帳號:guest(3.233.219.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:蘇俊誥
作者(外文):Chun-Kao Su
論文名稱:利用密集地震網資料配合高頻接收函數法 探討花東縱谷北段淺層構造
論文名稱(外文):Shallow Subsurface Structure Beneath the Northern Longitudinal Valley in Eastern Taiwan Using the High-Frequency Receiver Function from A Dense Seismic Array Data Set
指導教授:郭陳澔林哲民梁文宗
指導教授(外文):Hao Kuo-ChenChe-Min LinWen-Tzong Liang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球科學學系
學號:106622019
出版年:108
畢業學年度:107
語文別:中文英文
論文頁數:137
中文關鍵詞:花東縱谷密集地震網接收函數淺層構造
外文關鍵詞:Longitudinal ValleyDense seismic arrayReceiver FunctionShallow structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:284
  • 評分評分:*****
  • 下載下載:50
  • 收藏收藏:0
近年來對於提高淺層震波速度構造解析度的研究越來越重要,其結果不僅有助於地表地質之解釋並在強地動模擬上提供重要的基礎參數,而高頻接收函數為其中一項重要的方法,同時可以提供震波速度與其相關不連續面的資訊。本研究挑選台灣東部縱谷平原北段作為試驗場址,該區域從大地測量的結果顯示為沉降的狀況,為近代的沉積物穩定堆積,因此可以經由此方法來計算沈積物與基盤的分布狀況,並比對在此區域曾做過的震測調查結果。在2017年1月至5月間,本研究利用三分量儀器ZLAND佈放之臨時密集地震網,共26個測站,測站間距約為2公里,利用高頻接收函數並以基因演算法搜尋測站下最佳一維剪力波模型解。研究結果顯示在測站下相對速度差異大的介面普遍存在於各測站,推論可能是沉積盆地與基盤的主要邊界。沉積物厚度在木瓜溪南側靠近東華大學、花蓮溪西岸與花蓮溪及木瓜溪匯流處較厚可達289公尺,比對古河道地圖發現沉積物分佈應與古河道有關,除了與地表地質結果一致,本研究也可以將主要速度不連續面對應到前人研究之震測剖面。另外透過波形模擬、震波粒子運動及將地震目錄分群進行接收函數及後續基因演算法計算的測試,也證明了利用區域地震震配合高頻接收函數法應用在探究淺層構造是可行且有效率的方法。
Recently, obtaining the high resolution of shallow seismic structures is important for the interpretation of the geological structures and the parameters for the ground motion simulation. The high-frequency receiver function is one of the important tools to achieve that. In this study, I selected the north part of the Longitudinal Valley (LV) in eastern Taiwan as a test site, because the north part of the LV is covered with well-developed alluvial fans and thick quaternary alluvium. In order to image the subsurface structure beneath the test site, I deployed a temporary dense seismic array, composed of 26 3-component ZLAND seismometers from January to May in 2017 and applied the high-frequency receiver function technique by using Genetic Algorithm (GA) to obtain the one-dimensional shear-wave velocity structure beneath each station. As a result, some interfaces with high-velocity contrast can be identified as the basement and unconformities. The basement geometry is related to the old river channels of Hualien River and Mugua River, which could reach to the depth of approximately 200 ~ 300 meters. Also, the result from this study is compatible with previous seismic reflection profile. Furthermore, by the testing the results from waveform simulation, inspection of the particle motion of the incident P-wave, most of results with the earthquakes from different back-azimuths and depths are consistent to each other, which shows that this method is feasible to investigate the shallow structure.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 v
圖目錄 vii
表目錄 x
第一章、緒論 1
1-1 研究動機與目的 1
1-2 論文內容 5
第二章、區域地質背景 6
2-1 簡介 6
2-2 地形 6
2-3 地質 8
2-3-1 地層分布 11
2-4 文獻回顧 12
2-4-1 大地測量研究 12
2-4-2 地震活動性 17
2-4-3 反射震測研究 20
2-4-4 速度構造研究 22
第三章、研究原理與方法 24
3-1 接收函數 ( Receiver Function, RF ) 24
3-2 基因演算法 ( Genetic Algorithm, GA ) 28
3-2-1 編碼及解碼 30
3-2-2 初始族群 30
3-2-3 適應函數 31
3-2-4 擇優複製 31
3-2-5 交配 ( crossover ) 32
3-2-6 突變 ( mutation ) 33
3-2-7 演化終止條件 34
第四章、資料分析與結果 35
4-1 資料來源與測站分布 35
4-2 接收函數之地震資料分析 39
4-3 基因演算法之演算結果 49
第五章、討論與結論 58
5-1 震源位置對接收函數波形的影響 58
5-1-1 高頻接收函數法對於淺部構造的適用性 58
5-1-2 入射P波垂直入射問題 64
5-1-3 不同震源位置的搜尋結果 66
5-2 結果與地表地質資料比對 69
5-3 結果與震測資料比對 71
5-4 結論 73
參考文獻 74
附錄A 各測站接收函數計算結果 77
附錄B 各測站基因演算法模型設定參數表 91
附錄C 各測站基因演算法搜尋結果 104
附錄D 各站最佳5個速度結果 與其對應之擬合接收函數與計算接收函數的比較 111

Angelier J., J. C. Lee, H. T. Chu, J. C. Hu, C. Y. Lu, Y. C. Chan, T. J. Lin, Y. Font, B. Deffontaines, and Y. B. Tsai. (2001), The Chichi earthquake, 1999, and its role in the Taiwan orogen, Earth and Planetary Sciences, 333, p. 5-21.
Ammon, C. J., G. E. Randall, and G. Zandt. (1990), On the non-uniqueness of receiver function inversions, Journal Geophysical Research, 95, 15303-15318.
Ammon, C. J. (1991), The isolation of receiver effects from teleseismic P waveforms, Bulletin of the Seismological Society of America, 81(6), 2504-2510.
Biq, C. (1965) The East Taiwan Rift. Pet. Geol. Taiwan, 4, 93-106.
Burdick, L., and Langston, C. A. (1977), Modeling crustal structure through the use of converted phases in teleseismic body-wave forms, Bull. Seismol. Soc. Am., 67(3), 677-691.
Cassidy, J. F. (1992), Numerical experiments in broadband receiver function analysis, Bull. Seism. Soc. Am., 82, 1453-1474.
Champenois, J., Fruneau, B., Pathier, E., Deffontaines, B., Lin, K. C., & Hu, J. C. (2012), Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan)using Persistent Scatterer InSAR method with ALOS
PALSAR data. Earth and Planetary Science Letters, 337, 144-155.
Chen, W.‐S., M.‐T. Huang, and T.‐K. Liu (1991),
Neotectonic significance of the Chimei fault in the Coastal Range, eastern Taiwan, Proc. Geol. Soc. China,
34, 43–56.
Chen, W.S., Chung, S.L., Chou, H.Y., Zul, Z. Shao, W.Y., and Lee, Y.H. (2017), A reinterpretation of the metamorphic Yuli belt: evidence for a middle-late
Miocene accretionary prism in eastern Taiwan: The middle-late Miocene Yuli Belt, Tectonics., 10.1002/2016TC004383.
Ching, K.-E., M.-L. Hsieh, K. M. Johnson, K.-H. Chen, R.-J. Rau, and M. Yang (2011), Modern vertical deformation rates and mountain building in Taiwan from precise leveling measurements and continuous GPS observations,
2000-2008, J. Geophys. Res., 116, B08406, doi:10.1029/2011JB008242.
Crespi, J., Y. C. Chan, and M. Swaim (1996), Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24, 247-250.
Crespi, J. (1996), Deformation partitioning at shallow crustal levels in the Taiwan arc-continent collision zone. J. Geol. Soc. China, 39, 143-150.
Darwin, Charles (1859), On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. London :John Murray.
Hsieh, M.L., Liew, P.M., and Hsu, M.Y. (2004), Holocene tectonic uplift in the Hua-Tung coast, eastern Taiwan. Quaternary International 116, 46–70.
Hsieh, M.L., and Rau R.J. (2009) Late Holocene coseismic uplift on the Hua-tung Coast, eastern Taiwan: evidence from mass mortality of intertidal organisms:
Tectonophysics, 474, 595-609.
Hsu, T. L. (1976) Neotectonic of the Longitudinal Valley, eastern Taiwan. Bull. Geol. Sur. Taiwan, 25, 53-62.
J. Bruce H. Shyu, Chun-Fu Chen, Yih-Min Wu (2016), Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture, Tectonophysics, 692, 295-308.
J. H. Holland (1962), “Outline for a logical theory of adaptive system,” J. ACM, 3, 297.
K. De Jong (1975), An analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. thesis, University of Michigan, Ann Arbor.
Kennett, B. L. N. (1983), Seismic wave propagation in stratified media, Cambridge University Press, 342pp.
Kuo-Chen, H., Wu, Y. M., Chang, C. H., Hu, J. C., & Chen, W. S. (2004). Relocation of Eastern Taiwan Earthquakes and Tectonic Implications. Terrestrial, Atmospheric and Oceanic Sciences, 15(4), 647-666.
Kuo‐Chen, H., Wu, F. T., Jenkins, D. M., Mechie, J., Roecker, S. W., Wang, C. Y., & Huang, B. S. (2012). Seismic evidence for the α‐β quartz transition
beneath Taiwan from Vp/Vs tomography. Geophysical Research Letters, 39(22).
Langston, C. A. (1977). The effect of planar dipping structure on source and receiver responses for constant ray parameter, Bull. Seism. Soc. Am., 67, 1029-1050.
Langston, C. A. (1979), Structure under Mount Rainier, Washington, inferred from teleseismic body waves, Journal of Geophysical Research, 84, 4749-4762.
Owens, T. J., and R. S. Crosson (1988). Shallow structure effects effects on broadband teleseismic P waveforms, Bull. Seism. Soc. Am., 78, 96-108.
Owens, T. J., R. S. Crosson, and M. A. Hendrickson (1988). Constraints on the subduction geometry beneath western Washington from broadband teleseismic waveform modeling, Bull. Seism. Soc. Am., 78, 1318-1334.
Phinney, R. A. (1964), Structure of earth’s crust from spectral behavior of long-period body waves, Journal of Geophysical Research, 69, 2997-3017.
R. B. Herrmann and C.J., Ammon (2002), Surface Waves, Receiver Functions and Crustal Structure (Version 3.30), Computer Programs in Seismology - Tutorials.
Shyu, J.B.H., Sieh, K., Avouac, J.-P., Chen, W.-S., Chen, Y.-G. (2006). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. J. Geophys. Res. 111, B08403. http://dx.doi.org/10.1029/2005JB003971.
Thomas, M. Y., Avouac, J. P., Gratier, J. P., & Lee, J. C. (2014). Lithological control on the deformation mechanism and the mode of fault slip on the
Longitudinal Valley Fault, Taiwan. Tectonophysics, 632, 48-63.
Wang, C.Y., and R. B. Herrmann (1980), A numerical study of P-, SV-,and SH-wave generation in a plane layered medium, Bull. Seism. Soc. Am., 70 (4), 1015–1036.
Wu, Y.M., Chang, C.H., Hsiao, N.C., and Wu, F.T. (2003), Relocation of the 1998 Rueyli, Taiwan, earthquake sequence sing three-dimension velocity structure with stations corrections, Terre. Atmos. Oceanic Sci., 14, 421-430.
Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., & Nakamura, M. (2008), A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471-1481.
Yu, S.B., Chen, H.Y., and Kuo, L.C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
經濟部中央地質調查所 (2012), 台灣活動斷層分布圖。
王乾盈 (2018) 從南北十條橫跨花東縱谷震測剖面看海岸山脈造山,國
立中央大學退休演講。
何春蓀 (1994) 台灣地質概論-台灣地質圖說明書,經濟部中央地質調查所出版,共164頁。
林朝棨 (1957) 台灣地形,台灣省文獻委員會,共423頁。
徐鐵良 (1956) 台灣東部海岸山脈地質,台灣省地質調查所彙刊第八號,共64頁。
陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林燕慧 (2008)
從古地震研究與GPS資料探討縱谷斷層的分段意義。經濟部中央地質調
查所特刊,20,165-191。
陳文山主編 (2016) 台灣地質概論,中華民國地質學會,共250頁。
陳燕玲 (1995) 台灣地區三維速度構造與隱沒構造之相關探討,國立中
央大學地球物理研究所碩士論文。
陳紫娥 (2000) 花蓮溪河谷沖積扇之自然環境、土地利用及其土石災害
之研究。國立台灣大學理學院地理學系地理學報,27,55-69。
楊貴三 (1992) 台灣東部木瓜溪流域的地形學研究。社會科教育學報,
第一期,1-86。
劉平妹、謝孟龍 (2007) 台灣東部晚第四紀地質調查及地形演育研究
(2/2),經濟部中央地質調查所,共149頁。
謝一銘 (2017) 台灣花東縱谷北段反射震測調查,國立中央大學地球物
理研究所碩士論文,共92頁。
論文全文檔清單如下︰
1.電子全文連結(21396.047K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *