|
1. Di Paola, A.; Garcia-Lopez, E.; Ikeda, S.; Marci, G.; Ohtani, B.; Palmisano, L., Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today 2002, 75, (1-4), 87-93. 2. Yuan, Z.; Zhang, J. L.; Li, B.; Li, J. Q., Effect of metal ion dopants on photochemical properties of anatase TiO2 films synthesized by a modified sol-gel method. Thin Solid Films 2007, 515, (18), 7091-7095. 3. Xin, B. F.; Ren, Z. Y.; Wang, P.; Liu, J.; Jing, L. Q.; Fu, H. G., Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+-TiO2 photocatalysts. Applied Surface Science 2007, 253, (9), 4390-4395. 4. Bouras, P.; Stathatos, E.; Lianos, P., Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B-Environmental 2007, 73, (1-2), 51-59. 5. Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K., Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids 2002, 63, (10), 1909-1920. 6. Park, H.; Choi, W., Photocatalytic reactivities of Nafion-Coated TiO2 for the degradation of charged organic compounds under UV or visible light. Journal of Physical Chemistry B 2005, 109, (23), 11667-11674. 7. Mrowetz, M.; Balcerski, W.; Colussi, A. J.; Hoffman, M. R., Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. Journal of Physical Chemistry B 2004, 108, (45), 17269-17273. 8. Reddy, K. M.; Baruwati, B.; Jayalakshmi, M.; Rao, M. M.; Manorama, S. V., S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry 2005, 178, (11), 3352-3358. 9. Wang, H.; Lewis, J. P., Second-generation photocatalytic materials: anion-doped TiO2. Journal of Physics-Condensed Matter 2006, 18, (2), 421-434. 10. Levy, B., Photochemistry of nanostructured materials for energy applications. Journal of Electroceramics 1997, 1, (3), 239-272. 11. Zhang, J. Z., Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. Journal of Physical Chemistry B 2000, 104, (31), 7239-7253. 12. Zhao, J. C.; Wu, T. X.; Wu, K. Q.; Oikawa, K.; Hidaka, H.; Serpone, N., Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: Evidence for the need of substrate adsorption on TiO2 particles. Environmental Science & Technology 1998, 32, (16), 2394-2400. 13. Kemp, T. J.; McIntyre, R. A., Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride). Polymer Degradation and Stability 2006, 91, (1), 165-194. 14. Martin, S. T.; Morrison, C. L.; Hoffmann, M. R., Photochemical Mechanism of Size-Quantized Vanadium-Doped Tio2 Particles. Journal of Physical Chemistry 1994, 98, (51), 13695-13704. 15. Klosek, S.; Raftery, D., Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. Journal of Physical Chemistry B 2001, 105, (14), 2815-2819. 16. Balikdjian, J. P.; Davidson, A.; Launay, S.; Eckert, H.; Che, M., Sintering and phase transformation of V-loaded anatase materials containing bulk and surface V species. Journal of Physical Chemistry B 2000, 104, (38), 8931-8939. 17. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on Tio2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95, (3), 735-758. 18. Haber, J.; Nowak, P., Surface doping of rutile by vanadium. Topics in Catalysis 2002, 20, (1-4), 75-83. 19. Lee, D. Y.; Lee, W. J.; Song, J. S.; Koh, J. H.; Kim, Y. S., Electronic surface state of TiO2 electrode doped with transition metals, studied with cluster model and DV-X alpha method. Computational Materials Science 2004, 30, (3-4), 383-388. 20. Thompson, T. L.; Yates, J. T., TiO2-based photocatalysis: Surface defects, oxygen and charge transfer. Topics in Catalysis 2005, 35, (3-4), 197-210. 21. Chang, S. M.; Hou, C. Y.; Lo, P. H.; Chang, C. T., Preparation of phosphated Zr-doped TiO2 exhibiting high photocatalytic activity through calcination of ligand-capped nanocrystals. Applied Catalysis B-Environmental 2009, 90, (1-2), 233-241. 22. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, (5358), 37-38. 23. Sclafani, A.; Herrmann, J. M., Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. Journal of Physical Chemistry 1996, 100, (32), 13655-13661. 24. Augustynski, J., Comment on "Diffusion impedance and space charge capacitance in the nanoporous dye-sensitized electrochemical solar cell" and "Electronic transport in dye-sensitized nanoporous TiO2 solar cells-comparison of electrolyte and solid-state devices". Journal of Physical Chemistry B 2003, 107, (48), 13544-13545. 25. Skubal, L. R.; Meshkov, N. K.; Vogt, M. C., Detection and identification of gaseous organics using a TiO2 sensor. Journal of Photochemistry and Photobiology a-Chemistry 2002, 148, (1-3), 103-108. 26. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995, 95, (1), 69-96. 27. Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A. J., Electronic and optical properties of anatase TiO2. Physical Review B 2000, 61, (11), 7459-7465. 28. Matthews, R. W., PHOTOOXIDATION OF ORGANIC IMPURITIES IN WATER USING THIN-FILMS OF TITANIUM-DIOXIDE. Journal of Physical Chemistry 1987, 91, (12), 3328-3333. 29. Choi, W. Y.; Termin, A.; Hoffmann, M. R., The Role of Metal-Ion Dopants in Quantum-Sized Tio2 - Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics. Journal of Physical Chemistry 1994, 98, (51), 13669-13679. 30. Litter, M. I., Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems. Applied Catalysis B-Environmental 1999, 23, (2-3), 89-114. 31. Diebold, U., The surface science of titanium dioxide. Surface Science Reports 2003, 48, 53-229. 32. Weckhuysen, B. M.; Keller, D. E., Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catalysis Today 2003, 78, (1-4), 25-46. 33. Zhang, H. Z.; Banfield, J. F., Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. Journal of Physical Chemistry B 2000, 104, (15), 3481-3487. 34. Riegel, G.; Bolton, J. R., Photocatalytic Efficiency Variability in Tio2 Particles. Journal of Physical Chemistry 1995, 99, (12), 4215-4224. 35. Sze, S. M., Semiconductor Devices - physics and technology. 2002. 36. Serpone, N., Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology a-Chemistry 1997, 104, (1-3), 1-12. 37. Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C., Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms. Journal of Physical Chemistry B 2005, 109, (2), 977-980. 38. Lawless, D.; Serpone, N.; Meisel, D., Role of Oh. Radicals and Trapped Holes in Photocatalysis - a Pulse-Radiolysis Study. Journal of Physical Chemistry 1991, 95, (13), 5166-5170. 39. Kabra, K.; Chaudhary, R.; Sawhney, R. L., Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Industrial & Engineering Chemistry Research 2004, 43, (24), 7683-7696. 40. Wu, T. X.; Liu, G. M.; Zhao, J. C.; Hidaka, H.; Serpone, N., Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. Journal of Physical Chemistry B 1998, 102, (30), 5845-5851. 41. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews 2004, 104, (9), 3893-3946. 42. The Sol-Gel Process http://optoweb.fis.uniroma2.it/opto/solgel/index.html. 43. Hench, L. L.;West, J. K., The Sol-Gel Process. Chemical Reviews 1990, 90, (1), 33-72. 44. Brinker, C. J.; Scherer, G. W., Sol-gel science. Academic Press: 1990. 45. Bischoff, B. L.; Anderson, M. A., Peptization Process in the Sol-Gel Preparation of Porous Anatase (Tio2). Chemistry of Materials 1995, 7, (10), 1772-1778. 46. Wang, C. C.; Ying, J. Y., Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chemistry of Materials 1999, 11, (11), 3113-3120. 47. Sadasivan, S.; Dubey, A. K.; Li, Y. Z.; Rasmussen, D. H., Alcoholic solvent effect on silica synthesis - NMR and DLS investigation. Journal of Sol-Gel Science and Technology 1998, 12, (1), 5-14. 48. Sato, H.; Norisuye, T.; Takemori, T.; Tran-Cong-Miyata, Q.; Nomura, S., Effects of solvent on microstructure and proton conductivity of organic-inorganic hybrid membranes. Polymer 2007, 48, (19), 5681-5687. 49. Ichinose, I.; Senzu, H.; Kunitake, T., A surface sol-gel process of TiO2 and other metal oxide films with molecular precision. Chemistry of Materials 1997, 9, (6), 1296-&. 50. Choi, W. Y.; Termin, A.; Hoffmann, M. R., Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized Tio2 Particles. Angewandte Chemie-International Edition in English 1994, 33, (10), 1091-1092. 51. Alyea, E. C.; Lakshmi, L. J.; Ju, Z., Spectroscopic and activity studies on vanadia supported on titania and phosphorus-modified titania. Langmuir 1997, 13, (21), 5621-5626. 52. Bulushev, D. A.; Kiwi-Minsker, L.; Zaikovskii, V. I.; Renken, A., Formation of active sites for selective toluene oxidation during catalyst synthesis via solid-state reaction of V2O5 with TiO2. Journal of Catalysis 2000, 193, (1), 145-153. 53. Rodella, C. B.; Nascente, P. A. P.; Mastelaro, V. R.; Zucchi, M. R.; Franco, R. W. A.; Magon, C. J.; Donoso, P.; Florentino, A. O., Chemical and structural characterization of V2O5/TiO2 catalysts. Journal of Vacuum Science & Technology A 2001, 19, (4), 1158-1163. 54. Calatayud, M.; Minot, C., Reactivity of the oxygen sites in the V2O5/TiO2 anatase catalyst. Journal of Physical Chemistry B 2004, 108, (40), 15679-15685. 55. Izumi, Y.; Kiyotaki, F.; Yagi, N.; Vlaicu, A. M.; Nisawa, A.; Fukushima, S.; Yoshitake, H.; Iwasawa, Y., X-ray absorption fine structure combined with X-ray fluorescence spectrometry. Part 15. Monitoring of vanadium site transformations on Titania and in mesoporous titania by selective detection of the vanadium K alpha(1) fluorescence. Journal of Physical Chemistry B 2005, 109, (31), 14884-14891. 56. Sorantin, P. I.; Schwarz, K., Chemical Bonding in Rutile-Type Compounds. Inorganic Chemistry 1992, 31, (4), 567-576. 57. Gratzel, M.; Howe, R. F., Electron-Paramagnetic Resonance Studies of Doped Tio2 Colloids. Journal of Physical Chemistry 1990, 94, (6), 2566-2572. 58. Davidson, A.; Che, M., Temperature-Induced Diffusion of Probe Vanadium(Iv) Ions into the Matrix of Titanium-Dioxide as Investigated by Esr Techniques. Journal of Physical Chemistry 1992, 96, (24), 9909-9915. 59. Zhao, G. L.; Han, G. R.; Takahashi, M.; Yoko, T., Photoelectrochemical properties of sol-gel-derived Ti1-xVxO2 solid solution film photoelectrodes. Thin Solid Films 2002, 410, (1-2), 14-20. 60. Butler, T. M.; MacCraith, B. D.; McDonagh, C., Leaching in sol-gel-derived silica films for optical pH sensing. Journal of Non-Crystalline Solids 1998, 224, (3), 249-258. 61. Berger, T.; Lana-Villarreal, T.; Monllor-Satoca, D.; Gomez, R., Charge transfer reductive doping of nanostructured TiO2 thin film's as a way to improve their photoelectrocatalytic performance. Electrochemistry Communications 2006, 8, (11), 1713-1718. 62. Wilson, R. G.; Stevie, F. A.; Magee, C. W., Secondary Ion Mass Spectrometry - A Proactical Handbook for Depth Profiling and Bulk Impurity Analysis New York, 1989. 63. Uvarov, V.; Popov, I., Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Materials Characterization 2007, 58, (10), 883-891. 64. Lacombe, S.; Cardy, H.; Soggiu, N.; Blanc, S.; Habib-Jiwan, J. L.; Soumillion, J. P., Diffuse reflectance UV-Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica. Microporous and Mesoporous Materials 2001, 46, (2-3), 311-325. 65. 力丞儀器科技有限公司http://www.apisc.com/index.htm. 66. Wachs, I. E.; Jehng, J. M.; Ueda, W., Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts. Journal of Physical Chemistry B 2005, 109, (6), 2275-2284. 67. Reed-Hill, R. E. a., Physical metallurgy principle. third ed.; 1991. 68. Trifiro, F., The chemistry of oxidation catalysts based on mixed oxides. Catalysis Today 1998, 41, (1-3), 21-35. 69. Bhattacharyya, K.; Varma, S.; Tripathi, A. K.; Bharadwaj, S. R.; Tyagi, A. K., Effect of Vanadia Doping and Its Oxidation State on the Photocatalytic Activity of TiO2 for Gas-Phase Oxidation of Ethene. Journal of Physical Chemistry C 2008, 112, (48), 19102-19112. 70. Udompom, A.; Ananta, S., Effect of calcination condition on phase formation and particle size of lead titanate powders synthesized by the solid-state reaction. Materials Letters 2004, 58, (7-8), 1154-1159. 71. Zhao, G. L.; Kozuka, H.; Lin, H.; Yoko, T., Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin Solid Films 1999, 339, (1-2), 123-128. 72. Zhao, C.; Zhong, S. H., Structures and photo absorption properties of sol-gel-derived coupled semiconductor V2O5-TiO2. Chinese Journal of Inorganic Chemistry 2006, 22, (2), 238-242. 73. Chang, S. M.; Doong, R. A., Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures. Journal of Physical Chemistry B 2006, 110, (42), 20808-20814. 74. Luan, Z. H.; Kevan, L., Electron spin resonance and diffuse reflectance ultraviolet-visible spectroscopies of vanadium immobilized at surface titanium centers of titanosilicate mesoporous TiMCM-41 molecular sieves. Journal of Physical Chemistry B 1997, 101, (11), 2020-2027. 75. Zheng, S.; Gao, L.; Zhang, Q. H.; Zhang, W. P.; Guo, J. K., Preparation, characterization and photocatalytic properties of singly and doubly titania-modified mesoporous silicate MCM-41 by varying titanium precursors. Journal of Materials Chemistry 2001, 11, (2), 578-583. 76. Busca, G.; Centi, G.; Marchetti, L.; Trifiro, F., CHEMICAL AND SPECTROSCOPIC STUDY OF THE NATURE OF A VANADIUM-OXIDE MONOLAYER SUPPORTED ON A HIGH-SURFACE-AREATIO2 ANATASE. Langmuir 1986, 2, (5), 568-577. 77. Centi, G., Nature of active layer in vanadium oxide supported on titanium oxide and control of its reactivity in the selective oxidation and ammoxidation of alkylaromatics. Applied Catalysis a-General 1996, 147, (2), 267-298. 78. Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J. M., Spectroscopic, Photoconductivity, and Photocatalytic Studies of Tio2 Colloids - Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations. Langmuir 1994, 10, (3), 643-652. 79. Osorio-Guillen, J.; Lany, S.; Zunger, A., Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. Physical Review Letters 2008, 100, (3), -. 80. Wang, C. T.; Huang, H. H., Photo-chargeable titanium/vanadium oxide composites. Journal of Non-Crystalline Solids 2008, 354, (28), 3336-3342. 81. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J., EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 2001, 17, (17), 5368-5374. 82. Coronado, J. M.; Maira, A. J.; Martinez-Arias, A.; Conesa, J. C.; Soria, J., EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. Journal of Photochemistry and Photobiology a-Chemistry 2002, 150, (1-3), 213-221. 83. 高濂, 鄭., 張青虹, 奈米光觸媒Nano-photocatalyst. 五南圖書出版股份有限公司: 台灣, 2004. 84. Kaoua, S.; Krimi, S.; El Jazouli, A.; Hlil, E. K.; de Waal, D., Preparation and characterization of phosphate glasses containing titanium and vanadium. Journal of Alloys and Compounds 2007, 429, (1-2), 276-279. 85. Nakaoka, Y.; Nosaka, Y., ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology a-Chemistry 1997, 110, (3), 299-305. 86. Howe, R. F.; Gratzel, M., EPR Study of Hydrated Anatase under UV Irradiation. Journal of physical chemistry 1987, 91, (14), 3906-3909. 87. Micic, O. I.; Zhang, Y. N.; Cromack, K. R.; Trifunac, A. D.; Thurnauer, M. C., Trapped Holes on Tio2 Colloids Studied by Electron-Paramagnetic-Resonance. Journal of physical chemistry 1993, 97, (28), 7277-7283. 88. Depero, L. E.; Bonzi, P.; Musci, M.; Casale, C., Microstructural Study of Vanadium-Titanium Oxide Powders Obtained by Laser-Induced Synthesis. Journal of Solid State Chemistry 1994, 111, (2), 247-252. 89. Sroiraya, S.; Triampo, W.; Morales, N. P.; Triampo, D., Kinetics and mechanism of hydroxyl radical formation studied via electron spin resonance for photocatalytic 90 nanocrystalline titania: Effect of particle size distribution, concentration, and agglomeration. Journal of Ceramic Processing Research 2008, 9, (2), 146-154. 90. 鄭信民, 李., X 光繞射應用介紹. 工業材料雜誌2002, 181, 100-108. 91. 張銀祐X 光繞射與薄膜殘留應力分析 http://el.mdu.edu.tw/datacos//09623111018A/%E6%9D%90%E6%96%99%E5%88%86%E6 %9E%90%20CH4%20XRD-X%E5%85%89%E7%B9%9E%E5%B0%84.pdf. 92. Ray, W. J.; Post, C. B., The Oxyvanadium Constellation in Transition-State-Analog Complexes of Phosphoglucomutase and Ribonuclease - Structural Deductions from Electron-Transfer Spectra. Biochemistry 1990, 29, (11), 2779-2789. 93. Gao, X. T.; Bare, S. R.; Weckhuysen, B. M.; Wachs, I. E., In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions. Journal of Physical Chemistry B 1998, 102, (52), 10842-10852. 94. Gao, X. T.; Wachs, I. E., Investigation of surface structures of supported vanadium oxide catalysts by UV-vis-NIR diffuse reflectance spectroscopy. Journal of Physical Chemistry B 2000, 104, (6), 1261-1268. 95. The phase control in EPR. http://www.kyospin.com/KSPhaseControl.htm. 96. Akira Fujishima; Tata N. Rao; Tryk, D. A., Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2000, 1, 1-21. 97. Herrmann, J. M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today 1999, 53, (1), 115-129. 98. Kumar, K. V.; Porkodi, K.; Rocha, F., Langmuir-Hinshelwood kinetics - A theoretical study. Catalysis Communications 2008, 9, (1), 82-84.
|