帳號:guest(34.228.142.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:林豐逸
作者(外文):Fong-i Lin
論文名稱:無線感測器網路指向天線接收階度差值收訊角度定位法
論文名稱(外文):AoA Localization with RSSI Difference of Directional Antennas for WSNs
指導教授:江振瑞
指導教授(外文):Jehn-ruey Jiang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系
學號:985202033
畢業學年度:100
語文別:中文
論文頁數:62
中文關鍵詞:收訊角度指向天線定位無線感測網路
外文關鍵詞:directional antennaAoAlocalizationwireless sensor networks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:191
  • 評分評分:*****
  • 下載下載:37
  • 收藏收藏:0
以無線感測器網路(WSN, Wireless Sensor Network) 節點的全向天線接收指向天線的訊號時,其接收訊號強度階度(簡稱接收階度: Received Signal Strength Indication, RSSI) 會隨收訊角度(Angle of Arrival, AoA) 的不同而變化。依據實驗的結果,我們觀察到以下二個特性: (1) 在AoA 介於0 度到90 度之間時,RSSI 相對於AoA 呈現近似拋物線函數的變化;(2) 在AoA 介於0 度到90 度之間時,全向天線針對二支相同位置且相互垂直的指向天線的RSSI 差值則呈現近似線性函數的變化。運用以上兩個特性,我們使用相互垂直指向天線RSSI 差值來估算AoA 以設計新的定位機制。在我們的定位機制中,運用RSSI 差值進行定位,可以降低環境因素對定位精準度的影響;而我們利用儲存RSSI 相對於AoA 的關係函數降低對儲存空間的需求,以符合感測器對儲存空間的限制。我們的定位機制區分兩個階段: 訓練階段與定位階段。訓練階段為在系統部署前實際量測AoA 對指向天線RSSI 的影響,並利用二次線性迴歸分析取得在不同距離下角度與接收階度的關係函數,同時
利用量測所得的資料,以線性迴歸分析計算相互垂直天線的RSSI 差值與AoA 的關係函數,並將所得的關係函數儲存於目標節點(target node,也就是位置待測的感測器節點)。在定位階段,我們在環境中部署二組已知位置的錨節點(anchor node),每組錨節點上裝配著兩支同型且相互垂直的指向天線。目標節點在接收到同一組錨節點的二支天線發出的訊號後,先利用RSSI 與AoA 的關係函數粗估其與錨節點的距離,再運用該距離所相對應的RSSI 差值與角度的關係函數,估算錨節點與目標節點的角度。而藉由取得對兩組已知位置錨節點的角度,目標節點即可計算出自己的位置。我們在10 公尺見方的室內測試環境中一邊的二個端點部署二組錨節點,以驗證所提出方法的定位精準度,實驗的結果的平均定位誤差為124 公分。為了更進一步提高定位精準度,我們利用二個去除離群值(outlier) 的修正方法,可以進一步降低29% 的定位誤差,修正後的平均定位誤差為89 公分。
As a node of a wireless sensor network (WSN) with an embedded omni-directional antenna receives signals emitted from a directional antenna, the received signal strength indication(RSSI) varies with the angle of arrival (AoA) of the received signal. From experiments,we have the following two observations about the RSSI values of signals which a sensor node receives from a directional antenna. (1) If the distance of the node and the antenna is fixed, RSSI varies like a parabola function of AoA between −90◦ and 90◦ with a symmetry axis at AoA=0◦. (2) If we put two same-type directional antennas with perpendicular orientation at the same position, then the difference of the signal RSSI values which the node receives from the two antennas varies like a linear function of AoA between 0◦ and 90◦. Based on the above observations, we design and implement a novel localization scheme, called ALRD, for a sensor node to estimate AoA and then its position by RSSI value difference of two perpendicular directional antennas. The proposed localization scheme consists of two phases: the learning phase and the localizing phase. In the learning phase, we measure the RSSI values of signals received from a directional antenna at different distances and angles. For a fixed distance d, we perform regression analysis on the measured RSSI values to obtain two approximation functions: a quadratic function Rd = f( ) and a linear functions Dd = g( ), where is AoA, Rd is RSSI, and Dd is the RSSI difference of two signals received from two perpendicular directional antennas at the same position. These approximation functions, rather than all measured RSSI values, are then loaded into the limited storage of the sensor nodes for them to calculate AoA values to locate themselves. In the localizing phase, two location-known beacon nodes, either of which is equipped with two same-type perpendicular directional antennas, are deployed to transmit beacon signals periodically. By the Rd functions and the RSSI values received from two antennas of one beacon node, a sensor node can roughly estimate the distance d′ to the beacon node. By the Dd′ functions and d′, the sensor node can estimate AoA. With estimated AoA values of two distinct beacon nodes, a sensor node can then calculate its position. We have implemented ALRD and apply it to a WSN in a 10 by 10 meters indoor square area with two beacon nodes being installed at two ends of an area edge. Our experiments demonstrate that the average localization error is 124 centimeters. We further propose two methods, namely maximum-point-minimumdiameter(MPMD) and maximum-point-minimum-rectangle (MPMR), to improve localization accuracy by removing outliers from positioning results. The experiment results demonstrate the two methods can reduce the average localization error to be 89 centimeters, i.e., about 29% improvement in accuracy.
目錄
摘要i
abstract ii
目錄iv
圖目錄vi
表目錄viii
1 序論1
2 相關研究3
2.1 PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 ALRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 CMALoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 RAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 EDoA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 SpinLoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 定位機制15
3.1 網路架構及假設條件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 定位方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 訓練階段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 在不同距離下記錄指向天線信號分布. . . . . . . . . . . . . . . . . 21
3.3.2 利用記錄的RSSI 值分布計算RSSI 差值對應AoA 關係數據. . . . 22
3.3.3 利用迴歸分析將關係數據轉換為關係函數. . . . . . . . . . . . . . 23
3.4 定位階段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 比對符合距離. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 估算AoA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 定位估算點. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 精進方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 實驗及結果35
4.1 實作硬體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 實驗場景設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 實作步驟及實作結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 訓練階段實驗: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 定位階段實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 去除離群值結果說明. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 方法比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 結論及未來方向49
引用文獻 50
[1] I.F. Akyildiz, Su Weilian, Y. Sankarasubramaniam, and E. Cayirci, “A Survey On Sensor
Networks,” IEEE Communications Magazine Communication, Networking Broadcasting,
Vol. 40, No. 8, pp. 102-114, 2002.
[2] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M.
Demirbas, M. Gouda, Y. Choi, T. Herman, S., “A line in the sand: a wireless sensor network
for target detection, classification, and tracking,” The International Journal of Computer
and Telecommunications Networking, Vol. 46, No. 5, pp. 605-634, 2004.
[3] Kris McGlinn, Eleanor O’Neill, Alan Gibney, Declan O’Sullivan, Dave Lewis, “Sim-
Con: A Tool to Support Rapid Evaluation of Smart Building Application Design using
Context Simulation and Virtual Reality,” Journal of Universal Sciences, Vol. 16, No. 15,
pp. 1992-2018, 2010.
[4] Taro Uchimura, Ikuo Towhata, Trinh Thi Lan Anh, Jou Fukuda, Carlos J. B. Bautista,
Lin Wang, Ichiro Seko, Taro Uchida, Akira Matsuoka, Yosuke Ito, Yuichi Onda, Sho
Iwagami, Min-Seok Kim, Naoki Sakai, “Simple monitoring method for precaution of landslides
watching tilting and water contents on slopes surface,” Journal of the International
Consortium on Landslides, Vol. 7, No. 3, pp. 351-357, 2010.
[5] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach, and Parlange, “SensorScope:
Application-Specific Sensor Network for Environmental Monitoring,” ACM
Transactions on Sensor Networks, Vol. 6, No. 2, pp. 1-32, 2010.
[6] A. Boukerche, H.A.B. Oliveira, E.F. Nakamura, A.A.F. Loureiro, “Localization systems
for wireless sensor networks,” IEEE Wireless Communications, Vol. 14, Issue 6, pp. 6-12,
2007.
[7] Guoqiang Mao, Barıs Fidan, Brian D.O. Anderson, “Wireless sensor network localization
techniques,” Elsevier/ACM Computer Networks, Vol. 51, Issue 10, pp. 2529-2553, 2007.
[8] http://en.wikipedia.org/wiki/Global_Positioning_System
[9] http://en.wikipedia.org/wiki/Assisted_GPS
[10] R. Peng and M. L. Sichitiu, “Angle of Arrival Localization for Wireless Sensor Networks,”
in Proceedings of the Third Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, pp. 374-382, 2006.
[11] CC2420 Data Sheet:2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver
[12] MSP430F1611 Data Sheet
[13] Crossbow Mica2 Data Sheet
[14] Dragos Niculescu and Badri Nath, “DV Based Positioning in Ad Hoc Networks,” Kluwer
journal of Telecommunication Systems, Vol. 22, No. 1-4, pp. 267-280, 2003.
[15] Nirupama Bulusu, John Heidemann, and Deborah Estrin, “GPS-less Low-Cost Outdoor
Localization for Very Small Devices,” IEEE Personal Communications Magazine, Vol. 7,
Issue 5, pp. 28-34, 2000.
[16] Mohamed Laaraiedh, Stephane Avrillon, Nicolas Amiot, Bernard Uguen, “A semidefinite
programming approach to hybrid localization using RSSI and TOA,” in Proceedings of
Workshop on Positioning Navigation and Communication (WPNC), pp.106-110, 2011.
[17] R. Kaune, J. Horst, W. Koch, “Accuracy analysis for TDOA localization in sensor networks,”
in Proceedings of the International Conference on Information Fusion (FUSION),
pp. 1-8, 2011.
[18] K. Tateishi,T. Ikegami, “Estimation Method of Attenuation Constant During Localization
in RSSI,” in Proceedings of the International Symposium on Communications and Information
Technologies(ISCIT), pp. 482-487, 2008.
[19] Bernard F. Rolfe, Samitha W. Ekanayake, Pubudu N. Pathirana, Marimuththu
Palaniswami, “Localization with orientation using RSSI measurements: RF map based
approach,” in Proceedings of the Third International Conference on Intelligent Sensors,
Sensor Networks and Information (ISSNIP), pp. 311-316, 2007.
[20] Yunchun ZHANG, Zhiyi FANG, Ruixue LI, Wenpeng HU, “The Design and Implementation
of a RSSI-Based Localization System,” in Proceedings of International Conference
on Wireless Communications, Networking and Mobile Computing(WiCom), pp. 1-4, 2009.
[21] Frank Vanheel, Jo Verhaevert, Eric Laermans, Ingrid Moerman and Piet Demeester, “Automated
Linear Regression Tools Improve RSSI WSN Localization in Multipath Indoor
Environment,” EURASIP Journal on Wireless Communications and Networking, Doi:
10.1186, 2011.
[22] Maciej Mendalka, Karol Bizewski, Łukasz Kulas, Krzystof Nyka, “Pattern Matching Localization
in ZigBee Wireless Sensor Networks,” in Proceeding of International Conference
on Microwave Radar and Wireless Communications(MIKON), pp.1-4, 2010.
[23] Chia-Ho Ou, “A Localization Scheme for Wireless Sensor Networks Using Mobile Anchors
With Directional Antennas,” IEEE Sensors Journal, Vol. 11, Issue 7, pp.1607-1616,
2011
[24] Jehn-Ruey Jiang, Chih-Ming Lin and Yi-Jia Hsu, “Localization with Rotatable Directional
Antennas for Wireless Sensor Networks,” in Proceeding of International Conference on
Parallel Processing Workshops, pp. 542-548, 2010.
[25] Ho-lin Chang, Jr-ben Tian, Tsung-Te Lai, Hao-Hua Chu, Polly Huang, “Spinning beacons
for precise indoor localization,” in Proceedings of the sixth ACM conference on Embedded
network sensor systems, pp.127-140, 2008.
[26] B. Kusy, A. Ledeczi, and X. Koutsoukos, “Tracking mobile nodes using RF Doppler
shifts,” in Proceedings of the international conference on Embedded networked sensor
systems, pp. 29-42, 2007.
[27] Bryan N. Hood, and Prabir Barooah, “Estimating DoA From Radio-Frequency RSSI Measurements
Using an Actuated Reflector,” IEEE Sensors Journal, Vol. 11, pp. 413-417,
2011
[28] IEEE, Wireless Medium Access Control and Physical Layer Specifications for Low-Rate
Wireless Personal Area Networks IEEE Std 802.15.4c-2009 (Amendment to IEEE Std
802.15.4-2006), pp. c1-21, 2009.
[29] JS Bendat, AG Piersol, “Random data: analysis and measurement procedures,” 2000.
[30] Rossen Atanassov, Prosenjit Bose, Mathieu Couture, Anil Maheshwari, Pat Morin ?,
Michel Paquette, Michiel Smid, Stefanie Wuhrer, “Algorithms for optimal outlier removal,”
Journal of Discrete Algorithms, Vol. 7, Issue 2, pp. 239–248, 2009.
[31] Azzedine Boukerche, Horacio A.B.F. Oliveira, Eduardo F. Nakamura, and Antonio A.F.
Loureiro, “A Voronoi Approach for Scalable and Robust DV-Hop Localization System for
Sensor Networks,” in Proceedings of International Conference on Computer Communications
and Networks(ICCCN), pp. 497-502, 2007.
[32] F. Reichenbach, E. Born, D. Timmermann, and R. Bill, “A distributed linear least squares
method for precise localization with low complexity in wireless sensor networks,” in Proceedings
of the second International Conference on Distributed Computing in Sensor Systems(
DCOSS), pp.514-528, 2006.
[33] J. Yen, C.C.J.M. Tiberius, P.I.G. Teunissen, G. Bellusci, and G.J.M. Janssen, “A Framework
for Low Complexity Least-Squares Localization With High Accuracy,” IEEE Transactions
on Signal Processing, Vol. 58, Issue 9, pp. 4836-4847, 2010.
[34] B.M Qiao,B. Zhou, X.L Yang, W. Wei, and R. Liu, “Improved DV-HOP Localization
Based on Better Weighted Least-Square Method,” Journal of Infomation Technology, Vol.
9, Issue 6, pp. 1172-1177, 2010.
論文全文檔清單如下︰
1.電子全文(31932.662K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *