|
Adam, J.-C., Ibourichène, A., & Romanowicz, B. (2017). Observation of core sensitive phases: constraints on the velocity and attenuation profile in the vicinity of the inner-core boundary. Physics of the Earth and Planetary Interiors. Aki, K., & Richards, P. G. (2002). Quantitative seismology. Alboussiere, T., Deguen, R., & Melzani, M. (2010). Melting-induced stratification above the Earth’s inner core due to convective translation. Nature, 466(7307), 744. Alfè, D., Gillan, M. J., & Price, G. D. (2002). Composition and temperature of the Earth’s core constrained by combining ab initio calculations and seismic data. Earth and Planetary Science Letters, 195(1), 91-98. Aubert, J., Amit, H., Hulot, G., & Olson, P. (2008). Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity. Nature, 454(7205), 758. Buffett, B. A., Huppert, H. E., Lister, J. R., & Woods, A. W. (1992). Analytical model for solidification of the Earth's core. Nature, 356(6367), 329. Chevrot, S. (2006). Finite-frequency vectorial tomography: a new method for high-resolution imaging of upper mantle anisotropy. Geophysical Journal International, 165(2), 641-657. Cormier, V. F., & Attanayake, J. (2013). Earth’s solid inner core: Seismic implications of freezing and melting. Journal of Earth Science, 24(5), 683-698. Cormier, V. F., & Zheng, Y. (2017). Inner core boundary topography explored with reflected and diffracted P waves. Physics of the Earth and Planetary Interiors. Creager, K. C. (1992). Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP. Nature, 356, 309. Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Dahlen, F. (2005). Finite-frequency sensitivity kernels for boundary topography perturbations. Geophysical Journal International, 162(2), 525-540. Dahlen, F. A., Hung, S. H., & Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimes-I. Theory. Geophysical Journal International, 141(1), 157-174. Deuss, A. (2014). Heterogeneity and anisotropy of Earth's inner core. Annual Review of Earth and Planetary Sciences, 42, 103-126. Dziewonski, A. M., & Gilbert, F. (1971). Solidity of the Inner Core of the Earth inferred from Normal Mode Observations. Nature, 234(5330), 465-466. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297-356. Fearn, D. R., Loper, D. E., & Roberts, P. H. (1981). Structure of the Earth's inner core. Nature, 292(5820), 232. Fichtner, A. (2010). Full seismic waveform modelling and inversion: Springer Science & Business Media. Fuji, N., Chevrot, S., Zhao, L., Geller, R. J., & Kawai, K. (2012). Finite-frequency structural sensitivities of short-period compressional body waves. Geophysical Journal International, 190(1), 522-540. Garnero, E. J., & McNamara, A. K. (2008). Structure and dynamics of Earth's lower mantle. Science, 320(5876), 626-628. Geller, R. J., & Takeuchi, N. (1995). A new method for computing highly accurate DSM synthetic seismograms. Geophysical Journal International, 123(2), 449-470. Godwin, H., Waszek, L., & Deuss, A. (2018). Measuring the seismic velocity in the top 15 km of Earth’s inner core. Physics of the Earth and Planetary Interiors, 274, 158-169. Hung, S. H., Dahlen, F. A., & Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimes-II. Examples. Geophysical Journal International, 141(1), 175-203. Irving, J., & Deuss, A. (2011). Hemispherical structure in inner core velocity anisotropy. Journal of Geophysical Research: Solid Earth, 116(B4). Jacobs, J. A. (1953). The Earth's Inner Core. Nature, 172, 297. Jephcoat, A., & Olson, P. (1987). Is the inner core of the Earth pure iron? Nature, 325, 332. Kawai, K., Takeuchi, N., & Geller, R. J. (2006). Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media. Geophysical Journal International, 164(2), 411-424. Komatitsch, D., & Vilotte, J.-P. (1998). The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368-392. Komatitsch, D., & Tromp, J. (1999). Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139(3), 806-822. Komatitsch, D., & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International, 149(2), 390-412. Komatitsch, D., & Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303-318. Lay, T., & Garnero, E. J. (2011). Deep mantle seismic modeling and imaging. Annual Review of Earth and Planetary Sciences, 39, 91-123. Lehmann, I. (1936). P’, Publ. Bur. Centr. Seism. Internat. Serie A, 14, 87-115. Leng, K., Nissen-Meyer, T., Zad, K., van Driel, M., & Al-Attar, D. (2017). AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models. Paper presented at the AGU Fall Meeting Abstracts. Liu, Q., & Tromp, J. (2008). Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods. Geophysical Journal International, 174(1), 265-286. Marquering, H., Dahlen, F., & Nolet, G. (1999). Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox. Geophysical Journal International, 137(3), 805-815. McGillivray, P., & Oldenburg, D. (1990). Methods for calculating Fréchet derivatives and sensitivities for the non‐linear inverse problem: A comparative study. Geophysical Prospecting, 38(5), 499-524. McNamara, A. K. (2018). A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics. Monnereau, M., Calvet, M., Margerin, L., & Souriau, A. (2010). Lopsided growth of Earth's inner core. Science, 328(5981), 1014-1017. Montelli, R., Nolet, G., Dahlen, F., Masters, G., Engdahl, E. R., & Hung, S.-H. (2004). Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656), 338-343. Morelli, A., Dziewonski, A. M., & Woodhouse, J. H. (1986). Anisotropy of the inner core inferred from PKIKP travel times. Geophysical Research Letters, 13(13), 1545-1548. Nelson, P. L., & Grand, S. P. (2018). Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nature Geoscience, 11(4), 280. Nissen-Meyer, T., Dahlen, F. A., & Fournier, A. (2007). Spherical-earth Fréchet sensitivity kernels. Geophysical Journal International, 168(3), 1051-1066. Nissen-Meyer, T., Fournier, A., & Dahlen, F. A. (2008). A 2-D spectral-element method for computing spherical-earth seismograms—II. Waves in solid–fluid media. Geophysical Journal International, 174(3), 873-888. Nissen-Meyer, T., van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., Colombi, A., & Fournier, A. (2014). AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth, 5(1), 425. Nissen‐Meyer, T., Fournier, A., & Dahlen, F. A. (2007b). A 2-D spectral‐element method for computing spherical‐earth seismograms–I. Moment‐tensor source. Geophysical Journal International, 168(3), 1067-1092. Poupinet, G., Pillet, R., & Souriau, A. (1983). Possible heterogeneity of the Earth's core deduced from PKIKP travel times. Nature, 305, 204. Song, X., & Helmberger, D. V. (1995). Depth dependence of anisotropy of Earth's inner core. Journal of Geophysical Research: Solid Earth, 100(B6), 9805-9816. Stähler, S. C., van Driel, M., Auer, L., Hosseini, K., Sigloch, K., & Nissen-Meyer, T. (2016). MC Kernel: Broadband Waveform Sensitivity Kernels for Seismic Tomography. Paper presented at the EGU General Assembly Conference Abstracts. Tanaka, S., & Hamaguchi, H. (1997). Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP (BC)–PKP (DF) times. Journal of Geophysical Research: Solid Earth, 102(B2), 2925-2938. Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 180(1), 433-462. Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259-1266. Tian, D., & Wen, L. (2017). Seismological evidence for a localized mushy zone at the Earth's inner core boundary. Nat Commun, 8(1), 165. Tian, Y., Montelli, R., Nolet, G., & Dahlen, F. A. (2007). Computing traveltime and amplitude sensitivity kernels in finite-frequency tomography. Journal of Computational Physics, 226(2), 2271-2288. Tromp, J., Tape, C., & Liu, Q. (2004). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160(1), 195-216. Van Driel, M., Krischer, L., Stähler, S. C., Hosseini, K., & Nissen-Meyer, T. (2015). Instaseis: Instant global seismograms based on a broadband waveform database. Solid Earth, 6(2), 701. Wang, Y., & Wen, L. (2007). Geometry and P and S velocity structure of the “African Anomaly”. Journal of Geophysical Research: Solid Earth, 112(B5). Waszek, L., & Deuss, A. (2011). Distinct layering in the hemispherical seismic velocity structure of Earth's upper inner core. Journal of Geophysical Research: Solid Earth, 116(B12). Waszek, L., & Deuss, A. (2015). Anomalously strong observations of PKiKP/PcP amplitude ratios on a global scale. Journal of Geophysical Research: Solid Earth, 120(7), 5175-5190. Wen, L. (2001). Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth’s mantle beneath the Indian Ocean. Earth and Planetary Science Letters, 194(1-2), 83-95. Woodhouse, J. H., Giardini, D., & Li, X.-D. (1986). Evidence for inner core anisotropy from free oscillations. Geophysical Research Letters, 13(13), 1549-1552. Woodward, M. J. (1992). Wave-equation tomography. Geophysics, 57(1), 15-26. Yu, W.-c., Su, J., Song, T.-R. A., Huang, H.-H., Mozziconacci, L., & Huang, B.-S. (2017). The inner core hemispheric boundary near 180° W. Physics of the Earth and Planetary Interiors, 272, 1-16. Yu, W. c., & Wen, L. (2006). Seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths. Journal of Geophysical Research: Solid Earth, 111(B7). Yu, W. c., & Wen, L. (2007). Complex seismic anisotropy in the top of the Earth's inner core beneath Africa. Journal of Geophysical Research: Solid Earth, 112(B8). Zhang, W., Zhang, Z., & Chen, X. (2012). Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophysical Journal International, 190(1), 358-378. Zhao, L., Jordan, T. H., & Chapman, C. H. (2000). Three-dimensional Fréchet differential kernels for seismicdelay times. Geophysical Journal International, 141(3), 558-576. Zhao, L., Jordan, T. H., Olsen, K. B., & Chen, P. (2005). Fréchet kernels for imaging regional earth structure based on three-dimensional reference models. Bulletin of the Seismological Society of America, 95(6), 2066-2080. Zhao, L., & Jordan, T. H. (2006). Structural sensitivities of finite-frequency seismic waves: a full-wave approach. Geophysical Journal International, 165(3), 981-990. Zhao, L., & Chevrot, S. (2011a). An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography-II. Numerical results. Geophysical Journal International, 185(2), 939-954. Zhao, L., & Chevrot, S. (2011b). An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography-I. Theory. Geophysical Journal International, 185(2), 922-938. Zhou, Y., Dahlen, F., & Nolet, G. (2004). Three‐dimensional sensitivity kernels for surface wave observables. Geophysical Journal International, 158(1), 142-168.
|