帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:羅品涵
作者(英文):Pin-Han Lo
論文名稱(中文):利用三辛基氧化膦包覆之二氧化鈦奈米晶粒光降解內分泌干擾物質研究
論文名稱(英文):Photoactivity of TOPO-capped TiO2 nanocrystals for the degradation of endocrine disrupting chemicals
指導教授(中文):張淑閔
指導教授(英文):Sue-Ming Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9519503
出版年(民國):97
畢業學年度:96
語文別:英文
論文頁數:84
中文關鍵詞:異相光催化反應內分泌干擾物質三辛基氧化膦分配能力Langmuir-Hinshelwood氫氧自由基
外文關鍵詞:Heterogeneous photocatalytic reactionEndocrine disrupting chemicalsrioctylphosphine oxide (TOPO)PartitionLangmuir-Hinshelwood kineticsHydroxyl radical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
近年來,利用異相光催化反應分解內分泌干擾物質之議題備受矚目,其中,加強光觸媒中電子-電洞對轉移能力與促進污染物吸附於光觸媒上,於提升光催化反應過中污染物分解之效率有著十分重要的貢獻。本研究利用非水解性溶膠-凝膠法合成三辛基氧化膦包覆之二氧化鈦奈米晶粒(TOPO-capped TiO2),並探討此光觸媒對三種不同親疏水性的環境荷爾蒙:酚(log K¬ow = 1.46)、丙二酚(log K¬ow = 2.2)與雌酮(log K¬ow = 3.13)的光催化分解特性。結果證明有機修飾光觸媒對於內分泌干擾物質有優越的吸附能力,具有最高log Kow的雌酮於TOPO-capped TiO2的分配係數最高為28.64 l/g,其次為丙二酚,其分配係數為 3.09 l/g,最低為酚,其分配係數為0.15 l/g,反之,P25對於水中內分泌干擾物質之分配能力則是十分微弱。光催化結果可以Langmuir-Hinshelwood反應動力式描述,發現TOPO-capped TiO2分解酚與丙二酚的速率分別優於商用觸媒P25的1.4和3.2倍;動力速率常數分別為7.3□10-2和1.4□10-1 ppm□g□min-1□m-2,為P25之0.9與2.7倍 (8.2□10-2和5.2□10-2 ppm□g□min-1□m-2),由於表面修飾的有機物會佔據二氧化鈦表面的活性位置,因此於降解酚的過程中,其速率常數略低於P25的表現,而TOPO-capped TiO2對酚與丙二酚的吸附常數分別為2.2□10-2 and 6.4□10-2 l/mg,為P25之2.2與5.8倍 (1.0□10-2 and 1.1□10-2 l/mg)。由此可知TOPO-capped TiO2促進酚與丙二酚吸附於TiO2,因此大幅提高其對環境荷爾蒙降解能力。此外,EPR結果發現在TOPO-capped TiO2系統中,光催化反應產生的氫氧自由基含量低,可知環境荷爾蒙主要利用電子電洞對進行直接光催化降解,且TOPO-capped TiO2中捕捉住的電子與電洞量明顯大於P25,可知TOPO-capped TiO2能有效抑制電荷再結合,以致於增進有效電荷利用率。總而言之,本研究合成有機物修飾之光觸媒具有良好有機物吸附能力與電子電洞對分離能力,因而大幅提升對環境荷爾蒙分解的光催化活性。與商用光觸媒 P25 相比,在處理不同親疏水性的環境汙染物上TOPO-capped TiO2對於催化極高疏水性的汙染物展現出優越的吸附與光催化能力,此種利用有機修飾光觸媒表面的材料為未來的環境汙染物降解議題提供了新的可行方案。
Heterogeneous photocatalytic reaction for decomposition of endocrine disrupting chemicals (EDCs) has attracted much attention. The efficiency of photodecomposition is limited by the recombination of electrons and holes and the adsorption ability between catalysts and target compounds. In this study, modification of titanium dioxide (TiO2) with trioctylphosphine oxide (TOPO) was prepared by a non-hydrolytic sol-gel method. The TOPO-capped TiO2 exhibited high adsorption ability for EDCs. The partition coefficients of phenol, BPA and estrone in the presence TOPO-capped TiO2 are 0.15, 3.09, and 28.64 l/g, respectively. In contrast, Degussa P25 adsorbs EDCs inefficiently. In the case of photocatalytic reaction, photocatalysis of EDCs follows Langmuir-Hinshelwood model. The initial rates for decomposition of phenol and bisphenol A (BPA) by TOPO-capped TiO2 are 1.4 and 3.2 times, respectively, higher than those by Degussa P25. The kinetic rate constants of phenol and bisphenol A are 7.3□10-2 and 1.4□10-1 ppm□g□min-1□m-2, respectively, in the presence of TOPO-capped TiO2, which are 0.9 and 2.7 times, respectively, higher than those in the P25 slurry (8.2□10-2 and 5.2□10-2 ppm□g□min-1□m-2). The smaller rate constant of TOPO-capped TiO2 for decomposition of phenol is due to that the modifier occupied active sites. The adsorption coefficients of phenol and bisphenol A are 2.2□10-2 and 6.4□10-2 l/mg, respectively, in the presence of TOPO-capped TiO2, which are 2.2 and 5.8 times, respectively, higher than those in the P25 slurry (1.0□10-2 and 1.1□10-2 l/mg). The photocatalytic mechanism of TOPO-capped TiO2 mainly involves direct photodecomposition of these adsorbed EDCs by photo-generated charges rather by hydroxyl radicals which is normally occurred in the P25-based system. In addition, the intensity of trapped holes and electrons in TOPO-capped TiO2 are much higher than that in P25. These results reveal that TOPO-capped TiO2 improved interfacial charge transfer. In summary, the TOPO assists partition of EDCs onto the TiO2 surface and facilitates interfacial charge transfer. These contributions improve photocatalytic activity of TOPO-capped TiO2.
致謝 I
中文摘要 II
Abstract IV
Content Index VI
Figure Index VIII
Table Index X
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Objectives 2
Chapter 2. Background and Introduction 4
2.1 Photocatalysis 4
2.1.1 Principle of photocatalysis 4
2.1.2 Photocatalysts 6
2.2 Sol-gel method 8
2.2.1 Hydrolytical Sol-Gel process 8
2.2.2 Non-Hydrolytic Sol-Gel process 9
2.3 Surface Modification 11
2.4 Endocrine Disrupting Chemicals 15
2.5 Photocatalytic Degradation for EDCs 16
2.5.1 Photocatalytic degradation technology for phenol 16
2.5.2 Photocatalytic degradation technology for BPA 19
2.5.3 Photocatalytic degradation for estrone 22
Chapter 3. Experimental Materials and Methods 23
3.1 Chemicals 23
3.2 Preparation of TOPO-capped TiO2 with NHSG method 26
3.3 Characterization 28
3.3.1 X-ray powder Diffractometer (XRPD) 28
3.3.2 High Resolution Transmission Electron Microscopy (HR-TEM) 28
3.3.3 X-ray photoelectron Spectroscopy (XPS) 28
3.3.4 Specific Surface Area 29
3.3.5 Fourier Transform Infrared Spectrometer (FTIR) 30
3.3.6 UV-vis Spectrometer 30
3.3.7 Thermo gravimetric Analysis (TGA) 30
3.3.8 Dynamic Light Scattering (DLS) and Zeta Potential 31
3.3.9 Electron Paramagnetic Resonance (EPR) 31
3.4 Partition ability of EDCs 32
3.5 Photodegradation of EDCs 32
3.6 High Performance Liquid Chromatography (HPLC) 33
Chapter 4. Results and discussion 35
4.1 Physicochemical properties of TOPO-capped TiO2 35
4.1.1 Microstructures of TOPO-capped TiO2 35
4.1.2 Isoelectric point and Hydrodynamic diameter of TiO2 39
4.2 Partition Study 43
4.2.1 Partition equilibrium 43
4.2.2 Partition isotherm 45
4.3 EPR spin trapping of hydroxyl radicals for TiO2 powders 49
4.4 Photocatalysis Study 55
4.4.1 Photocatalytic activity 55
4.4.2 Competitive photocatalysis 65
4.4.3 After photocatalysis 68
Chapter 5. Conclusions 70
References 71
Appendix A. Experimental parameters 78
Appendix B. Photocatalysis 81
1. Roepke, T. A.; Snyder, M. J.; Cherr, G. N., Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations. Aquatic Toxicology 2005, 71, (2), 155-173.
2. Jorgensen, M.; Vendelbo, B.; Skakkebaek, N. E.; Leffers, H., Assaying estrogenicity by quantitating the expression levels of endogenous estrogen-regulated genes. Environmental Health Perspectives 2000, 108, (5), 403-412.
3. Lee, H. B.; Peart, T. E.; Svoboda, M. L., Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography-mass spectrometry. Journal of Chromatography A 2005, 1094, (1-2), 122-129.
4. Colborn, T.; Saal, F. S. V.; Soto, A. M., Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans. Environmental Health Perspectives 1993, 101, (5), 378-384.
5. Depledge, M. H.; Billinghurst, Z., Ecological significance of endocrine disruption in marine invertebrates. Marine Pollution Bulletin 1999, 39, (1-12), 32-38.
6. Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E., Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology 2005, 39, (17), 6649-6663.
7. Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H., Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research 2007, 41, (19), 4373-4382.
8. Anpo, M.; Takeuchi, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis 2003, 216, (1-2), 505-516.
9. Ding, Z.; Lu, G. Q.; Greenfield, P. F., Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. Journal of Physical Chemistry B 2000, 104, (19), 4815-4820.
10. Herrmann, J. M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today 1999, 53, (1), 115-129.
11. Ohko, Y.; Ando, I.; Niwa, C.; Tatsuma, T.; Yamamura, T.; Nakashima, T.; Kubota, Y.; Fujishima, A., Degradation of bisphenol A in water by TiO2 photocatalyst. Environmental Science & Technology 2001, 35, (11), 2365-2368.
12. Kurinobu, S.; Tsurusaki, K.; Natui, Y.; Kimata, M.; Hasegawa, M., Decomposition of pollutants in wastewater using magnetic photocatalyst particles. Journal of Magnetism and Magnetic Materials 2007, 310, (2), E1025-E1027.
13. Kohtani, S.; Hiro, J.; Yamamoto, N.; Kudo, A.; Tokumura, K.; Nakagaki, R., Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation. Catalysis Communications 2005, 6, (3), 185-189.
14. Yue, B.; Zhou, Y.; Xu, J. Y.; Wu, Z. Z.; Zhang, X. A.; Zou, Y. F.; Jin, S. L., Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates. Environmental Science & Technology 2002, 36, (6), 1325-1329.
15. Kasahara, T.; Inumaru, K.; Yamanaka, S., Enhanced photocatalytic decomposition of nonylphenol polyethoxylate by alkyl-grafted TiO2-MCM-41 organic-inorganic nanostructure. Microporous and Mesoporous Materials 2004, 76, (1-3), 123-130.
16. Andrzejewska, A.; Krysztafkiewicz, A.; Jesionowski, T., Adsorption of organic dyes on the aminosilane modified TiO2 surface. Dyes and Pigments 2004, 62, (2), 121-130.
17. Tryba, B.; Tsumura, T.; Janus, M.; Morawski, A. W.; Inagaki, M., Carbon-coated anatase: adsorption and decomposition of phenol in water. Applied Catalysis B-Environmental 2004, 50, (3), 177-183.
18. Noguchi, H.; Nakajima, A.; Watanabe, T.; Hashimoto, K., Design of a photocatalyst for bromate decomposition: Surface modification of TiO2 by pseudo-boehmite. Environmental Science & Technology 2003, 37, (1), 153-157.
19. Yuan, Q. Z.; Ravikrishna, R.; Valsaraj, K. T., Reusable adsorbents for dilute solution separation. 5. Photodegradation of organic compounds on surfactant-modified titania. Separation and Purification Technology 2001, 24, (1-2), 309-318.
20. Li, S. X.; Zheng, F. Y.; Cai, W. L.; Han, A. Q.; Xie, Y. K., Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol. Journal of Hazardous Materials 2006, 135, (1-3), 431-436.
21. Simakov, S. A.; Tsur, Y., Surface stabilization of nano-sized titanium dioxide: Improving the colloidal stability and the sintering morphology. Journal of Nanoparticle Research 2007, 9, (3), 403-417.
22. Ou, Y.; Lin, J. D.; Zou, H. M.; Liao, D. W., Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms. Journal of Molecular Catalysis a-Chemical 2005, 241, (1-2), 59-64.
23. Yu, J. C.; Ho, W. K.; Yu, J. G.; Hark, S. K.; Iu, K., Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films. Langmuir 2003, 19, (9), 3889-3896.
24. Makarova, O. V.; Rajh, T.; Thurnauer, M. C.; Martin, A.; Kemme, P. A.; Cropek, D., Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environmental Science & Technology 2000, 34, (22), 4797-4803.
25. Xagas, A. P.; Bernard, M. C.; Hugot-Le Goff, A.; Spyrellis, N.; Loizos, Z.; Falaras, P., Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid. Journal of Photochemistry and Photobiology a-Chemistry 2000, 132, (1-2), 115-120.
26. Jiang, D.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. H., Synthesis of visible light-activated TiO2 photocatalyst via surface organic modification. Journal of Solid State Chemistry 2007, 180, (5), 1787-1791.
27. Chang, S. M.; Doong, R. A., Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures. Journal of Physical Chemistry B 2006, 110, (42), 20808-20814.
28. Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L., Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. Journal of the American Chemical Society 1999, 121, (7), 1613-1614.
29. Zhang, L. F.; Kanki, T.; Sano, N.; Toyoda, A., Pathways and kinetics on photocatalytic destruction of aqueous phenol. Environmental Monitoring and Assessment 2006, 115, (1-3), 395-403.
30. Ichinose, H.; Terasaki, M.; Katsuki, H., Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate. Journal of Sol-Gel Science and Technology 2001, 22, (1-2), 33-40.
31. Litter, M. I., Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems. In Applied Catalysis B-Environmental, 1999; Vol. 23, pp 89-114.
32. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on Tio2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95, (3), 735-758.
33. Serpone, N.; Sauve, G.; Koch, R.; Tahiri, H.; Pichat, P.; Piccinini, P.; Pelizzetti, E.; Hidaka, H., Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: Relative photonic efficiencies zeta(r). Journal of Photochemistry and Photobiology a-Chemistry 1996, 94, (2-3), 191-203.
34. Chen, D. W.; Ray, A. K., Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Research 1998, 32, (11), 3223-3234.
35. Park, N. G.; van de Lagemaat, J.; Frank, A. J., Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. Journal of Physical Chemistry B 2000, 104, (38), 8989-8994.
36. Lu, Z. L.; Lindner, E.; Mayer, H. A., Applications of sol-gel-processed interphase catalysts. Chemical Reviews 2002, 102, (10), 3543-3577.
37. Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A., A solution chemistry study of nonhydrolytic sol-gel routes to titania. Chemistry of Materials 1997, 9, (3), 694-698.
38. Vioux, A., Nonhydrolytic sol-gel routes to oxides. Chemistry of Materials 1997, 9, (11), 2292-2299.
39. Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A., Non-hydrolytic sol-gel process: Zirconium titanate gels. Journal of Materials Chemistry 1997, 7, (2), 279-284.
40. Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A., Nonhydrolytic sol-gel process: Aluminum titanate gels. Chemistry of Materials 1997, 9, (5), 1098-1102.
41. Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A., Nonhydrolytic Sol-Gel process: Aluminium and zirconium titanate gels. Journal of Sol-Gel Science and Technology 1997, 8, (1-3), 89-93.
42. Pan, D. C.; Zhao, N. N.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J., Facile synthesis and characterization of luminescent TiO2 nanocrystals. Advanced Materials 2005, 17, (16), 1991-+.
43. Rockenberger, J.; Scher, E. C.; Alivisatos, A. P., A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. Journal of the American Chemical Society 1999, 121, (49), 11595-11596.
44. West, L. L. H. a. J. K., The Sol-Gel Prosess. Chemical Reviews 1990, 90, (1), 33-72.
45. 钱力鹏, 侯., 李亚利, 非水體系合成不同形態的二氧化鈦納米晶. 2007.
46. Korosi, L.; Dekany, I., Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 280, (1-3), 146-154.
47. Korosi, L.; Papp, S.; Bertoti, I.; Dekany, I., Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chemistry of Materials 2007, 19, (19), 4811-4819.
48. Yu, J. C.; Zhang, L. Z.; Zheng, Z.; Zhao, J. C., Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 2003, 15, (11), 2280-2286.
49. Huang, D.; Luo, G. S.; Wang, Y. J., Using phosphoric acid as a catalyst to control the structures of mesoporous titanium dioxide materials. Microporous and Mesoporous Materials 2005, 84, (1-3), 27-33.
50. Lee, J. M.; Kim, M. S.; Kim, B. W., Photodegradation of bisphenol-A with TiO2 immobilized on the glass tubes including the UV light lamps. Water Research 2004, 38, (16), 3605-3613.
51. Tai, C.; Jiang, G. B.; Liu, J. F.; Zhou, Q. F.; Liu, J. Y., Rapid degradation of bisphenol A using air as the oxidant catalyzed by polynuclear phthalocyanine complexes under visible light irradiation. Journal of Photochemistry and Photobiology a-Chemistry 2005, 172, (3), 275-282.
52. Bolger, R.; Wiese, T. E.; Ervin, K.; Nestich, S.; Checovich, W., Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environmental Health Perspectives 1998, 106, (9), 551-557.
53. Lagana, A.; Bacaloni, A.; De Leva, I.; Faberi, A.; Fago, G.; Marino, A., Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Analytica Chimica Acta 2004, 501, (1), 79-88.
54. Ankley, G.; Mihaich, E.; Stahl, R.; Tillitt, D.; Colborn, T.; McMaster, S.; Miller, R.; Bantle, J.; Campbell, P.; Denslow, N.; Dickerson, R.; Folmar, L.; Fry, M.; Giesy, J.; Gray, L. E.; Guiney, P.; Hutchinson, T.; Kennedy, S.; Kramer, V.; LeBlanc, G.; Mayes, M.; Nimrod, A.; Patino, R.; Peterson, R.; Purdy, R.; Ringer, R.; Thomas, P.; Touart, L.; Van der Kraak, G.; Zacharewski, T., Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife. Environmental Toxicology and Chemistry 1998, 17, (1), 68-87.
55. Wang, G. H.; Wu, F.; Zhang, X.; Luo, M. D.; Deng, N. S., Enhanced TiO2 photocatalytic degradation of bisphenol A by beta-cyclodextrin in suspended solutions. Journal of Photochemistry and Photobiology a-Chemistry 2006, 179, (1-2), 49-56.
56. Terasaki, M.; Shiraishi, F.; Nishikawa, T.; Edmonds, J. S.; Morita, M.; Makino, M., Estrogenic activity of impurities in industrial grade bisphenol A. Environmental Science & Technology 2005, 39, (10), 3703-3707.
57. Kaneco, S.; Rahman, M. A.; Suzuki, T.; Katsumata, H.; Ohta, K., Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and Photobiology a-Chemistry 2004, 163, (3), 419-424.
58. Watanabe, N.; Horikoshi, S.; Kawabe, H.; Sugie, Y.; Zhao, J. C.; Hidaka, H., Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere 2003, 52, (5), 851-859.
59. Sun, B.; Vorontsov, A. V.; Smirniotis, P. G., Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 2003, 19, (8), 3151-3156.
60. Chiang, K.; Lim, T. M.; Tsen, L.; Lee, C. C., Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Applied Catalysis a-General 2004, 261, (2), 225-237.
61. Zhang, L. F.; Kanki, T.; Sano, N.; Toyoda, A., Development of TiO2 photocatalyst reaction for water purification. Separation and Purification Technology 2003, 31, (1), 105-110.
62. Nahar, M. S.; Hasegawa, K.; Kagaya, S.; Kuroda, S., Comparative assessment of the efficiency of Fe-doped TiO2 prepared by two doping methods and photocatalytic degradation of phenol in domestic water suspensions. Science and Technology of Advanced Materials 2007, 8, (4), 286-291.
63. Yuan, Z. H.; Jia, J. H.; Zhang, L. D., Influence of co-doping of Zn(II) plus Fe(III) on the photocatalytic activity of TiO2 for phenol degradation. Materials Chemistry and Physics 2002, 73, (2-3), 323-326.
64. Dobosz, A.; Sobczynski, A., The influence of silver additives on titania photoactivity in the photooxidation of phenol. Water Research 2003, 37, (7), 1489-1496.
65. Tryba, B.; Morawski, A. W.; Inagaki, M.; Toyoda, M., The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts. Applied Catalysis B-Environmental 2006, 65, (1-2), 86-92.
66. Tryba, B.; Toyoda, M.; Morawski, A. W.; Inagaki, M., Modification of carbon-coated TiO2 by iron to increase adsorptivity and photoactivity for phenol. Chemosphere 2005, 60, (4), 477-484.
67. Colon, G.; Sanchez-Espana, J. M.; Hidalgo, M. C.; Navio, J. A., Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology a-Chemistry 2006, 179, (1-2), 20-27.
68. Sobczynski, A.; Duczmal, L.; Zmudzinski, W., Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. Journal of Molecular Catalysis a-Chemical 2004, 213, (2), 225-230.
69. Venkatachalam, N.; Palanichamy, M.; Arabindoo, B.; Murugesan, V., Alkaline earth metal doped nanoporous TiO2 for enhanced photocatalytic mineralisation of bisphenol-A. Catalysis Communications 2007, 8, (7), 1088-1093.
70. Coleman, H. M.; Chiang, K.; Amal, R., Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water. Chemical Engineering Journal 2005, 113, (1), 65-72.
71. Li, X. Z.; He, C.; Graham, N.; Xiong, Y., Photoelectrocatalytic degradation of bisphenol A in aqueous solution using a Au-TiO2/ITO film. Journal of Applied Electrochemistry 2005, 35, (7), 741-750.
72. Xie, Y. B.; Li, X. Z., Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. Journal of Hazardous Materials 2006, 138, (3), 526-533.
73. Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K., Degradation of bisphenol A in water by the photo-Fenton reaction. Journal of Photochemistry and Photobiology a-Chemistry 2004, 162, (2-3), 297-305.
74. Ioan, I.; Wilson, S.; Lundanes, E.; Neculai, A., Comparison of Fenton and sono-Fenton bisphenol A degradation. Journal of Hazardous Materials 2007, 142, (1-2), 559-563.
75. Gultekin, I.; Ince, N. H., Ultrasonic destruction of bisphenol-A: The operating parameters. Ultrasonics Sonochemistry 2008, 15, (4), 524-529.
76. Shareef, A.; Angove, M. J.; Wells, J. D.; Johnson, B. B., Aqueous solubilities of estrone, 17 beta-estradiol, 17 alpha-ethynylestradiol, and bisphenol A. Journal of Chemical and Engineering Data 2006, 51, (3), 879-881.
77. Zhang, Y.; Zhou, J. L.; Ning, B., Photodegradation of estrone and 17 beta-estradiol in water. Water Research 2007, 41, (1), 19-26.
78. Sauer, T.; Neto, G. C.; Jose, H. J.; Moreira, R. F. P. M., Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology a-Chemistry 2002, 149, (1-3), 147-154.
79. Mizuguchi, T.; Shibayama, Y.; Mitamura, K.; Shimada, K., Contribution of glucuronic acid and sulfonic acid moieties during photocatalytic degradation of estrogen conjugates. Journal of Health Science 2005, 51, (4), 447-452.
80. Coleman, H. M.; Routledge, E. J.; Sumpter, J. P.; Eggins, B. R.; Byrne, J. A., Rapid loss of estrogenicity of steroid estrogens by UVA photolysis and photocatalysis over an immobilised titanium dioxide catalyst. Water Research 2004, 38, (14-15), 3233-3240.
81. Kumar, K. N. P.; Keizer, K.; Burggraaf, A. J., Textural Evolution and Phase-Transformation in Titania Membranes .1. Unsupported Membranes. Journal of Materials Chemistry 1993, 3, (11), 1141-1149.
82. Lacombe, S.; Cardy, H.; Soggiu, N.; Blanc, S.; Habib-Jiwan, J. L.; Soumillion, J. P., Diffuse reflectance UV-Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica. Microporous and Mesoporous Materials 2001, 46, (2-3), 311-325.
83. Morrison, C.; Kiwi*, J., Preparation and characterization of TiO2–SiO2 aerosil colloidal mixed dispersions. J. Chem. Soc., Faraday Trans. 1 1989, 85, (1019-1198).
84. Nakaoka, Y.; Nosaka, Y., ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology a-Chemistry 1997, 110, (3), 299-305.
85. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.; Soria, J., EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 2001, 17, (17), 5368-5374.
86. Billik, P.; Plesch, G.; Brezova, V.; Kuchta, L.; Valko, M.; Mazur, M., Anatase TiO2 nanocrystals prepared by mechanochemical synthesis and their photochemical activity studied by EPR spectroscopy. Journal of Physics and Chemistry of Solids 2007, 68, (5-6), 1112-1116.
87. Li, H.; Van Berlo, D.; Shi, T.; Spelt, G.; Knaapen, A. M.; Borm, P. J. A.; Albrecht, C.; Schins, R. P. F., Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line. Toxicology and Applied Pharmacology 2008, 227, (1), 115-124.
88. Madden, K. P.; Taniguchi, H., The role of the DMPO-hydrated electron spin adduct in DMPO-(OH)-O-center dot spin trapping. Free Radical Biology and Medicine 2001, 30, (12), 1374-1380.
89. Parra, S.; Olivero, J.; Pulgarin, C., Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Applied Catalysis B-Environmental 2002, 36, (1), 75-85.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *