帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:劉維斯
論文名稱(中文):晶體內部與表面摻雜釩離子對二氧化鈦光觸媒物化特性與光催化活性之影響
論文名稱(英文):Effect of surface and lattice vanadium ions on the physicochemical and photocatalytic properties of TiO2
指導教授(中文):張淑閔
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9519508
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:114
中文關鍵詞:巨體摻雜表面摻雜光催
外文關鍵詞:bulk dopingsurface dopingvanadiumphotocatalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:191
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
本研究利用溶膠-凝膠法(sol-gel)及表面溶膠-凝膠法(surface sol-gel)製備釩離子摻雜
之二氧化鈦(TiO2),並探討晶體內部(bulk doping)或表面(surface doping)釩離子對於TiO2
材料及物化特性之影響。研究結果顯示單純TiO2 經300 □C 鍛燒後呈現69.9 wt%的銳鈦
礦(anatase)與31.1 wt%的金紅石,同時銳鈦礦的平均晶粒為6.1 nm,巨體摻雜後並未明
顯改變TiO2 晶粒尺寸,其晶粒大小範圍為6.0 至6.5 nm 間,然而在V/Ti 比例高於1.27□
10-3 時完全抑制金紅石晶相(Rutile)的形成,此外,由於鍛燒溫度略高於坦曼溫度,所
以釩會遷移至表面形成V2O5 晶相。由低濃度摻雜釩的UV-Vis 圖譜中,發現巨體摻雜
TiO2 於250~320 nm 間有V5+吸收波峰產生,證實摻雜釩於晶體內部會於TiO2 能帶間導
入額外能階,然而當V/Ti 莫爾比高於1.00 %,部分V5+會還原成V4+,而因為V4+會同
時捕捉電子電洞降低表面電荷轉移,所以降解0.01 mM Rhodamine (RhB)之擬一階反應
速率常數隨著晶格內釩離子濃度的增加,而從5.20×10-2 降至1.50×10-2 1/min,利用EPR
偵測觸媒表面OH 自由基,其積分面積從5.40×107 降至5.50×106,證實電子轉移的效率
會隨晶格內釩離子濃度增加而變差。相較下,表面摻雜對TiO2 的微結構及電子結構並
無巨觀的影響,但表面摻雜釩的反應速率常數卻隨著表面V5+濃度增加而從5.20×10-2 提
升至9.80×10-2 1/min,當V/Ti 約為1.00□10-2 時,表面摻雜TiO2 的反應速率數高於內部
摻雜觸媒的六倍,此原因為表面的V5+易使電子累積於TiO2 表面,增進表面電荷轉移速
率(觸媒表面OH 自由基積分面積從2.07□107 提升至4.22□107),因此表面摻雜比巨體摻雜更可提高TiO2 光催化活性。
The aim of this study was to investigate the effects of bulk and surface lattice dopings on
physicochemical properties and photocatalytic activities of V-doped TiO2. The
sol-gel-derived TiO2 exhibited 69.9 and 31.1 wt % of anatase and rutile phase, respectively.
In addition, the crystallite size of the anatase TiO2 was 6.1 nm. Lattice vanadium ions had
no effect on crystal size of TiO2, ranging between 6.0-6.5 nm. However, lattice vanadium
ions completely inhibited the formation of rutile as the V/Ti ratio is as high as 1.27□10-3.
V2O5 crystals were observed on the surface of TiO2 since vanadium ion diffused to surface
when the calcination temperature was higher than its Tammann temperature. The UV-vis
spectra show that bulk doping resulted in an additional absorption band centered at 289 nm.
This phenomenon indicated that incorporation of V5+ ions into the bulk lattice of TiO2 at low
vanadium concentrations (V/Ti ratio < 1.00□10-2) introduced extra energy levels in the
conduction band. When V/Ti atomic ratio was higher than 1.00 %, some V5+ were partially
reduced to V4+ which acted as charge recombination centers. Pure TiO2 exhibited a rate
constant of 5.20×10-2 min-1 for the photocatalytic degradation of Rhodamine B (RhB).
Bulk doping decreased the photocatalytic activity to from 5.20×10-2 to 1.50×10-2 min-1 when
the V/Ti ratio increased from 4.41×10-5 to 1.22×10-2. In addition, the integrated area of
generated •OHon the surface of photocatalysts, which were calculated by EPR, decreased
from 5.40×107 to 5.50×106. The results indicated electrons diffuse to surface hardly. In
contrast, surface doping had little effects on the micro- and electronic structures of TiO2.
Nevertheless, the photoactivity was enhanced from 5.20×10-2 to 9.80×10-2 min-1 upon
increasing vanadium concentration. The photoactivity of the surface doped TiO2 was six
times higher than that of bulk doped ones at the V/Ti ratio of 1.00□10-2. Such enhancement
is due to that surface-V5+ promotes diffusion of electrons to surface that further facility
charges transfer to reactants. According to integrated area of surface doped materials,
which increased from 2.07□107 to 4.22□107, it indicate the electrons diffuse to surface
efficaciously. Therefore, surface doping greatly improve the degradation efficiency, while
bulk ones lad to detrimental effects on the photocatalytic activity.
誌謝....................................................................................................... I
中文摘要..............................................................................................II
ABSTRACT....................................................................................... III
CONTENT INDEX........................................................................... IV
FIGURE CAPTIONS......................................................................VII
TABLE CAPTIONS .........................................................................XI
CHAPTER 1 INTRODUCTION ................................................... 1
1-1MOTIVATION............................................................................................... 1
1-2OBJECTIVES................................................................................................ 2
CHAPTER 2 BACKGROUND AND THEORY .......................... 3
2-1 TIO2 SEMICONDUCTOR PHOTOCATALYSTS ................................................ 3
2-1-1 Background and material properties.......................................................................3
2-1-2 Principle of photocatalysis.......................................................................................9
2-1-3 Photoassisted degradation of Rhodamine B.........................................................13
2-2 SYNTHESIS TOWARD METALOXIDE .......................................................... 14
2-2-1 Sol-gel method........................................................................................................14
2-2-2 Surface sol-gel method...........................................................................................18
2-3 DOPINGTIO2WITH IMPURITIES............................................................... 20
2-4 BULK AND SURFACE DOPING SITES ........................................................... 26
CHAPTER 3 MATERIALS AND METHODS .......................... 29
3-1MATERIALS............................................................................................... 29
3-2 PREPARATION OF BULK DOPED TIO2 VIA SOL-GEL PROCESS ................... 31
3-3 PREPARATION OF SURFACE DOPED TIO2 VIA SURFACE SOL-GEL PROCESS
......................................................................................................................... 33
3-4 CHARACTERIZATION ................................................................................ 36
3-4-1 X-ray photoelectron spectroscopy (XPS)...............................................................36
3-4-2 Time-of-Flight Secondary Ion Mass Spectrometer (TOF-SIMS)........................37
3-4-3 Scanning electronic microscopy (SEM)................................................................37
3-4-4 X-ray diffractometry...............................................................................................38
3-4-5 UV/Vis diffuse reflectance spectroscopy (UV-Vis DRS) .......................................39
3-4-6 Inductively Coupled Plasma Mass Spectromstry (ICP-MS) ................................39
3-4-7 Specific surface area..............................................................................................39
3-4-8 Electron paramagnetic resonance (EPR) .............................................................39
3-4-9 Transmission Electron Microscope (TEM)...........................................................41
3-5 PHOTOCATALYTIC OF RHB DECOMPOSITION .......................................... 41
CHAPTER 4 RESULTS AND DISCUSSION ............................ 43
4-1 CHEMICAL COMPOSITIONS....................................................................... 43
4-2MORPHOLOGY.......................................................................................... 45
4-3MICROSTRUCTURES ................................................................................. 47
4-4 UV-VISIBLE ABSORPTION......................................................................... 53
4-5 PHOTOCATALYTIC ACTIVITY .................................................................... 60
4-6 EPR STUDIES OF BULK AND SURFACE DOPINGMATERIALS...................... 67
CHAPTER 5 CONCLUSIONS .................................................... 82
REFERENCES ................................................................................. 83
APPENDIX A EXPERIMENTAL PARAMETERS................... 91
APPENDIX B INSTRUMENT PRINCIPLE ............................. 93
Appendix B-1 Time-of-Flight Secondary Ion Mass Spectrometer .............................93
Appendix B-2 X-ray powder diffractometry (XRPD) ..................................................94
Appendix B-3 UV-vis diffuse reflectance spectroscopy (DRS)....................................96
Appendix B-4 Electron paramagnetic resonance (EPR) ............................................97
APPENDIX C BET DATA.......................................................... 102
APPENDIX D. ESCAANALYSIS ............................................. 103
APPENDIX E BULK DOPED MATERIALS WITH HIGH
VANADIUM IONS ......................................................................... 106
APPENDIX F VANADIUM-DOPED ON THE SURFACE OF
TIO2 .................................................................................................. 108
APPENDIX G REDOX POTENTIAL .......................................111
APPENDIX H LANGMUIR-HINSHELWOOD KINETICS . 112
APPENDIX I TEM OF SURFACE DOPED MATERIALS ... 114
1. Di Paola, A.; Garcia-Lopez, E.; Ikeda, S.; Marci, G.; Ohtani, B.; Palmisano, L.,
Photocatalytic degradation of organic compounds in aqueous systems by transition metal
doped polycrystalline TiO2. Catalysis Today 2002, 75, (1-4), 87-93.
2. Yuan, Z.; Zhang, J. L.; Li, B.; Li, J. Q., Effect of metal ion dopants on photochemical
properties of anatase TiO2 films synthesized by a modified sol-gel method. Thin Solid Films
2007, 515, (18), 7091-7095.
3. Xin, B. F.; Ren, Z. Y.; Wang, P.; Liu, J.; Jing, L. Q.; Fu, H. G., Study on the mechanisms
of photoinduced carriers separation and recombination for Fe3+-TiO2 photocatalysts. Applied
Surface Science 2007, 253, (9), 4390-4395.
4. Bouras, P.; Stathatos, E.; Lianos, P., Pure versus metal-ion-doped nanocrystalline titania
for photocatalysis. Applied Catalysis B-Environmental 2007, 73, (1-2), 51-59.
5. Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K., Analysis of electronic structures of 3d
transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of
Solids 2002, 63, (10), 1909-1920.
6. Park, H.; Choi, W., Photocatalytic reactivities of Nafion-Coated TiO2 for the degradation
of charged organic compounds under UV or visible light. Journal of Physical Chemistry B
2005, 109, (23), 11667-11674.
7. Mrowetz, M.; Balcerski, W.; Colussi, A. J.; Hoffman, M. R., Oxidative power of
nitrogen-doped TiO2 photocatalysts under visible illumination. Journal of Physical Chemistry
B 2004, 108, (45), 17269-17273.
8. Reddy, K. M.; Baruwati, B.; Jayalakshmi, M.; Rao, M. M.; Manorama, S. V., S-, N- and
C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer
study. Journal of Solid State Chemistry 2005, 178, (11), 3352-3358.
9. Wang, H.; Lewis, J. P., Second-generation photocatalytic materials: anion-doped TiO2.
Journal of Physics-Condensed Matter 2006, 18, (2), 421-434.
10. Levy, B., Photochemistry of nanostructured materials for energy applications. Journal of
Electroceramics 1997, 1, (3), 239-272.
11. Zhang, J. Z., Interfacial charge carrier dynamics of colloidal semiconductor
nanoparticles. Journal of Physical Chemistry B 2000, 104, (31), 7239-7253.
12. Zhao, J. C.; Wu, T. X.; Wu, K. Q.; Oikawa, K.; Hidaka, H.; Serpone, N., Photoassisted
degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous
anionic surfactant/TiO2 dispersions under visible light irradiation: Evidence for the need of
substrate adsorption on TiO2 particles. Environmental Science & Technology 1998, 32, (16),
2394-2400.
13. Kemp, T. J.; McIntyre, R. A., Transition metal-doped titanium(IV) dioxide:
Characterisation and influence on photodegradation of poly(vinyl chloride). Polymer
Degradation and Stability 2006, 91, (1), 165-194.
14. Martin, S. T.; Morrison, C. L.; Hoffmann, M. R., Photochemical Mechanism of
Size-Quantized Vanadium-Doped Tio2 Particles. Journal of Physical Chemistry 1994, 98,
(51), 13695-13704.
15. Klosek, S.; Raftery, D., Visible light driven V-doped TiO2 photocatalyst and its
photooxidation of ethanol. Journal of Physical Chemistry B 2001, 105, (14), 2815-2819.
16. Balikdjian, J. P.; Davidson, A.; Launay, S.; Eckert, H.; Che, M., Sintering and phase
transformation of V-loaded anatase materials containing bulk and surface V species. Journal
of Physical Chemistry B 2000, 104, (38), 8931-8939.
17. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on Tio2 Surfaces - Principles,
Mechanisms, and Selected Results. Chemical Reviews 1995, 95, (3), 735-758.
18. Haber, J.; Nowak, P., Surface doping of rutile by vanadium. Topics in Catalysis 2002, 20,
(1-4), 75-83.
19. Lee, D. Y.; Lee, W. J.; Song, J. S.; Koh, J. H.; Kim, Y. S., Electronic surface state of
TiO2 electrode doped with transition metals, studied with cluster model and DV-X alpha
method. Computational Materials Science 2004, 30, (3-4), 383-388.
20. Thompson, T. L.; Yates, J. T., TiO2-based photocatalysis: Surface defects, oxygen and
charge transfer. Topics in Catalysis 2005, 35, (3-4), 197-210.
21. Chang, S. M.; Hou, C. Y.; Lo, P. H.; Chang, C. T., Preparation of phosphated Zr-doped
TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped
nanocrystals. Applied Catalysis B-Environmental 2009, 90, (1-2), 233-241.
22. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor
electrode. Nature 1972, 238, (5358), 37-38.
23. Sclafani, A.; Herrmann, J. M., Comparison of the photoelectronic and photocatalytic
activities of various anatase and rutile forms of titania in pure liquid organic phases and in
aqueous solutions. Journal of Physical Chemistry 1996, 100, (32), 13655-13661.
24. Augustynski, J., Comment on "Diffusion impedance and space charge capacitance in the
nanoporous dye-sensitized electrochemical solar cell" and "Electronic transport in
dye-sensitized nanoporous TiO2 solar cells-comparison of electrolyte and solid-state devices".
Journal of Physical Chemistry B 2003, 107, (48), 13544-13545.
25. Skubal, L. R.; Meshkov, N. K.; Vogt, M. C., Detection and identification of gaseous
organics using a TiO2 sensor. Journal of Photochemistry and Photobiology a-Chemistry 2002,
148, (1-3), 103-108.
26. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W., Environmental
Applications of Semiconductor Photocatalysis. Chemical Reviews 1995, 95, (1), 69-96.
27. Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A. J., Electronic and optical properties of
anatase TiO2. Physical Review B 2000, 61, (11), 7459-7465.
28. Matthews, R. W., PHOTOOXIDATION OF ORGANIC IMPURITIES IN WATER
USING THIN-FILMS OF TITANIUM-DIOXIDE. Journal of Physical Chemistry 1987, 91,
(12), 3328-3333.
29. Choi, W. Y.; Termin, A.; Hoffmann, M. R., The Role of Metal-Ion Dopants in
Quantum-Sized Tio2 - Correlation between Photoreactivity and Charge-Carrier
Recombination Dynamics. Journal of Physical Chemistry 1994, 98, (51), 13669-13679.
30. Litter, M. I., Heterogeneous photocatalysis - Transition metal ions in photocatalytic
systems. Applied Catalysis B-Environmental 1999, 23, (2-3), 89-114.
31. Diebold, U., The surface science of titanium dioxide. Surface Science Reports 2003, 48,
53-229.
32. Weckhuysen, B. M.; Keller, D. E., Chemistry, spectroscopy and the role of supported
vanadium oxides in heterogeneous catalysis. Catalysis Today 2003, 78, (1-4), 25-46.
33. Zhang, H. Z.; Banfield, J. F., Understanding polymorphic phase transformation behavior
during growth of nanocrystalline aggregates: Insights from TiO2. Journal of Physical
Chemistry B 2000, 104, (15), 3481-3487.
34. Riegel, G.; Bolton, J. R., Photocatalytic Efficiency Variability in Tio2 Particles. Journal
of Physical Chemistry 1995, 99, (12), 4215-4224.
35. Sze, S. M., Semiconductor Devices - physics and technology. 2002.
36. Serpone, N., Relative photonic efficiencies and quantum yields in heterogeneous
photocatalysis. Journal of Photochemistry and Photobiology a-Chemistry 1997, 104, (1-3),
1-12.
37. Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C., Recombination pathways in the
Degussa P25 formulation of TiO2: Surface versus lattice mechanisms. Journal of Physical
Chemistry B 2005, 109, (2), 977-980.
38. Lawless, D.; Serpone, N.; Meisel, D., Role of Oh. Radicals and Trapped Holes in
Photocatalysis - a Pulse-Radiolysis Study. Journal of Physical Chemistry 1991, 95, (13),
5166-5170.
39. Kabra, K.; Chaudhary, R.; Sawhney, R. L., Treatment of hazardous organic and inorganic
compounds through aqueous-phase photocatalysis: A review. Industrial & Engineering
Chemistry Research 2004, 43, (24), 7683-7696.
40. Wu, T. X.; Liu, G. M.; Zhao, J. C.; Hidaka, H.; Serpone, N., Photoassisted degradation of
dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible
light irradiation in aqueous TiO2 dispersions. Journal of Physical Chemistry B 1998, 102,
(30), 5845-5851.
41. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the
liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews 2004, 104, (9),
3893-3946.
42. The Sol-Gel Process http://optoweb.fis.uniroma2.it/opto/solgel/index.html.
43. Hench, L. L.;West, J. K., The Sol-Gel Process. Chemical Reviews 1990, 90, (1), 33-72.
44. Brinker, C. J.; Scherer, G. W., Sol-gel science. Academic Press: 1990.
45. Bischoff, B. L.; Anderson, M. A., Peptization Process in the Sol-Gel Preparation of
Porous Anatase (Tio2). Chemistry of Materials 1995, 7, (10), 1772-1778.
46. Wang, C. C.; Ying, J. Y., Sol-gel synthesis and hydrothermal processing of anatase and
rutile titania nanocrystals. Chemistry of Materials 1999, 11, (11), 3113-3120.
47. Sadasivan, S.; Dubey, A. K.; Li, Y. Z.; Rasmussen, D. H., Alcoholic solvent effect on
silica synthesis - NMR and DLS investigation. Journal of Sol-Gel Science and Technology
1998, 12, (1), 5-14.
48. Sato, H.; Norisuye, T.; Takemori, T.; Tran-Cong-Miyata, Q.; Nomura, S., Effects of
solvent on microstructure and proton conductivity of organic-inorganic hybrid membranes.
Polymer 2007, 48, (19), 5681-5687.
49. Ichinose, I.; Senzu, H.; Kunitake, T., A surface sol-gel process of TiO2 and other metal
oxide films with molecular precision. Chemistry of Materials 1997, 9, (6), 1296-&.
50. Choi, W. Y.; Termin, A.; Hoffmann, M. R., Effects of Metal-Ion Dopants on the
Photocatalytic Reactivity of Quantum-Sized Tio2 Particles. Angewandte
Chemie-International Edition in English 1994, 33, (10), 1091-1092.
51. Alyea, E. C.; Lakshmi, L. J.; Ju, Z., Spectroscopic and activity studies on vanadia
supported on titania and phosphorus-modified titania. Langmuir 1997, 13, (21), 5621-5626.
52. Bulushev, D. A.; Kiwi-Minsker, L.; Zaikovskii, V. I.; Renken, A., Formation of active
sites for selective toluene oxidation during catalyst synthesis via solid-state reaction of V2O5
with TiO2. Journal of Catalysis 2000, 193, (1), 145-153.
53. Rodella, C. B.; Nascente, P. A. P.; Mastelaro, V. R.; Zucchi, M. R.; Franco, R. W. A.;
Magon, C. J.; Donoso, P.; Florentino, A. O., Chemical and structural characterization of
V2O5/TiO2 catalysts. Journal of Vacuum Science & Technology A 2001, 19, (4), 1158-1163.
54. Calatayud, M.; Minot, C., Reactivity of the oxygen sites in the V2O5/TiO2 anatase
catalyst. Journal of Physical Chemistry B 2004, 108, (40), 15679-15685.
55. Izumi, Y.; Kiyotaki, F.; Yagi, N.; Vlaicu, A. M.; Nisawa, A.; Fukushima, S.; Yoshitake,
H.; Iwasawa, Y., X-ray absorption fine structure combined with X-ray fluorescence
spectrometry. Part 15. Monitoring of vanadium site transformations on Titania and in
mesoporous titania by selective detection of the vanadium K alpha(1) fluorescence. Journal of
Physical Chemistry B 2005, 109, (31), 14884-14891.
56. Sorantin, P. I.; Schwarz, K., Chemical Bonding in Rutile-Type Compounds. Inorganic
Chemistry 1992, 31, (4), 567-576.
57. Gratzel, M.; Howe, R. F., Electron-Paramagnetic Resonance Studies of Doped Tio2
Colloids. Journal of Physical Chemistry 1990, 94, (6), 2566-2572.
58. Davidson, A.; Che, M., Temperature-Induced Diffusion of Probe Vanadium(Iv) Ions into
the Matrix of Titanium-Dioxide as Investigated by Esr Techniques. Journal of Physical
Chemistry 1992, 96, (24), 9909-9915.
59. Zhao, G. L.; Han, G. R.; Takahashi, M.; Yoko, T., Photoelectrochemical properties of
sol-gel-derived Ti1-xVxO2 solid solution film photoelectrodes. Thin Solid Films 2002, 410,
(1-2), 14-20.
60. Butler, T. M.; MacCraith, B. D.; McDonagh, C., Leaching in sol-gel-derived silica films
for optical pH sensing. Journal of Non-Crystalline Solids 1998, 224, (3), 249-258.
61. Berger, T.; Lana-Villarreal, T.; Monllor-Satoca, D.; Gomez, R., Charge transfer reductive
doping of nanostructured TiO2 thin film's as a way to improve their photoelectrocatalytic
performance. Electrochemistry Communications 2006, 8, (11), 1713-1718.
62. Wilson, R. G.; Stevie, F. A.; Magee, C. W., Secondary Ion Mass Spectrometry - A
Proactical Handbook for Depth Profiling and Bulk Impurity Analysis New York, 1989.
63. Uvarov, V.; Popov, I., Metrological characterization of X-ray diffraction methods for
determination of crystallite size in nano-scale materials. Materials Characterization 2007, 58,
(10), 883-891.
64. Lacombe, S.; Cardy, H.; Soggiu, N.; Blanc, S.; Habib-Jiwan, J. L.; Soumillion, J. P.,
Diffuse reflectance UV-Visible spectroscopy for the qualitative and quantitative study of
chromophores adsorbed or grafted on silica. Microporous and Mesoporous Materials 2001,
46, (2-3), 311-325.
65. 力丞儀器科技有限公司http://www.apisc.com/index.htm.
66. Wachs, I. E.; Jehng, J. M.; Ueda, W., Determination of the chemical nature of active
surface sites present on bulk mixed metal oxide catalysts. Journal of Physical Chemistry B
2005, 109, (6), 2275-2284.
67. Reed-Hill, R. E. a., Physical metallurgy principle. third ed.; 1991.
68. Trifiro, F., The chemistry of oxidation catalysts based on mixed oxides. Catalysis Today
1998, 41, (1-3), 21-35.
69. Bhattacharyya, K.; Varma, S.; Tripathi, A. K.; Bharadwaj, S. R.; Tyagi, A. K., Effect of
Vanadia Doping and Its Oxidation State on the Photocatalytic Activity of TiO2 for Gas-Phase
Oxidation of Ethene. Journal of Physical Chemistry C 2008, 112, (48), 19102-19112.
70. Udompom, A.; Ananta, S., Effect of calcination condition on phase formation and
particle size of lead titanate powders synthesized by the solid-state reaction. Materials Letters
2004, 58, (7-8), 1154-1159.
71. Zhao, G. L.; Kozuka, H.; Lin, H.; Yoko, T., Sol-gel preparation of Ti1-xVxO2 solid
solution film electrodes with conspicuous photoresponse in the visible region. Thin Solid
Films 1999, 339, (1-2), 123-128.
72. Zhao, C.; Zhong, S. H., Structures and photo absorption properties of sol-gel-derived
coupled semiconductor V2O5-TiO2. Chinese Journal of Inorganic Chemistry 2006, 22, (2),
238-242.
73. Chang, S. M.; Doong, R. A., Characterization of Zr-doped TiO2 nanocrystals prepared
by a nonhydrolytic sol-gel method at high temperatures. Journal of Physical Chemistry B
2006, 110, (42), 20808-20814.
74. Luan, Z. H.; Kevan, L., Electron spin resonance and diffuse reflectance
ultraviolet-visible spectroscopies of vanadium immobilized at surface titanium centers of
titanosilicate mesoporous TiMCM-41 molecular sieves. Journal of Physical Chemistry B
1997, 101, (11), 2020-2027.
75. Zheng, S.; Gao, L.; Zhang, Q. H.; Zhang, W. P.; Guo, J. K., Preparation, characterization
and photocatalytic properties of singly and doubly titania-modified mesoporous silicate
MCM-41 by varying titanium precursors. Journal of Materials Chemistry 2001, 11, (2),
578-583.
76. Busca, G.; Centi, G.; Marchetti, L.; Trifiro, F., CHEMICAL AND SPECTROSCOPIC
STUDY OF THE NATURE OF A VANADIUM-OXIDE MONOLAYER SUPPORTED ON A
HIGH-SURFACE-AREATIO2 ANATASE. Langmuir 1986, 2, (5), 568-577.
77. Centi, G., Nature of active layer in vanadium oxide supported on titanium oxide and
control of its reactivity in the selective oxidation and ammoxidation of alkylaromatics.
Applied Catalysis a-General 1996, 147, (2), 267-298.
78. Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J. M., Spectroscopic, Photoconductivity,
and Photocatalytic Studies of Tio2 Colloids - Naked and with the Lattice Doped with Cr3+,
Fe3+, and V5+ Cations. Langmuir 1994, 10, (3), 643-652.
79. Osorio-Guillen, J.; Lany, S.; Zunger, A., Atomic control of conductivity versus
ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. Physical
Review Letters 2008, 100, (3), -.
80. Wang, C. T.; Huang, H. H., Photo-chargeable titanium/vanadium oxide composites.
Journal of Non-Crystalline Solids 2008, 354, (28), 3336-3342.
81. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J., EPR
study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir
2001, 17, (17), 5368-5374.
82. Coronado, J. M.; Maira, A. J.; Martinez-Arias, A.; Conesa, J. C.; Soria, J., EPR study of
the radicals formed upon UV irradiation of ceria-based photocatalysts. Journal of
Photochemistry and Photobiology a-Chemistry 2002, 150, (1-3), 213-221.
83. 高濂, 鄭., 張青虹, 奈米光觸媒Nano-photocatalyst. 五南圖書出版股份有限公司:
台灣, 2004.
84. Kaoua, S.; Krimi, S.; El Jazouli, A.; Hlil, E. K.; de Waal, D., Preparation and
characterization of phosphate glasses containing titanium and vanadium. Journal of Alloys
and Compounds 2007, 429, (1-2), 276-279.
85. Nakaoka, Y.; Nosaka, Y., ESR Investigation into the effects of heat treatment and crystal
structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and
Photobiology a-Chemistry 1997, 110, (3), 299-305.
86. Howe, R. F.; Gratzel, M., EPR Study of Hydrated Anatase under UV Irradiation. Journal
of physical chemistry 1987, 91, (14), 3906-3909.
87. Micic, O. I.; Zhang, Y. N.; Cromack, K. R.; Trifunac, A. D.; Thurnauer, M. C., Trapped
Holes on Tio2 Colloids Studied by Electron-Paramagnetic-Resonance. Journal of physical
chemistry 1993, 97, (28), 7277-7283.
88. Depero, L. E.; Bonzi, P.; Musci, M.; Casale, C., Microstructural Study of
Vanadium-Titanium Oxide Powders Obtained by Laser-Induced Synthesis. Journal of Solid
State Chemistry 1994, 111, (2), 247-252.
89. Sroiraya, S.; Triampo, W.; Morales, N. P.; Triampo, D., Kinetics and mechanism of
hydroxyl radical formation studied via electron spin resonance for photocatalytic
90
nanocrystalline titania: Effect of particle size distribution, concentration, and agglomeration.
Journal of Ceramic Processing Research 2008, 9, (2), 146-154.
90. 鄭信民, 李., X 光繞射應用介紹. 工業材料雜誌2002, 181, 100-108.
91. 張銀祐X 光繞射與薄膜殘留應力分析
http://el.mdu.edu.tw/datacos//09623111018A/%E6%9D%90%E6%96%99%E5%88%86%E6
%9E%90%20CH4%20XRD-X%E5%85%89%E7%B9%9E%E5%B0%84.pdf.
92. Ray, W. J.; Post, C. B., The Oxyvanadium Constellation in Transition-State-Analog
Complexes of Phosphoglucomutase and Ribonuclease - Structural Deductions from
Electron-Transfer Spectra. Biochemistry 1990, 29, (11), 2779-2789.
93. Gao, X. T.; Bare, S. R.; Weckhuysen, B. M.; Wachs, I. E., In situ spectroscopic
investigation of molecular structures of highly dispersed vanadium oxide on silica under
various conditions. Journal of Physical Chemistry B 1998, 102, (52), 10842-10852.
94. Gao, X. T.; Wachs, I. E., Investigation of surface structures of supported vanadium oxide
catalysts by UV-vis-NIR diffuse reflectance spectroscopy. Journal of Physical Chemistry B
2000, 104, (6), 1261-1268.
95. The phase control in EPR. http://www.kyospin.com/KSPhaseControl.htm.
96. Akira Fujishima; Tata N. Rao; Tryk, D. A., Titanium dioxide photocatalysis. Journal of
Photochemistry and Photobiology C-Photochemistry Reviews 2000, 1, 1-21.
97. Herrmann, J. M., Heterogeneous photocatalysis: fundamentals and applications to the
removal of various types of aqueous pollutants. Catalysis Today 1999, 53, (1), 115-129.
98. Kumar, K. V.; Porkodi, K.; Rocha, F., Langmuir-Hinshelwood kinetics - A theoretical
study. Catalysis Communications 2008, 9, (1), 82-84.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *