帳號:guest(44.212.94.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
作者:侯傑耀
論文名稱(中文):鍛燒對三辛基氧化膦包覆之二氧化鈦奈米晶粒物化特性影響研究
論文名稱(英文):Calcination effect on the physicochemical properties of TOPO-capped TiO2 nano-crystals
指導教授(中文):張淑閔
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學號:9419515
出版年(民國):96
畢業學年度:95
語文別:中文
論文頁數:90
中文關鍵詞:三辛基氧化膦鍛燒非水解性溶膠凝膠布忍斯特酸路易士酸
外文關鍵詞:Trioctylphosphine oxidcalcinationnon-hydrolytic sol-gelBronsted acidityLewis acidity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:171
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
三辛基氧化膦包覆之二氧化鈦奈米晶粒已成功地使用非水解性溶膠凝膠法製備出來。為了解熱處理對於三辛基氧化膦包覆之二氧化鈦奈米晶粒微結構、電子結構以及表面特性的影響,高解析度穿透式電子顯微鏡、X射線繞射儀、傅立葉紅外光光譜儀、X光光電子能譜儀、熱重分析儀以及紫外光可見光光譜儀都被用來鑑定鍛燒過的樣品(250~950 ℃)。因為鍛燒的過程將表面氧化三辛基膦分子熱分解並形成磷酸分子之關係,使得加熱750 ℃以下之樣品表面由疏水性轉變成為親水性。然而疏水性質又在鍛燒950 ℃後產生在奈米晶粒表面上。參雜進入晶體結構內之鋯離子與磷離子增加了銳鈦礦晶體的熱穩定性,即使是加熱到了950 ℃之高溫也沒有晶相的轉變。除此之外,當鍛燒溫度小於750 ℃時,晶粒的大小維持在10.2-10.8奈米,並且在鍛燒950 ℃顯著地增加到16.1奈米。能隙之大小隨著晶粒大小的變化從3.4電子伏特減少到3.2電子伏特。鍛燒到550 ℃之樣品因為擁有低介達電位以至於較鍛燒950 ℃之樣品表面有較多的布忍斯特酸基。然而鍛燒950 ℃的樣品較初製備及鍛燒250 ℃與550 ℃的樣品有更高的表面活性。而路易士酸被認為是鍛燒950 ℃之樣品有高活性的主要原因。
Trioctylphosphine oxide (TOPO) capped Zr4+/TiO2 anatase nanocrystals were successfully prepared by a non-hydrolytic sol-gel route. To understand the effect of thermal treatment on the microstructures, electronic structures, and surface properties of the TOPO-capped Zr4+/TiO2 nanorystals, the samples calcined at elevated temperatures (250-950 °C) under air atmosphere were examined by means of HRTEM, XRD, TG-DSC, XPS, FTIR and UV-vis spectroscopy. Calcination below 750 °C converted the surface of the nano-crystals from hydrophobic to hydrophilic as a result of decomposition of the surface TOPO and formation of phosphate moiety. However, hydrophobic property was further obtained at 950 °C due to dehydroxylation. The introduced P5+ and Zr4+ enhanced the stability of the anatase form till 950 °C without any phase transformation. Moreover, the crystallite sizes of the samples were maintained at 10.2-10.8 nm at 250-750 °C and were remarkably increased to 16.1 nm as the calcination temperature rose to 950 °C. The band gaps of the samples declined from 3.4 to 3.2 eV upon the increasing crystallite sizes. Calcination at 550 °C resulted in lower zeta-potential and higher surface Bronsted acidity than those at 950 °C. However, the sample calcined at 950 °C showed the highest surface activity than the as-prepared nanocrytals and the samples calcined at 250 or 550 °C. Lewis acidity is considered to be responsible for the high photoactivity at 950 °C.
Content Index
謝誌 і
中文摘要 ii
Abstract іii
Content Index iv
Figure Index vii
Table Index ix

Content Index
Chapter 1. Introduction and Motivation 1
1-1 Motivation 1
1-2 Objectives 2
Chapter 2. Background and theory 3
2-1 TiO2 semiconductor photocatalysts 3
2-1-1 Material properties 3
2-1-2 Applications on decomposition of environmental pollutants 4
2-2 Surface modification 7
2-2-1 Modification with metals 7
2-2-2 Modification with dopants 11
2-2-3 Modification with semiconductors 12
2-2-4 Modification with organic compounds 14
2-2-4 Modification with phosphorous groups 20
2-3 Sol-gel method toward metal oxide 22
2-3-1 Hydrolytically sol-gel process 22
2-3-2 Non-hydrolytically sol-gel process 23
2-4 Calcination effects 25
2-4-1 Surface properties 26
2-4-2 Microstructure 26
2-4-3 Electronic structure 27
Chapter 3. Materials and Methods 28
3-1 Materials 28
3-2 Preparation of TOPO-capped Zr4+/TiO2 via NHSG process 30
3-3 Calcination 31
3-5 Characterization 32
3-5-1 Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC) 32
3-5-6 UV/vis spectrometry 34
3-5-7 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 35
3-6 Photocatalytic of RhB decomposition 36
Chapter 4. Results and Discussion 37
4-1 Thermal analysis 37
4-2 Chemical composition 38
4-3 Microstructures 48
4-4 UV-visible absorption 53
4-5 Specific Surface Area 55
4-6 Surface charge and hydrodynamic diameter of photocatalysts 56
4-7 Photocatalytic activity 58
Chapter 5. Conclusions 62
References 63
Appendix A. Experimental parameters 67
Appendix B. Low-magnification TEM images 71
Appendix C. Zeta potential as a function of pH 76
Appendix D. Distribution of hydrodynamic diameter 82
Appendix E. Impregnation of P25 with phosphoric acid 86
(1) Brune, A.; Jeong, G. J.; Liddell, P. A.; Sotomura, T.; Moore, T. A.; Moore, A. L.; Gust, D. Langmuir
Langmuir 2004, 20, 8366.
(2) Yamashita, H.; Nishida, Y.; Yuan, S.; Mori, K.; Narisawa, M.; Matsumura, Y.; Ohmichi, T.; Katayama, I. Catal. Today 2007, 120, 163.
(3) Bahnemanna, D. W.; Kholuiskaya, S. N.; Dillert, R.; Kulak, A. I.; Kokorin, A. I. Appl Catal B-Environ
Appl Catal B-Environ 2002, 36, 161.
(4) Das, D.; Chakrabarty, D. K. Energ Fuel
Energ Fuel 1998, 12, 109.
(5) Fu, X. Z.; Clark, L. A.; Yang, Q.; Anderson, M. A. Environ Sci Technol
Environ Sci Technol 1996, 30, 647.
(6) Kapoor, M. P.; Inagaki, S.; Yoshida, H. J Phys Chem B
J Phys Chem B 2005, 109, 9231.
(7) Tan, S. S.; Zou, L.; Hu, E. Catal. Today 2006, 115, 269.
(8) Stone, V. F.; Davis, R. J. 1998, 10, 1468.
(9) Huang, L. M.; Li, Q. Z. Chem Lett
Chem Lett 1999, 829.
(10) Korosi, L.; Dekany, I. 2006, 280, 146.
(11) Vioux, A. Chem Mater
Chem Mater 1997, 9, 2292.
(12) Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. J Mater Chem
J Mater Chem 1997, 7, 279.
(13) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J Am Chem Soc
J Am Chem Soc 1999, 121, 1613.
(14) Joo, J.; Yu, T.; Kim, Y. W.; Park, H. M.; Wu, F. X.; Zhang, J. Z.; Hyeon, T. J Am Chem Soc
J Am Chem Soc 2003, 125, 6553.
(15) Chang, S. M.; Doong, R. A. Chemosphere 2006, 62, 1869.
(16) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. 1995, 95, 735.
(17) Cozzoli, P. D.; Kornowski, A.; Weller, H. 2003, 125, 14539.
(18) Wu, T. X.; Liu, G. M.; Zhao, J. C.; Hidaka, H.; Serpone, N. 1998, 102, 5845.
(19) Galanfereres, M.; Alemany, L. J.; Mariscal, R.; Banares, M. A.; Anderson, J. A.; Fierro, J. L. G. 1995, 7, 1342.
(20) Wu, L.; Yu, J. C.; Fu, X. Z. 2006, 244, 25.
(21) Takagaki, A.; Sugisawa, M.; Lu, D. L.; Kondo, J. N.; Hara, M.; Domen, K.; Hayashi, S. 2003, 125, 5479.
(22) Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y. P. Green Chem. 2005, 7, 667.
(23) Imanishi, A.; Tsuji, E.; Nakato, Y. 2007, 111, 2128.
(24) Shammugam, S.; Gabashvili, A.; Jacob, D. S.; Yu, J. C.; Gedanken, A. 2006, 18, 2275.
(25) Ou, Y.; Lin, J. D.; Zou, H. M.; Liao, D. W. 2005, 241, 59.
(26) Choi, W. Y.; Termin, A.; Hoffmann, M. R. 1994, 98, 13669.
(27) Wang, L. G.; Pennycook, S. J.; Pantelides, S. T. Phys. Rev. Lett. 2002, 89.
(28) Arabatzis, I. M.; Stergiopoulos, T.; Andreeva, D.; Kitova, S.; Neophytides, S. G.; Falaras, P. J Catal
J Catal 2003, 220, 127.
(29) Van Gestel, T.; Van der Bruggen, B.; Buekenhoudt, A.; Dotremont, C.; Luyten, J.; Vandecasteele, C.; Maes, G. J Membrane Sci
J Membrane Sci 2003, 224, 3.
(30) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett
Nano Lett 2006, 6, 215.
(31) Sibu, C. P.; Kumar, S. R.; Mukundan, P.; Warrier, K. G. K. 2002, 14, 2876.
(32) Guidi, V.; Carotta, M. C.; Ferroni, M.; Martinelli, G.; Sacerdoti, M. 2003, 107, 120.
(33) Yang, J.; Ferreira, J. M. F. 1998, 33, 389.
(34) Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M. 2007, 111, 6976.
(35) Konishi, J.; Fujita, K.; Nakanishi, K.; Hirao, K. Chem Mater
Chem Mater 2006, 18, 6069.
(36) Calleja, G.; Serrano, D. P.; Sanz, R.; Pizarro, P.; Garcia, A. Ind Eng Chem Res
Ind Eng Chem Res 2004, 43, 2485.
(37) Tao, Y.; Wu, C. Y.; Mazyck, D. W. Ind Eng Chem Res
Ind Eng Chem Res 2006, 45, 5110.
(38) Torimoto, T.; Okawa, Y.; Takeda, N.; Yoneyama, H. J Photoch Photobio A
J Photoch Photobio A 1997, 103, 153.
(39) Nagaoka, S.; Hamasaki, Y.; Ishihara, S.; Nagata, M.; Iio, K.; Nagasawa, C.; Ihara, H. 2002, 177, 255.
(40) Takeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H. 1995, 99, 9986.
(41) Rajh, T.; Nedeljkovic, J. M.; Chen, L. X.; Poluektov, O.; Thurnauer, M. C. 1999, 103, 3515.
(42) Pal, B.; Torimoto, T.; Iwasaki, K.; Shibayama, T.; Takahashi, H.; Ohtani, B. J Phys Chem B
J Phys Chem B 2004, 108, 18670.
(43) Rogach, A. L.; Kornowski, A.; Gao, M. Y.; Eychmuller, A.; Weller, H. J Phys Chem B
J Phys Chem B 1999, 103, 3065.
(44) Zheng, S.; Gao, L. A.; Zhang, Q. H.; Guo, J. K. 2000, 10, 723.
(45) Zhang, J. L.; Hu, Y.; Matsuoka, M.; Yamashita, H.; Minagawa, M.; Hidaka, H.; Anpo, M. 2001, 105, 8395.
(46) Colon, G.; Sanchez-Espana, J. M.; Hidalgo, M. C.; Navio, J. A. 2006, 179, 20.
(47) Bhaumik, A.; Inagaki, S. 2001, 123, 691.
(48) Jones, D. J.; Aptel, G.; Brandhorst, M.; Jacquin, M.; Jimenez-Jimenez, J.; Jimenez-Lopez, A.; Maireles-Torres, P.; Piwonski, I.; Rodriguez-Castellon, E.; Zajac, J.; Roziere, J. 2000, 10, 1957.
(49) Zhao, J. C.; Wu, T. X.; Wu, K. Q.; Oikawa, K.; Hidaka, H.; Serpone, N. 1998, 32, 2394.
(50) Vohra, M. S.; Tanaka, K. 2001, 35, 411.
(51) Wong, M. S.; Antonelli, D. M.; Ying, J. Y. 1997, 9, 165.
(52) Hench, L. L.; West, J. K. Chem Rev
Chem Rev 1990, 90, 33.
(53) Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. 1997, 9, 1098.
(54) Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. 1997, 8, 89.
(55) Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. 1997, 9, 694.
(56) Yahaya, A. H.; Gondal, M. A.; Hameed, A. Chem. Phys. Lett. 2004, 400, 206.
(57) Zhang, M.; Gao, G.; Zhao, D. C.; Li, Z. Y.; Liu, F. Q. 2005, 109, 9411.
(58) Lacombe, S.; Cardy, H.; Soggiu, N.; Blanc, S.; Habib-Jiwan, J. L.; Soumillion, J. P. 2001, 46, 311.
(59) Yang, J.; Juan, P.; Shen, Z. M.; Guo, R.; Jia, J. P.; Fang, H. J.; Wang, Y. L. 2006, 44, 1367.
(60) Gomez, R.; Lopez, T.; Tzompantzi, F.; Garciafigueroa, E.; Acosta, D. W.; Novaro, O. 1997, 13, 970.
(61) Reddy, B. M.; Sreekanth, P. M.; Reddy, E. P.; Yamada, Y.; Xu, Q. A.; Sakurai, H.; Kobayashi, T. 2002, 106, 5695.
(62) Reddy, B. M.; Ganesh, I. 2001, 169, 207.
63) Vohra, M. S.; Kim, S.; Choi, W. 2003, 160, 55.
(64) Park, H.; Choi, W. 2005, 109, 11667.
(65) Yang, Q. J.; Xie, C.; Xu, Z. L.; Gao, Z. M.; Du, Y. G. 2005, 109, 5554.
(66) Kabra, K.; Chaudhary, R.; Sawhney, R. L. 2004, 43, 7683.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *