional groups 58
4-2-2 Textures 61
4-2-3 Recovery 64
4-3 Adsorption 67
4-3-1 Equilibrium 67
4-3-2 pH 68
4-3-1 Solvents 69
4-3-4 Selectivities 70
Chapter 5. Conclusions 74
References 75
Appendix A. Extraction test 83
Appendix B. Sieved test 85
Appendix C. Covalent bond 88
Appendix D. Apparatus 93
1. Wang, S.; Xu, Z. X.; Fang, G. Z.; Zhang, Y.; He, J. X., Separation and determination of estrone in environmental and drinking water using molecularly imprinted solid phase extraction coupled with HPLC. Journal of Separation Science 2008, 31, (6-7), 1181-1188.
2. Zhang, Z. B.; Hu, J. Y., Selective removal of estrogenic compounds by molecular imprinted polymer (MIP). Water Research 2008, 42, (15), 4101-4108.
3. Wang, S.; Huang, W.; Fang, G. Z.; Zhang, Y.; Qiao, H., Analysis of steroidal estrogen residues in food and environmental samples. International Journal of Environmental Analytical Chemistry 2008, 88, (1), 1-25.
4. Saravanabhavan, G.; Helleur, R.; Hellou, J., GC-MS/MS measurement of natural and synthetic estrogens in receiving waters and mussels close to a raw sewage ocean outfall. Chemosphere 2009, 76, (8), 1156-1162.
5. Bravo, J. C.; Fernandez, P.; Durand, J. S., Flow injection fluorimetric determination of beta-estradiol using a molecularly imprinted polymer. Analyst 2005, 130, (10), 1404-1409.
6. Zhu, Q. J.; Tang, J.; Dai, J.; Gu, X. H.; Chen, S. W., Synthesis and characteristics of imprinted 17-beta-estradiol microparticle and nanoparticle with TFMAA as functional monomer. Journal of Applied Polymer Science 2007, 104, (3), 1551-1558.
7. Bui, B. T. S.; Belmont, A. S.; Witters, H.; Haupt, K., Molecular recognition of endocrine disruptors by synthetic and natural 17 beta-estradiol receptors: a comparative study. Analytical and Bioanalytical Chemistry 2008, 390, (8), 2081-2088.
8. Potyrailo, R. A.; Mirsky, V. M., Combinatorial and high-throughput development of sensing materials: The first 10 years. Chemical Reviews 2008, 108, (2), 770-813.
9. Graham, A. L.; Carlson, C. A.; Edmiston, P. L., Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT. Analytical Chemistry 2002, 74, (2), 458-467.
10. Ye, L.; Weiss, R.; Mosbach, K., Synthesis and characterization of molecularly imprinted microspheres. Macromolecules 2000, 33, (22), 8239-8245.
11. Szumski, M.; Buszewski, B., Molecularly imprinted polymers: A new tool for separation of steroid isomers. Journal of Separation Science 2004, 27, (10-11), 837-842.
12. Watabe, Y.; Kubo, T.; Nishikawa, T.; Fujita, T.; Kaya, K.; Hosoya, K., Fully automated liquid chromatography-mass spectrometry determination of 17 beta-estradiol in river water. Journal of Chromatography A 2006, 1120, (1-2), 252-259.
13. Jin, Y.; Jiang, M.; Shi, Y.; Lin, Y.; Peng, Y.; Dai, K.; Lu, B., Narrowly dispersed molecularly imprinted microspheres prepared by a modified precipitation polymerization method. Analytica Chimica Acta 2008, 612, (1), 105-113.
14. Wei, S. T.; Molinelli, A.; Mizaikoff, B., Molecularly imprinted micro and nanospheres for the selective recognition of 17 beta-estradiol. Biosensors & Bioelectronics 2006, 21, (10), 1943-1951.
15. Farrington, K.; Regan, F., Molecularly imprinted sol gel for ibuprofen: An analytical study of the factors influencing selectivity. Talanta 2009, 78, (3), 653-659.
16. Silva, R. G. D.; Augusto, F., Sol-gel molecular imprinted ormosil for solid-phase extraction of methylxanthines. Journal of Chromatography A 2006, 1114, (2), 216-223.
17. Diaz-Garcia, M. E.; Laino, R. B., Molecular imprinting in sol-gel materials: Recent developments and applications. Microchimica Acta 2005, 149, (1-2), 19-36.
18. Gupta, R.; Kumar, A., Molecular imprinting in sol-gel matrix. Biotechnology Advances 2008, 26, (6), 533-547.
19. Wei, H. S.; Tsai, Y. L.; Wu, J. Y.; Chen, H., Preparation of inorganic molecularly imprinted polymers with higher adsorption and selectivity by sol-gel method. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2006, 836, (1-2), 57-62.
20. Li, F.; Li, J.; Zhang, S. S., Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol-gel process for protein recognition. Talanta 2008, 74, (5), 1247-1255.
21. Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H., Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research 2007, 41, (19), 4373-4382.
22. Le Noir, M.; Plieva, F.; Hey, T.; Guieysse, B.; Mattiasson, B., Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. Journal of Chromatography A 2007, 1154, (1-2), 158-164.
23. Ling, T. R.; Syu, Y. Z.; Tasi, Y. C.; Chou, T. C.; Liu, C. C., Size-selective recognition of catecholamines by molecular imprinting on silica-alumina gel. Biosensors & Bioelectronics 2005, 21, (6), 901-907.
24. Ebarvia, B. S.; Binag, C. A.; Sevilla, F., Biomimetic piezoelectric quartz sensor for caffeine based on a molecularly imprinted polymer. Analytical and Bioanalytical Chemistry 2004, 378, (5), 1331-1337.
25. Holthoff, E. L.; Bright, F. V., Molecularly templated materials in chemical sensing. Analytica Chimica Acta 2007, 594, (2), 147-161.
26. Haupt, K.; Mosbach, K., Molecularly imprinted polymers and their use in biomimetic sensors. Chemical Reviews 2000, 100, (7), 2495-2504.
27. Sellergren, B., Polymer- and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions. Trac-Trends in Analytical Chemistry 1999, 18, (3), 164-174.
28. Cummins, W.; Duggan, P.; McLoughlin, P., A comparative study of the potential of acrylic and sol-gel polymers for molecular imprinting. Analytica Chimica Acta 2005, 542, (1), 52-60.
29. Mayes, A. G.; Whitcombe, M. J., Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews 2005, 57, (12), 1742-1778.
30. Mahony, J. O.; Nolan, K.; Smyth, M. R.; Mizaikoff, B., Molecularly imprinted polymers-potential and challenges in analytical chemistry. Analytica Chimica Acta 2005, 534, (1), 31-39.
31. Perez-Moral, N.; Mayes, A. G., Comparative study of imprinted polymer particles prepared by different polymerisation methods. Analytica Chimica Acta 2004, 504, (1), 15-21.
32. Cormack, P. A. G.; Elorza, A. Z., Molecularly imprinted polymers: synthesis and characterisation. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2004, 804, (1), 173-182.
33. Spivak, D. A., Optimization, evaluation, and characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews 2005, 57, (12), 1779-1794.
34. Sugahara, Y.; Inoue, T.; Kuroda, K., Si-29 NMR study on co-hydrolysis processes in Si(OEt)(4)-RSi(OEt)(3)-EtOH-water-HCl systems (R=Me,Ph): Effect of R groups. Journal of Materials Chemistry 1997, 7, (1), 53-59.
35. Hunnius, M.; Rufinska, A.; Maier, W. F., Selective surface adsorption versus imprinting in amorphous microporous silicas. Microporous and Mesoporous Materials 1999, 29, (3), 389-403.
36. Lee, S. W.; Ichinose, I.; Kunitake, T., Molecular imprinting of azobenzene carboxylic acid on a TiO2 ultrathin film by the surface sol-gel process. Langmuir 1998, 14, (10), 2857-2863.
37. Hu, X. B.; Li, G. T.; Li, M. H.; Huang, J.; Li, Y.; Gao, Y. B.; Zhang, Y. H., Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Advanced Functional Materials 2008, 18, (4), 575-583.
38. Fang, G. Z.; Tan, J.; Yan, X. P., An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol-gel process for selective solid-phase extraction of cadmium(II). Analytical Chemistry 2005, 77, (6), 1734-1739.
39. Wang, H. F.; Zhu, Y. Z.; Yan, X. P.; Gao, R. Y.; Zheng, H. Y., A room temperature ionic liquid (RTIL)-mediated, non-hydrolytic sol-gel methodology to prepare molecularly imprinted, silica-based hybrid monoliths for chiral separation. Advanced Materials 2006, 18, (24), 3266-+.
40. Apperley, D.; Hay, J. N.; Raval, H. M., Silica-dimethylsiloxane hybrids-non-hydrolytic sol-gel synthesis and characterization by NMR spectroscopy. Chemistry of Materials 2002, 14, (3), 983-988.
41. Hayashi, K.; Yokota, Y.; Tachibana, T.; Kobashi, K.; Fukunaga, T.; Takada, T., Characteristics of diamond film gas sensors upon exposure to semiconductor doping gases. Journal of the Electrochemical Society 2001, 148, (2), H17-H20.
42. Vioux, A., Nonhydrolytic sol-gel routes to oxides. Chemistry of Materials 1997, 9, (11), 2292-2299.
43. Hsu, C. W.; Yang, M. C., Enhancement of the imprinting effect in cholesterol-imprinted microporous silica. Journal of Non-Crystalline Solids 2008, 354, (34), 4037-4042.
44. Makote, R.; Collinson, M. M., Template recognition in inorganic-organic hybrid films prepared by the sol-gel process. Chemistry of Materials 1998, 10, (9), 2440-2445.
45. Guardia, L.; Badia, R.; Diaz-Garcia, M. E., Molecular imprinted ormosils for nafcillin recognition by room temperature phosphorescence optosensing. Biosensors & Bioelectronics 2006, 21, (9), 1822-1829.
46. Jin, G. Y.; Tang, Y. W.; Liu, S. Z.; Wang, S. C.; Xing, R. K., Preparation and application of a novel silica-supported organic-inorganic hybrid molecular imprinting polymer. Analytical Letters 2008, 41, (10), 1811-1817.
47. Guardia, L.; Badia-Laino, R.; Diaz-Garcia, M. E.; Ania, C. O.; Parra, J. B., Role of surface adsorption and porosity features in the molecular recognition ability of imprinted sol-gels. Biosensors & Bioelectronics 2008, 23, (7), 1101-1108.
48. Gao, N.; Xu, Z.; Wang, F.; Dong, S. J., Sensitive biomimetic sensor based on molecular imprinting at functionalized indium tin oxide electrodes. Electroanalysis 2007, 19, (16), 1655-1660.
49. Fernandez-Gonzalez, A.; Laino, R. B.; Diaz-Garcia, M. E.; Guardia, L.; Viale, A., Assessment of molecularly imprinted sol-gel materials for selective room temperature phosphorescence recognition of nafcillin. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2004, 804, (1), 247-254.
50. Marx, S.; Liron, Z., Molecular imprinting in thin films of organic-inorganic hybrid sol-gel and acrylic polymers. Chemistry of Materials 2001, 13, (10), 3624-3630.
51. Jin, G. Y.; Tang, Y. W., Evaluation of a novel silica-supported sol-gel sorbent prepared by a surface molecular imprinting technique for the selective separation of estazolam from human plasma. Microchimica Acta 2009, 165, (1-2), 143-149.
52. Marx, S.; Zaltsman, A., Molecular imprinting of sol gel polymers for the detection of paraoxon in water. International Journal of Environmental Analytical Chemistry 2003, 83, (7-8), 671-680.
53. Yang, H. H.; Zhang, S. Q.; Yang, W.; Chen, X. L.; Zhuang, Z. X.; Xu, J. G.; Wang, X. R., Molecularly imprinted sol-gel nanotubes membrane for biochemical separations. Journal of the American Chemical Society 2004, 126, (13), 4054-4055.
54. Do Ki, C.; Oh, C.; Oh, S. G.; Chang, J. Y., The use of a thermally reversible bond for molecular imprinting of silica spheres. Journal of the American Chemical Society 2002, 124, (50), 14838-14839.
55. He, C. Y.; Long, Y. Y.; Pan, J. L.; Li, K.; Liu, F., Molecularly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone. Talanta 2008, 74, (5), 1126-1131.
56. He, C. Y.; Long, Y. Y.; Pan, J. L.; Li, K.; Liu, F., A method for coating colloidal particles with molecularly imprinted silica films. Journal of Materials Chemistry 2008, 18, (24), 2849-2854.
57. Jin, G. Y.; Li, W.; Yu, S. N.; Peng, Y. Y.; Kong, J. L., Novel superparamagnetic core-shell molecular imprinting microspheres towards high selective sensing. Analyst 2008, 133, (10), 1367-1372.
58. Jiang, X. M.; Tian, W.; Zhao, C. D.; Zhang, H. X.; Liu, M. C., A novel sol-gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta 2007, 72, (1), 119-125.
59. Zhang, Y.; Qin, Z.; Tu, Z. Y., Study of the preparation of flavone imprinted silica microspheres and their molecular recognition function. Chemical Engineering & Technology 2007, 30, (8), 1014-1019.
60. Xie, C. G.; Liu, B. H.; Wang, Z. Y.; Gao, D. M.; Guan, G. J.; Zhang, Z. P., Molecular imprinting at walls of silica nanotubes for TNT recognition. Analytical Chemistry 2008, 80, (2), 437-443.
61. Xu, Z. X.; Chen, S.; Huang, W.; Fang, G. Z.; Hua, P. Z.; Wang, S., Study on an on-line molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography for separation and determination of trace estrone in environment. Analytical and Bioanalytical Chemistry 2009, 393, (4), 1273-1279.
62. Skrdla, P. J.; Shnayderman, M.; Wright, L.; O'Brien, T. P., GC-MS study of the formation of alkoxysilanes from a sol-gel precursor in a hydrophobic solution: A potential new route to hybrid molecular imprinted polymers. Journal of Non-Crystalline Solids 2006, 352, (30-31), 3302-3309.
63. Moreau, J. J. E.; Man, M. W. C., The design of selective catalysts from hybrid silica-based materials. Coordination Chemistry Reviews 1998, 180, 1073-1084.
64. Lin, C. I.; Joseph, A. K.; Chang, C. K.; Wang, Y. C.; Lee, Y. D., Synthesis of molecular imprinted organic-inorganic hybrid polymer binding caffeine. Analytica Chimica Acta 2003, 481, (2), 175-180.
65. Chen, Z. F.; Liu, Y. C.; Liu, L. M.; Wang, H. S.; Qin, S. H.; Wang, B. L.; Bian, H. D.; Yang, B.; Fun, H. K.; Liu, H. G.; Liang, H.; Orvig, C., Potential new inorganic antitumour agents from combining the anticancer traditional Chinese medicine (TCM) liriodenine with metal ions, and DNA binding studies. Dalton Transactions 2009, (2), 262-272.
66. Olwill, A.; Hughes, H.; O'Riordain, M.; McLoughlin, P., The use of molecularly imprinted sol-gels in pharmaceutical separations. Biosensors & Bioelectronics 2004, 20, (6), 1045-1050.
67. Feng, L.; Liu, Y. J.; Zhou, X. D.; Hu, J. M., The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. Journal of Colloid and Interface Science 2005, 284, (2), 378-382.
68. Matsuguchi, M.; Uno, T., Molecular imprinting strategy for solvent molecules and its application for QCM-based VOC vapor sensing. Sensors and Actuators B-Chemical 2006, 113, (1), 94-99.
69. Jimenez-Cadena, G.; Riu, J.; Rius, F. X., Gas sensors based on nanostructured materials. Analyst 2007, 132, (11), 1083-1099.
70. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K. J.; Dai, H. J., Nanotube molecular wires as chemical sensors. Science 2000, 287, (5453), 622-625.
71. Marx, S.; Zaltsman, A.; Turyan, I.; Mandler, D., Parathion sensor based on molecularly imprinted sol-gel films. Analytical Chemistry 2004, 76, (1), 120-126.
72. Wen, W.; He, S. T.; Li, S. Z.; Liu, M. H.; Yong, P., Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sensors and Actuators B-Chemical 2007, 125, (2), 422-427.
73. Fu, Y.; Finklea, H. O., Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers. Analytical Chemistry 2003, 75, (20), 5387-5393.
74. Ji, H. S.; McNiven, S.; Lee, K. H.; Saito, T.; Ikebukuro, K.; Karube, I., Increasing the sensitivity of piezoelectric odour sensors based on molecularly imprinted polymers. Biosensors & Bioelectronics 2000, 15, (7-8), 403-409.
75. Tsuru, N.; Kikuchi, M.; Kawaguchi, H.; Shiratori, S., A quartz crystal microbalance sensor coated with MIP for "bisphenol A" and its properties. Thin Solid Films 2006, 499, (1-2), 380-385.
76. Le Noir, M.; Plieva, F. M.; Mattiasson, B., Removal of endocrine-disrupting compounds from water using macroporous molecularly imprinted cryogels in a moving-bed reactor. Journal of Separation Science 2009, 32, (9), 1471-1479.
77. Xu, F. X.; Koch, D. E.; Kong, I. C.; Hunter, R. P.; Bhandari, A., Peroxidase-mediated oxidative coupling of 1-naphthol: Characterization of polymerization products. Water Research 2005, 39, (11), 2358-2368.
78. Elkins, C. A.; Mullis, L. B., Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. Journal of Bacteriology 2006, 188, (3), 1191-1195.
79. Mansell, J.; Drewes, J. E.; Rauch, T., Removal mechanisms of endocrine disrupting compounds (steroids) during soil aquifer treatment. Water Science and Technology 2004, 50, (2), 229-237.
80. Gupta, M. N.; Batra, R.; Tyagi, R.; Sharma, A., Polarity index: The guiding solvent parameter for enzyme stability in aqueous-organic cosolvent mixtures. Biotechnology Progress 1997, 13, (3), 284-288.
81. Le Noir, M.; Lepeuple, A. S.; Guieysse, B.; Mattiasson, B., Selective removal of 17 beta-estradiol at trace concentration using a molecularly imprinted polymer. Water Research 2007, 41, (12), 2825-2831.
82. Nony, L.; Boisgard, R.; Aime, J. P., DNA properties investigated by dynamic force microscopy. Biomacromolecules 2001, 2, (3), 827-835.
83. Dong, H.; Tong, A. J.; Li, L. D., Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2003, 59, (2), 279-284.
84. He, L.; Powers, K.; Baney, R. H.; Gower, L.; Duran, R. S.; Sheth, P.; Carino, S. R., Mesoporous TMOS-MTMS copolymer silica gels catalyzed by fluoride. Journal of Non-Crystalline Solids 2001, 289, (1-3), 97-105.
85. Husing, N.; Schubert, U.; Mezei, R.; Fratzl, P.; Riegel, B.; Kiefer, W.; Kohler, D.; Mader, W., Formation and structure of gel networks from Si(OEt)(4)/(MeO)(3)Si(CH2)(3)NR '(2) mixtures (NR '(2) = NH2 or NHCH2CH2NH2). Chemistry of Materials 1999, 11, (2), 451-457.
86. Gommes, C. J.; Basiura, M.; Goderis, B.; Pirard, J. P.; Blacher, S., Structure of silica xerogels synthesized with organoalkoxysilane co-reactants hints at multiple phase separation. Journal of Physical Chemistry B 2006, 110, (15), 7757-7765.
87. Tarafdar, A.; Biswas, S.; Pramanik, N. K.; Pramanik, P., Synthesis of mesoporous chromium phosphate through an unconventional sol-gel route. Microporous and Mesoporous Materials 2006, 89, (1-3), 204-208.
88. Chang, Y. S.; Ko, T. H.; Hsu, T. J.; Syu, M. J., Synthesis of an Imprinted Hybrid Organic-Inorganic Polymeric Sol-Gel Matrix Toward the Specific Binding and Isotherm Kinetics Investigation of Creatinine. Analytical Chemistry 2009, 81, (6), 2098-2105.
89. Huang, S. J.; Lee, H. K.; Lee, Y. S.; Kang, W. H., Proton-conductive membranes doped with orthophosphoric acid based on inorganic-organic hybrid materials. Journal of the American Ceramic Society 2005, 88, (12), 3427-3432.
90. Wang, X. G.; Tseng, Y. H.; Chan, J. C. C.; Cheng, S. F., Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in flavanones synthesis. Journal of Catalysis 2005, 233, (2), 266-275.
91. Lee, S. C.; Lin, H. M.; Chen, H., Studies on the Preparation and Properties of Inorganic Molecularly Imprinted Polymer (MIP) Based on Tetraethoxysilane and Silane Coupling Agents. Journal of Applied Polymer Science 2009, 114, (6), 3994-3999.
92. Fujiwara, M.; Nishiyama, M.; Yamamura, I.; Ohtsuki, S.; Nomura, R., A sol-gel method using acetic anhydride in the presence of cholesterol in organic solution media: Preparation of silicas that recognize steroid hormones. Analytical Chemistry 2004, 76, (8), 2374-2381.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *