帳號:guest(3.235.173.74)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:蔡育霖
作者(外文):Yu-Lin Tsai
論文名稱:風暴潮、潮汐與波浪耦合模式之發展及西北太平洋強烈颱風事件之應用
論文名稱(外文):Development of Storm Surge, Tide, and Wind Wave Coupling Model and Application for Severe Typhoon Events in Northwestern Pacific Ocean
指導教授:吳祚任劉立方
指導教授(外文):Tso-Ren WuPhilip Li-Fan Liu
學位類別:博士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:103686001
出版年:110
畢業學年度:109
語文別:英文
論文頁數:385
中文關鍵詞:風暴潮-潮汐-風浪耦合模式COMCOT-SURGESWANTPXO8-atlas2015年蘇迪勒颱風2015年杜鵑颱風
外文關鍵詞:Surge-Tide-Wave Coupling ModelCOMCOT-SURGESWANTPXO8-atlasTyphoon SoudelorTyphoon Dujuan
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以風暴潮、潮汐和風浪數值耦合模式,探討西北太平洋強烈颱風造成之風暴潮,在潮汐和風浪影響下,由遠洋至近岸之完整水動力傳遞過程。本研究基於長波海嘯模式COMCOT (COrnell Multi-grid Coupled Tsunami),發展多重網格風暴潮模式COMCOT-SURGE,可完整模擬風暴潮由生成、傳遞至淹溢等物理過程,並與全球天文潮模式TPXO8-atlas和近岸風浪模式SWAN (Simulating WAve Nearshore) 耦合,於風暴潮模擬內考慮天文潮和波浪能量消散後之輻射應力。本研究利用線性長波於均勻水深之傳播和孤立波圓島溯上等基準案例,驗證COMCOT-SURGE多重耦合巢狀網格之數值穩定性及移動邊界之準確性;此外,COMCOT-SURGE亦與實際觀測水位、全球天文潮模式和調和分析水位等資料比對,驗證其潮汐模擬功能之精準度。待模式驗證後,本研究選訂2015年臺灣東岸登陸之強烈颱風蘇迪勒和杜鵑進行個案分析,且因觀測潮位資料指出颱風期間臺灣東岸有較顯著風暴潮,最大水位抬升高於潮汐約0.8至1.2公尺,因此,本研究針對臺灣東岸、東北岸和東南岸進行重點討論。本研究以歐洲中期天氣預報中心第5代再分析氣象場ECMWF ERA5,驅動風暴潮和風浪模擬,並先以臺灣環海觀測之浮標氣象資料,驗證ERA5風場之準確性,降低後續水動力模擬之可能誤差。耦合模式模擬結果與風暴潮、總水位、示性波高、平均週期、平均波向等觀測資料,均有良好比對結果。本研究亦發現,蘇迪勒颱風和杜鵑颱風登陸期間,臺灣東部沿岸之輻射應力,高於風剪力1至2個量級,且與近岸水位抬升處有高度重合性。本研究進一步透過耦合數值實驗,分析輻射應力對近岸風暴潮之影響,研究結果顯示,臺灣東岸、東北岸和東南岸由風浪能量消散後造成之輻射應力,可使蘇迪勒和杜鵑颱風期間之最大風暴潮高,放大20至50%左右 (約0.1至0.5公尺之水位抬升),顯示輻射應力對於臺灣東部沿岸之風暴潮模擬是不可缺少的。最後,本研究糞望建立未來風暴潮研究之基準案例,透過蘇迪勒颱風和杜鵑颱風個案,提供未來研究完整之數值模擬結果以及詳盡之潮位及浮標觀測資料,奠定未來風暴潮耦合研究之基石。
This study aims to better understand storm surges due to a severe typhoon from the Western Pacific Ocean propagating from offshore to nearshore with tides and wind waves using a surge-tide-wave coupling model. This study developed the multi-grid COMCOT-SURGE storm surge model based on the well-validated COMCOT (COrnell Multi-grid Coupled Tsunami) tsunami model. COMCOT-SURGE can simulate storm surges from offshore to nearshore, including the full physical processes from generation, propagation, to inundation. Furthermore, COMCOT-SURGE has been coupled with the global tide TPXO8-atlas model and nearshore spectral wave SWAN (Simulating WAve Nearshore) model to consider astronomical tides and wave-enhanced radiation stresses. Linear long wave propagation on a constant water depth and solitary wave runup on a circular island were used to validate the grid nesting function and moving boundary scheme of COMCOT-SURGE. Besides, the accuracy of simulating tides was convinced by validating the modeled tides against observations, TPXO8-atlas, and harmonic analysis. After examining the storm surge model, this study chose the 2015 severe Typhoons Soudelor and Dujuan as case studies. This study focused the discussions on the eastern regions of Taiwan, where the notable storm surges of 0.8–1.2 m were measured from tide gauges in these two typhoon events. ECMWF (European Centre for Medium-Range Weather Forecasts) ERA5 was used to drive surge-tide-wave coupling simulations after being validated by the buoy weather data to minimize the possible error from the inputs. The simulation results agreed with the observed storm surges, water levels, significant wave heights, mean wave periods, and mean wave directions. Besides, the wave-enhanced radiation stress gradient was more considerable than the wind shear stress by one to two orders of magnitude during the passage of Typhoons Soudelor and Dujuan. Thus, this study further carried out numerical experiments to examine the radiation stress effect on coastal storm surges in eastern Taiwan. The results showed that the wave-enhanced radiation stresses contributed to the peak storm surges by about 20–50% along the east coasts of Taiwan during the passage of Typhoons Soudelor and Dujuan. It implies that the radiation stress gradient is vital to predict coastal storm surges on Taiwan’s northeast, east, and southeast coasts. This study hopes to pave the way for future storm surge research by providing the complete surge-tide-wave coupling simulations and a detailed dataset of observed tide gauge data and buoy data.
CHINESE ABSTRACT/中文摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS/誌謝 iv
TABLE OF CONTENTS v
LIST OF FIGURES x
LIST OF TABLES xxix
CHAPTER 1–INTRODUCTION 1
1.1 Overview 1
1.2 Review for Mechanisms of Generating Storm Surges and Their Roles in Modeling 3
1.2.1 Meteorological Forces 3
1.2.1.1 Sea-Level Pressures and Surface Winds 3
1.2.1.2 Surface Wind Drag Coefficient 3
1.2.1.3 Storm Characteristics 4
1.2.1.4 Accuracy of Wind Fields 4
1.2.2 Wave Effect 5
1.2.2.1 Wind Wave Contributions to Storm Surges 5
1.2.2.2 Model Coupling for Storm Surges and Wind Waves 6
1.2.3 Tide Effect 9
1.2.4 Coriolis Effect 9
1.2.5 Bathymetry Effect 10
1.2.6 Summary 10
1.3 Review for Storm Surge Studies in Taiwan 12
1.3.1 Background 12
1.3.2 Interactions of Storm Surges with Wind Waves and Tides in Taiwan 14
1.3.3 Wind’s Accuracy to Storm Surge and Wave Modeling in Taiwan 15
1.3.4 Summary 17
1.4 Purpose of This Study 18
CHAPTER 2–NESTED-GRID SURGE-TIDE-WAVE COUPLING MODEL 19
2.1. Depth-Integrated Storm Surge and Tide Model–COMCOT-SURGE 19
2.1.1 Governing Equations of the Depth-Integrated Model 20
2.1.2 Discretization of the Depth-Integrated Time-Averaged Model 24
2.1.3 Open Boundary Condition 33
2.1.3.1 Radiation Boundary Condition 33
2.1.3.2 Open Boundary Condition for Storm Surges and Tides 34
2.1.4 Moving Boundary Scheme 35
2.1.4.1 Categorization for Wet and Dry Cells 35
2.1.4.2 Moving Shoreline Algorithm 36
2.1.5 Multi-Grid Nesting Scheme 39
2.1.5.1 Grid Nesting in the Spatial Domain 40
2.1.5.2 Grid Nesting in the Temporal Domain 43
2.2 Wind Wave Module–SWAN 46
2.2.1 Governing Equations in the Cartesian Coordinate 46
2.2.2 Finite-Difference Method Discretization in the Cartesian Coordinate 47
2.2.3 Source/Sink Terms 49
2.2.3.1 Wind Input (Sin) 49
2.2.3.2 Dissipation Terms (Sds) 50
2.2.3.3 Wave-Wave Interaction Terms (Snl) 52
2.2.4 Radiation Stresses 53
2.3 Wind-Drag Coefficient 54
2.4 Tide Module–TPXO Global Tide Model 55
2.5 Model Coupling among Storm Surges, Tides, and Waves 56
2.5.1 Features of Surge-Tide-Wave Coupling Model 56
2.5.2 Framework of Model Coupling Procedure 57
2.5.3 Grids between Storm Surge and Spectral Wave Models 59
CHAPTER 3–DEPTH-INTEGRATED MODEL VALIDATION 60
3.1 Linear Long Wave Propagating on a Constant Water Depth 60
3.1.1 Goals of Numerical Experiment 60
3.1.2 Incident Soliton-Like Wave 60
3.1.3 Normal Incidence of Linear Long Wave 63
3.1.3.1 Computational Setting 63
3.1.3.2 Numerical Experiments for Uniform Grids 65
3.1.3.3 Numerical Experiments for Nested Grids 83
3.1.3.4 Coupled and Uncoupled Grid Nesting Effect 91
3.1.4 Oblique Incidence of Linear Long Wave 96
3.1.4.1 Computational Setting 96
3.1.4.2 The 45-Degree Oblique Solitary Wave Incidence 99
3.1.4.3 The 60-Degree Oblique Solitary Wave Incidence 105
3.1.4.4 Coupled and Uncoupled Grid Nesting Effect 111
3.1.5 Summary 114
3.2 Solitary Wave Runup on a Circular Island 115
3.2.1 Introduction 115
3.2.2 Numerical Settings 115
3.2.3 Computed Free Surface Elevations around the Circular Island 120
3.2.4 Comparisons of Free Surface Elevations at Wave Gauges 128
3.2.5 Comparisons of Runup Heights on the Circular Island 132
3.2.6 Summary 136
3.3 Validation of Astronomical Tide Simulation 137
3.3.1 Purpose of the Validation 137
3.3.2 Computational Settings 137
3.3.3 Comparison of Tides between COMCOT-SURGE and TPXO8-atlas 142
3.3.4 Comparison of Tides between COMCOT-SURGE and Observed/Harmonic Data 151
3.3.5 Summary 156
CHAPTER 4–CASE STUDY FOR THE 2015 TYPHOON SOUDELOR 157
4.1 2015 Typhoon Soudelor 157
4.2 Analyzing Observed Storm Surges during Typhoon Soudelor 160
4.3 10-m Winds and Sea-Level Pressures of Typhoon Soudelor and Their Validations 165
4.3.1 The Reanalysis Data–ECMWF ERA5 165
4.3.2 ERA5 10-m Winds and Sea-Level Pressures during the 2015 Typhoon Soudelor 165
4.3.3 Comparisons between ERA5 and Observation Data from Buoys 170
4.4 Hindcast Simulation for Storm Surges, Tides, and Wind Waves of the 2015 Typhoon Soudelor 183
4.4.1 Computational Settings for Surge-Tide-Wave Coupled Modeling 183
4.4.2 Tide Validation 188
4.4.3 Wind Waves 193
4.4.4 Storm Tides and Storm Surges 211
CHAPTER 5–CASE STUDY FOR THE 2015 TYPHOON DUJUAN 225
5.1 2015 Typhoon Dujuan 225
5.2 Analyzing Observed Storm Surges during Typhoon Dujuan 228
5.3 10-m Winds and Sea-Level Pressures of Typhoon Dujuan and Their Validations 233
5.3.1 ERA5 10-m Winds and Sea-Level Pressures during the 2015 Typhoon Dujuan 233
5.3.2 Comparisons between ERA5 and Observation Data from Buoys 237
5.4 Hindcast Simulations for Storm Surges, Tides, and Wind Waves of the 2015 Typhoon Dujuan 249
5.4.1 Computational Settings for Surge-Tide-Wave Coupled Modeling 249
5.4.2 Tide Validation 249
5.4.3 Wind Waves 254
5.4.4 Storm Tides and Storm Surges 270
CHAPTER 6–A COMPARATIVE STUDY OF WAVE EFFECT TO COASTAL STORM SURGES DURING THE 2015 TYPHOONS SOUDELOR AND DUJUAN 283
6.1. Wave Effect to Storm Surges during Typhoon Soudelor 283
6.2 Wave Effect to Storm Surges during Typhoon Dujuan 288
6.3 Comparisons of Wave Effect between Typhoons Soudelor and Dujuan 292
CHAPTER 7–CONCLUSIONS AND FUTURE WORKS 294
7.1 Conclusions 294
7.2 Future Works 297
APPENDIX A–INTEGRATED OBSERVATIONS FOR TIDE GAUGES AND BUOYS 300
A.1 Observations at Tide Gauges 300
A.2 Observations at Buoys 303
APPENDIX B–STATISTICAL ANALYSIS 306
APPENDIX C–MOVING AVERAGE METHOD FOR OBSERVED STORM SURGES 307
APPENDIX D–10-M WIND CONVERSION 308
APPENDIX E–DATA QUALITY CONTROL FOR MEASURED SIGNIFICANT WAVE HEIGHTS UNDER A TROPICAL CYCLONE 311
APPENDIX F–DISSERTATION DEFENSE RECORD AND RESPONSE TO REVIEW COMMENTS 313
F.1 Basic Information of Dissertation Defense 313
F.2 Review Comments #1 (Dr. Chuen-Teyr Terng) 314
F.3 Review Comments #2 (Dr. Shih-Chun Hsiao) 317
F.4 Review Comments #3 (Dr. Hwa Chien) 320
F.5 Review Comments #4 (Dr. Iam-Fei Pun) 324
F.6 Review Comments #5 (Dr. Tai-Wen Hsu) 328
F.7 Review Comments #6 (Dr. Philip Li-Fan Liu) 331
F.8 Review Comments #7 (Dr. Tso-Ren Wu) 333
REFERENCES 334
Amante, C. & Eakins, B. W. (2009). ETOPO 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis (NOAA Technical Memorandum NESDIS NGDC-24). National Geophysical Data Center, Marine Geology and Geophysics Division, National Oceanic and Atmospheric Administration.
Ardhuin, F., Jenkins, A. D. & Belibassakis, K. A. (2008). Comments on “The Three-Dimensional Current and Surface Wave Equations.” Journal of Physical Oceanography, 38(6), 1340–1350. https://doi.org/10.1175/2007jpo3670.1
Azad, A. S. M. A. A., Mita, K. S., Zaman, Md. W., Akter, M., Asik, T. Z., Haque, A., Hussain, M. A. & Rahman, Md. M. (2018). Impact of Tidal Phase on Inundation and Thrust Force due to Storm Surge. Journal of Marine Science and Engineering, 6(4), 110. https://doi.org/10.3390/jmse6040110
Babanin, A. V., Hsu, T.-W., Roland, A., Ou, S.-H., Doong, D.-J. & Kao, C. C. (2011). Spectral Wave Modelling of Typhoon Krosa. Natural Hazards and Earth System Sciences, 11(2), 501–511. https://doi.org/10.5194/nhess-11-501-2011
Battjes, J. A. (1972). Radiation Stress in Short-Crested Waves. Journal of Marine Research, 30(1), 56–64.
Battjes, J. A. & Janssen, J. P. F. M. (1978). Energy Loss and Set-Up due to Breaking of Random Waves. 16th International Conference on Coastal Engineering, 569–587. https://doi.org/10.1061/9780872621909.034
Battjes, J. A. & Stive, M. J. F. (1985). Calibration and Verification of a Dissipation Model for Random Breaking Waves. Journal of Geophysical Research: Oceans, 90(C5), 9159–9167. https://doi.org/10.1029/jc090ic05p09159
Bender, L. C., Guinasso, N. L., Walpert, J. N. & Howden, S. D. (2010). A Comparison of Methods for Determining Significant Wave Heights—Applied to a 3-m Discus Buoy during Hurricane Katrina. Journal of Atmospheric and Oceanic Technology, 27(6), 1012–1028. https://doi.org/10.1175/2010jtecho724.1
Black, P. G., D’Asaro, E. A., Sanford, T. B., Drennan, W. M., Zhang, J. A., French, J. R., Niiler, P. P., Terrill, E. J. & Walsh, E. J. (2007). Air–Sea Exchange in Hurricanes: Synthesis of Observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bulletin of the American Meteorological Society, 88(3), 357–374. https://doi.org/10.1175/bams-88-3-357
Bode, L. & Hardy, T. A. (1997). Progress and Recent Developments in Storm Surge Modeling. Journal of Hydraulic Engineering, 123(4), 315–331. https://doi.org/10.1061/(asce)0733-9429(1997)123:4(315)
Booij, N., Ris, R. C. & Holthuijsen, L. H. (1999). A Third‐Generation Wave Model for Coastal Regions: 1. Model Description and Validation. Journal of Geophysical Research: Oceans, 104(C4), 7649–7666. https://doi.org/10.1029/98jc02622
Boussinesq, J. (1872). Théorie des Ondes et des Remous Qui Se Propagent le Long D’un Canal Rectangulaire Horizontal, en Communiquant Au Liquide Contenu dans ce Canal des Vitesses Sensiblement Pareilles de Surface. Journal de Mathématiques Pures et Appliquées, 17, 55–108.
Bouws, E. & Komen, G. J. (1983). On the Balance Between Growth and Dissipation in an Extreme Depth-Limited Wind-Sea in the Southern North Sea. Journal of Physical Oceanography, 13(9), 1653–1658. https://doi.org/10.1175/1520-0485(1983)013<1653:otbbga>2.0.co;2
Briggs, M. J., Synolakis, C. E., Harkins, G. S. & Green, D. R. (1995). Laboratory Experiments of Tsunami Runup on a Circular Island. Pure and Applied Geophysics, 144(3–4), 569–593. https://doi.org/10.1007/bf00874384
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J. & Roberts, H. J. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation. Monthly Weather Review, 138(2), 345–377. https://doi.org/10.1175/2009mwr2906.1
Cavaleri, L. & Rizzoli, P. M. (1981). Wind Wave Prediction in Shallow Water: Theory and Applications. Journal of Geophysical Research: Oceans, 86(C11), 10961–10973. https://doi.org/10.1029/jc086ic11p10961
Chaumillon, E., Bertin, X., Fortunato, A. B., Bajo, M., Schneider, J.-L., Dezileau, L., Walsh, J. P., Michelot, A., Chauveau, E., Créach, A., Hénaff, A., Sauzeau, T., Waeles, B., Gervais, B., Jan, G., Baumann, J., Breilh, J.-F. & Pedreros, R. (2017). Storm-Induced Marine Flooding: Lessons from a Multidisciplinary Approach. Earth-Science Reviews, 165, 151–184. https://doi.org/10.1016/j.earscirev.2016.12.005
Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B. & Chawla, A. (2000). Boussinesq Modeling of Wave Transformation, Breaking, and Runup. II: 2D. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(1), 48–56. https://doi.org/10.1061/(asce)0733-950x(2000)126:1(48)
Chen, W.-B., Chen, H., Hsiao, S.-C., Chang, C.-H. & Lin, L.-Y. (2019). Wind Forcing Effect on Hindcasting of Typhoon-Driven Extreme Waves. Ocean Engineering, 188, 106260. https://doi.org/10.1016/j.oceaneng.2019.106260
Chen, W.-B., Lin, L.-Y., Jang, J.-H. & Chang, C.-H. (2017). Simulation of Typhoon-Induced Storm Tides and Wind Waves for the Northeastern Coast of Taiwan Using a Tide–Surge–Wave Coupled Model. Water, 9(7), 549. https://doi.org/10.3390/w9070549
Cho, Y.-S. (1995). Numerical Simulations of Tsunami Propagation and Run-up [Ph.D. Dissertation]. Cornell University.
Choi, B. H., Eum, H. M. & Woo, S. B. (2003). A Synchronously Coupled Tide–Wave–Surge Model of the Yellow Sea. Coastal Engineering, 47(4), 381–398. https://doi.org/10.1016/s0378-3839(02)00143-6
CWB. (2017). Data Buoy Observation Data Annual Report 2015. Central Weather Bureau.
Dean, R. G. & Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and Scientists. https://doi.org/10.1142/1232
Dietrich, J. C., Bunya, S., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J. & Roberts, H. J. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic Description and Analysis of Hurricanes Katrina and Rita. Monthly Weather Review, 138(2), 378–404. https://doi.org/10.1175/2009mwr2907.1
Dietrich, J. C., Zijlema, M., Westerink, J. J., Holthuijsen, L. H., Dawson, C., Luettich, R. A., Jensen, R. E., Smith, J. M., Stelling, G. S. & Stone, G. W. (2011). Modeling Hurricane Waves and Storm Surge Using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58(1), 45–65. https://doi.org/10.1016/j.coastaleng.2010.08.001
Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., Brown, O. B. & Saltzman, E. S. (2004). On the Limiting Aerodynamic Roughness of the Ocean in Very Strong Winds. Geophysical Research Letters, 31(18). https://doi.org/10.1029/2004gl019460
Donelan, Mark A., Dobson, F. W., Smith, S. D. & Anderson, R. J. (1993). On the Dependence of Sea Surface Roughness on Wave Development. Journal of Physical Oceanography, 23(9), 2143–2149. https://doi.org/10.1175/1520-0485(1993)023<2143:otdoss>2.0.co;2
Egbert, G. D., Bennett, A. F. & Foreman, M. G. G. (1994). TOPEX/POSEIDON Tides Estimated Using a Global Inverse Model. Journal of Geophysical Research: Oceans, 99(C12), 24821–24852. https://doi.org/10.1029/94jc01894
Egbert, G. D. & Erofeeva, S. Y. (2002). Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
Eldeberky, Y. (1996). Nonlinear Transformation of Wave Spectra in the Nearshore Zone [Master Thesis]. Technische Universiteit Deflt.
Eldeberky, Y. & Battjes, J. A. (1996). Spectral Modeling of Wave Breaking: Application to Boussinesq Equations. Journal of Geophysical Research: Oceans, 101(C1), 1253–1264. https://doi.org/10.1029/95jc03219
Emanuel, K. (2005). Increasing Destructiveness of Tropical Cyclones over the Past 30 Years. Nature, 436(7051), 686–688. https://doi.org/10.1038/nature03906
Funakoshi, Y., Hagen, S. C. & Bacopoulos, P. (2008). Coupling of Hydrodynamic and Wave Models: Case Study for Hurricane Floyd (1999) Hindcast. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(6), 321–335. https://doi.org/10.1061/(asce)0733-950x(2008)134:6(321)
Gao, X., Wei, Z., Lv, X., Wang, Y. & Fang, G. (2015). Numerical Study of Tidal Dynamics in the South China Sea with Adjoint Method. Ocean Modelling, 92, 101–114. https://doi.org/10.1016/j.ocemod.2015.05.010
Garratt, J. R. (1977). Review of Drag Coefficients over Oceans and Continents. Monthly Weather Review, 105(7), 915–929. https://doi.org/10.1175/1520-0493(1977)105<0915:rodcoo>2.0.co;2
Goto, C., Ogawa, Y., Shuto, N. & Imamura, F. (1997). Numerical Method of Tsunami Simulation with The Leap-Frog Scheme [Manuals and Guides]. Intergovernmental Oceanographic Commission.
Günther, H., Hasselmann, S. & Janssen, P. A. E. M. (1992). The WAM Model Cycle 4. Deutsches Klimarechenzentrum (DKRZ).
Hasegawa, H., Kohno, N. & Itoh, M. (2015, November 10). Development of Storm Surge Model in Japan Meteorological Agency. 3rd International Workshop on Waves, Storm Surges and Coastal Hazards.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W. & Walden, H. (1973). Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP). Erganzungsheft Zur Deutschen Hydrographischen Zeitschrift, Reihe A.
Hasselmann, Klaus. (1974). On the Spectral Dissipation of Ocean Waves due to White Capping. Boundary-Layer Meteorology, 6(1–2), 107–127. https://doi.org/10.1007/bf00232479
Hasselmann, S., Hasselmann, K., Allender, J. H. & Barnett, T. P. (1985). Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models. Journal of Physical Oceanography, 15(11), 1378–1391. https://doi.org/10.1175/1520-0485(1985)015<1378:capotn>2.0.co;2
Heaps, N. S. (1973). Three‐Dimensional Numerical Model of the Irish Sea. Geophysical Journal International, 35(1‐3), 99–120. https://doi.org/10.1111/j.1365-246x.1973.tb02417.x
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Higuera, P., Lara, J. L. & Losada, I. J. (2013). Simulating Coastal Engineering Processes with OpenFOAM®. Coastal Engineering, 71, 119–134. https://doi.org/10.1016/j.coastaleng.2012.06.002
Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters. https://doi.org/10.1017/cbo9780511618536
Horsburgh, K. J. & Wilson, C. (2007). Tide‐Surge Interaction and Its Role in the Distribution of Surge Residuals in the North Sea. Journal of Geophysical Research: Oceans (1978–2012), 112(C8). https://doi.org/10.1029/2006jc004033
Hou, T.-H., Chang, J.-Y., Tsai, C.-C. & Hsu, T.-W. (2020). Three-Dimensional Simulations of Wind Effects on Green Island Wake. Water, 12(11), 3039. https://doi.org/10.3390/w12113039
Hsiao, S.-C., Chen, H., Chen, W.-B., Chang, C.-H. & Lin, L.-Y. (2019). Quantifying the Contribution of Nonlinear Interactions to Storm Tide Simulations during a Super Typhoon Event. Ocean Engineering, 194, 106661. https://doi.org/10.1016/j.oceaneng.2019.106661
Hsin, Y., Wu, C. & Shaw, P. (2008). Spatial and Temporal Variations of the Kuroshio East of Taiwan, 1982–2005: A Numerical Study. Journal of Geophysical Research: Oceans (1978–2012), 113(C4). https://doi.org/10.1029/2007jc004485
Hsu, S. A., Meindl, E. A. & Gilhousen, D. B. (1994). Determining the Power-Law Wind-Profile Exponent under Near-Neutral Stability Conditions at Sea. Journal of Applied Meteorology, 33(6), 757–765. https://doi.org/10.1175/1520-0450(1994)033<0757:dtplwp>2.0.co;2
Hsu, T.-W., Liau, J.-M., Lin, J.-G., Zheng, J. & Ou, S.-H. (2011). Sequential Assimilation in the Wind Wave Model for Simulations of Typhoon Events around Taiwan Island. Ocean Engineering, 38(2–3), 456–467. https://doi.org/10.1016/j.oceaneng.2010.11.023
Idier, D., Dumas, F. & Muller, H. (2012). Tide-Surge Interaction in the English Channel. Natural Hazards and Earth System Sciences, 12(12), 3709–3718. https://doi.org/10.5194/nhess-12-3709-2012
Jan, S., Chern, C., Wang, J. & Chao, S. (2004). The Anomalous Amplification of M2 Tide in the Taiwan Strait. Geophysical Research Letters, 31(7), n/a-n/a. https://doi.org/10.1029/2003gl019373
Janssen, P. A. E. M. (1989). Wave-Induced Stress and the Drag of Air Flow over Sea Waves. Journal of Physical Oceanography, 19(6), 745–754. https://doi.org/10.1175/1520-0485(1989)019<0745:wisatd>2.0.co;2
Janssen, P. A. E. M. (1991). Quasi-linear Theory of Wind-Wave Generation Applied to Wave Forecasting. Journal of Physical Oceanography, 21(11), 1631–1642. https://doi.org/10.1175/1520-0485(1991)021<1631:qltoww>2.0.co;2
Jelesnianski, C. P. (1965). A Numerical Calculation of Storm Tides Induced by a Tropical Storm Impinging on a Continental Shelf. Monthly Weather Review, 93(6), 343–358. https://doi.org/10.1175/1520-0493(1993)093<0343:ancos>2.3.co;2
Jelesnianski, C. P., Chen, J. & Shaffer, W. A. (1992). SLOSH: Sea, Lake, and Overland Surges form Hurricanes [Technical Report]. National Weather Service, National Oceanic and Atmospheric Administration, United States Department of Commerce.
Johns, B., Sinha, P. C., Dube, S. K., Mohanty, U. C. & Rao, A. D. (1983). On the Effect of Bathymetry in Numerical Storm Surge Simulation Experiments. Computers & Fluids, 11(3), 161–174. https://doi.org/10.1016/0045-7930(83)90028-2
Johnson, H. K., Højstrup, J., Vested, H. J. & Larsen, S. E. (1998). On the Dependence of Sea Surface Roughness on Wind Waves. Journal of Physical Oceanography, 28(9), 1702–1716. https://doi.org/10.1175/1520-0485(1998)028<1702:otdoss>2.0.co;2
Kennedy, A. B., Gravois, U., Zachry, B. C., Westerink, J. J., Hope, M. E., Dietrich, J. C., Powell, M. D., Cox, A. T., Luettich, R. A. & Dean, R. G. (2011). Origin of the Hurricane Ike forerunner surge. Geophysical Research Letters, 38(8), n/a-n/a. https://doi.org/10.1029/2011gl047090
Kerr, P. C., Donahue, A. S., Westerink, J. J., Luettich, R. A., Zheng, L. Y., Weisberg, R. H., Huang, Y., Wang, H. V., Teng, Y., Forrest, D. R., Roland, A., Haase, A. T., Kramer, A. W., Taylor, A. A., Rhome, J. R., Feyen, J. C., Signell, R. P., Hanson, J. L., Hope, M. E., … Cox, A. T. (2013). U.S. IOOS Coastal and Ocean Modeling Testbed: Inter‐Model Evaluation of Tides, Waves, and Hurricane Surge in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(10), 5129–5172. https://doi.org/10.1002/jgrc.20376
Kim, S., Mori, N., Mase, H. & Yasuda, T. (2015). The Role of Sea Surface Drag in a Coupled Surge and Wave Model for Typhoon Haiyan 2013. Ocean Modelling, 96, 65--84. https://doi.org/10.1016/j.ocemod.2015.06.004
Kim, S. Y., Yasuda, T. & Mase, H. (2008). Numerical Analysis of Effects of Tidal Variations on Storm Surges and Waves. Applied Ocean Research, 30(4), 311--322. https://doi.org/10.1016/j.apor.2009.02.003
Kim, S. Y., Yasuda, T. & Mase, H. (2010). Wave Set-Up in the Storm Surge along Open Coasts during Typhoon Anita. Coastal Engineering, 57(7), 631--642. https://doi.org/10.1016/j.coastaleng.2010.02.004
Komen, G. J., Hasselmann, S. & Hasselmann, K. (1984). On the Existence of a Fully Developed Wind-Sea Spectrum. Journal of Physical Oceanography, 14(8), 1271–1285. https://doi.org/10.1175/1520-0485(1984)014<1271:oteoaf>2.0.co;2
Kowalik, Z. & Murty, T. S. (1993). Chapter III Two-Dimensional Numerical Models. In Numerical Modeling of Ocean Dynamics (pp. 105–215). World Scientific Publishing Co. Pte. Ltd. https://doi.org/10.1142/9789812795991_0003
Kueh, M.-T., Chen, W.-M., Sheng, Y.-F., Lin, S. C., Wu, T.-R., Yen, E., Tsai, Y.-L. & Lin, C.-Y. (2019). Effects of Horizontal Resolution and Air–Sea Flux Parameterization on the Intensity and Structure of Simulated Typhoon Haiyan (2013). Natural Hazards and Earth System Sciences, 19(7), 1509–1539. https://doi.org/10.5194/nhess-19-1509-2019
Kuik, A. J., Vledder, G. P. van & Holthuijsen, L. H. (1988). A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave Data. Journal of Physical Oceanography, 18(7), 1020–1034. https://doi.org/10.1175/1520-0485(1988)018<1020:amftra>2.0.co;2
Large, W. G. & Pond, S. (1981). Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. Journal of Physical Oceanography, 11(3), 324–336. https://doi.org/10.1175/1520-0485(1981)011<0324:oomfmi>2.0.co;2
Lee, H. S., Yamashita, T., Hsu, J. R.-C. & Ding, F. (2013). Integrated Modeling of the Dynamic Meteorological and Sea Surface Conditions during the Passage of Typhoon Morakot. Dynamics of Atmospheres and Oceans, 59, 1–23. https://doi.org/10.1016/j.dynatmoce.2012.09.002
Lee, J.-J., Skjelbreia, J. E. & Raichlen, F. (1982). Measurement of Velocities in Solitary Waves. Journal of the Waterway, Port, Coastal and Ocean Division, 108(2), 200–218. https://doi.org/10.1061/jwpcdx.0000293
Li, L., Yang, J., Lin, C.-Y., Chua, C. T., Wang, Y., Zhao, K., Wu, Y.-T., Liu, P. L.-F., Switzer, A. D., Mok, K. M., Wang, P. & Peng, D. (2018). Field Survey of Typhoon Hato (2017) and a Comparison with Storm Surge Modeling in Macau. Natural Hazards and Earth System Sciences, 18(12), 3167–3178. https://doi.org/10.5194/nhess-18-3167-2018
Li, N., Roeber, V., Yamazaki, Y., Heitmann, T. W., Bai, Y. & Cheung, K. F. (2014). Integration of Coastal Inundation Modeling from Storm Tides to Individual Waves. Ocean Modelling, 83, 26–42. https://doi.org/10.1016/j.ocemod.2014.08.005
Liang, A. (Ting‐Yu), Oey, L., Huang, S. & Chou, S. (2017). Long‐Term Trends of Typhoon‐Induced Rainfall over Taiwan: In Situ Evidence of Poleward Shift of Typhoons in Western North Pacific in Recent Decades. Journal of Geophysical Research: Atmospheres, 122(5), 2750–2765. https://doi.org/10.1002/2017jd026446
Liau, J.-M. & Chen, S.-H. (2015). Effect of the Wave Set-Up on the Estimation of Storm Surge in the Coastal Waters. Taiwan Water Conservancy, 63(1).
Lin, I.-I. & Chan, J. C. L. (2015). Recent Decrease in Typhoon Destructive Potential and Global Warming Implications. Nature Communications, 6(1), 7182. https://doi.org/10.1038/ncomms8182
Lin, L.-C., Kuo, C.-Y. & Hsu, T.-W. (2016). The Study of Calibrating the Wave Buoy Inclination and Extreme Wave Height (波浪浮標傾角校正與極值波高之研究, in Chinese). Conference on Weather Analysis and Forecasting.
Lin, M.-Y., Chiou, M.-D., Liu, W.-C., Chen, C.-Y. & Chen, H.-Y. (2016). Uncertainty in Storm Surge Forecasting. Taiwan Water Conservancy, 64(3), 23–42.
Lin, P.-Y. (2015). Report on Typhoon 1521 (Dujuan) of 2015. Weather Forecast Center, Central Weather Bureau, R.O.C. (Taiwan).
Lin, S. C., Wu, T.-R., Yen, E., Chen, H.-Y., Hsu, J., Tsai, Y.-L., Lee, C.-J. & Liu, P., L. F. (2015). Development of a Tsunami Early Warning System for the South China Sea. Ocean Engineering, 100, 1–18. https://doi.org/10.1016/j.oceaneng.2015.02.003
Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Kanoglu, U. & Synolakis, C. E. (1995). Runup of Solitary Waves on a Circular Island. Journal of Fluid Mechanics, 302, 259–285. https://doi.org/10.1017/s0022112095004095
Liu, P. L.-F., Woo, S.-B. & Cho, Y.-S. (1998). Computer Programs for Tsunami Propagation and Inundation. Cornell University.
Liu, W. T., Katsaros, K. B. & Businger, J. A. (1979). Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface. Journal of the Atmospheric Sciences, 36(9), 1722–1735. https://doi.org/10.1175/1520-0469(1979)036<1722:bpoase>2.0.co;2
Liu, W.-C. & Huang, W.-C. (2019). Influences of Sea Level Rise on Tides and Storm Surges around the Taiwan Coast. Continental Shelf Research, 173, 56–72. https://doi.org/10.1016/j.csr.2018.12.009
Liu, W.-C. & Huang, W.-C. (2020). Investigating Typhoon-induced Storm Surge and Waves in the Coast of Taiwan using an Integrally-coupled tide-surge-wave Model. Ocean Engineering, 212. https://doi.org/10.1016/j.oceaneng.2020.107571
Liu, W.-C., Huang, W.-C. & Chen, W.-B. (2016). Modeling the Interaction between Tides and Storm Surges for the Taiwan Coast. Environmental Fluid Mechanics, 16(4), 721–745. https://doi.org/10.1007/s10652-015-9441-0
Liu, Y. & Irish, J. L. (2019). Characterization and Prediction of Tropical Cyclone Forerunner Surge. Coastal Engineering, 147, 34–42. https://doi.org/10.1016/j.coastaleng.2019.01.005
Lo, Y.-Y. (2015). Report on Typhoon 1513 (Soudelor) of 2015. Weather Forecast Center, Central Weather Bureau, R.O.C. (Taiwan).
Longuet-Higgins, M. S. & Stewart, R. W. (1960). Changes in the Form of Short Gravity Waves on Long Waves and Tidal Currents. Journal of Fluid Mechanics, 8(4), 565–583. https://doi.org/10.1017/s0022112060000803
Longuet-Higgins, M. S. & Stewart, R. W. (1962). Radiation Stress and Mass Transport in Gravity Waves, with Application to “Surf Beats.” Journal of Fluid Mechanics, 13(4), 481–504. https://doi.org/10.1017/s0022112062000877
Longuet-Higgins, M. S. & Stewart, R. W. (1963). A Note on Wave Set-Up. Journal of Marine Research, 21(1), 4–10.
Longuet-Higgins, M. S. & Stewart, R. W. (1964). Radiation Stresses in Water Waves; a Physical Discussion, with Applications. Deep Sea Research and Oceanographic Abstracts, 11(4), 529–562. https://doi.org/10.1016/0011-7471(64)90001-4
Lynett, P. J., Wu, T.-R. & Liu, P. L.-F. (2002). Modeling Wave Runup with Depth-Integrated Equations. Coastal Engineering, 46(2), 89–107. https://doi.org/10.1016/s0378-3839(02)00043-1
Maat, N., Kraan, C. & Oost, W. A. (1991). The Roughness of Wind Waves. Boundary-Layer Meteorology, 54(1–2), 89–103. https://doi.org/10.1007/bf00119414
Massel, S. R. (1996). On the Largest Wave Height in Water of Constant Depth. Ocean Engineering, 23(7), 553–573. https://doi.org/10.1016/0029-8018(95)00049-6
Mastenbroek, C., Burgers, G. & Janssen, P. A. E. M. (1993). The Dynamical Coupling of a Wave Model and a Storm Surge Model through the Atmospheric Boundary Layer. Journal of Physical Oceanography, 23(8), 1856–1866. https://doi.org/10.1175/1520-0485(1993)023<1856:tdcoaw>2.0.co;2
Mellor, G. (2003). The Three-Dimensional Current and Surface Wave Equations. Journal of Physical Oceanography, 33(9), 1978–1989. https://doi.org/10.1175/1520-0485(2003)033<1978:ttcasw>2.0.co;2
Mellor, G. L. (2008). The Depth-Dependent Current and Wave Interaction Equations: A Revision. Journal of Physical Oceanography, 38(11), 2587–2596. https://doi.org/10.1175/2008jpo3971.1
Moon, I.-J. (2005). Impact of a Coupled Ocean Wave–Tide–Circulation System on Coastal Modeling. Ocean Modelling, 8(3), 203–236. https://doi.org/10.1016/j.ocemod.2004.02.001
Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki, K. & Yasuda, T. (2014). Local Amplification of Storm Surge by Super Typhoon Haiyan in Leyte Gulf. Geophysical Research Letters, 41(14), 5106–5113. https://doi.org/10.1002/2014gl060689
MOST. (2019). Ocean Data Bank (ODB) Sponsored by the Ministry of Science and Technology, Taiwan. https://www.odb.ntu.edu.tw/bathy/
NCDR. (2020). Characteristic of Storm Surges and Inundation along Taiwan Coast and Offshore Island (Technical Report NCDR 108-T23). National Science and Technology Center for Disaster Reduction, R.O.C. (Taiwan).
NDRRMC. (2013). Final Report re Effects of Typhoon Yolanda Haiyan. National Disaster Risk Reduction and Management Council, Philippines.
Needham, H. F., Keim, B. D. & Sathiaraj, D. (2015). A Review of Tropical Cyclone‐Generated Storm Surges: Global Data Sources, Observations, and Impacts. Reviews of Geophysics, 53(2), 545–591. https://doi.org/10.1002/2014rg000477
Nelson, R. C. (1994). Depth Limited Design Wave Heights in Very Flat Regions. Coastal Engineering, 23(1–2), 43–59. https://doi.org/10.1016/0378-3839(94)90014-0
Ou, S.-H., Liau, J.-M., Hsu, T.-W. & Tzang, S.-Y. (2002). Simulating Typhoon Waves by SWAN Wave Model in Coastal Waters of Taiwan. Ocean Engineering, 29(8), 947–971. https://doi.org/10.1016/s0029-8018(01)00049-x
Peng, S. & Li, Y. (2015). A Parabolic Model of Drag Coefficient for Storm Surge Simulation in the South China Sea. Scientific Reports, 5(1), 15496. https://doi.org/10.1038/srep15496
Pierson, W. J. & Moskowitz, L. (1964). A Proposed Spectral form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii. Journal of Geophysical Research, 69(24), 5181–5190. https://doi.org/10.1029/jz069i024p05181
Powell, M. D., Vickery, P. J. & Reinhold, T. A. (2003). Reduced Drag Coefficient for High Wind Speeds in Tropical Cyclones. Nature, 422(6929), 279–283. https://doi.org/10.1038/nature01481
Prandle, D. & Wolf, J. (1978). The Interaction of Surge and Tide in the North Sea and River Thames. Geophysical Journal of the Royal Astronomical Society, 55(1), 203–216. https://doi.org/10.1111/j.1365-246x.1978.tb04758.x
Qi, J., Chen, C., Beardsley, R. C., Perrie, W., Cowles, G. W. & Lai, Z. (2009). An Unstructured-Grid Finite-Volume Surface Wave Model (FVCOM-SWAVE): Implementation, Validations and Applications. Ocean Modelling, 28(1–3), 153–166. https://doi.org/10.1016/j.ocemod.2009.01.007
Rego, J. L. & Li, C. (2009). On the Importance of the Forward Speed of Hurricanes in Storm Surge Forecasting: A Numerical Study. Geophysical Research Letters, 36(7), n/a-n/a. https://doi.org/10.1029/2008gl036953
Ris, R. C., Holthuijsen, L. H. & Booij, N. (1999). A Third‐Generation Wave Model for Coastal Regions: 2. Verification. Journal of Geophysical Research: Oceans, 104(C4), 7667–7681. https://doi.org/10.1029/1998jc900123
Rogers, W. E., Hwang, P. A. & Wang, D. W. (2003). Investigation of Wave Growth and Decay in the SWAN Model: Three Regional-Scale Applications*. Journal of Physical Oceanography, 33(2), 366–389. https://doi.org/10.1175/1520-0485(2003)033<0366:iowgad>2.0.co;2
Roland, A., Zhang, Y. J., Wang, H. V., Meng, Y., Teng, Y., Maderich, V., Brovchenko, I., Dutour‐Sikiric, M. & Zanke, U. (2012). A Fully Coupled 3D Wave‐Current Interaction Model on Unstructured Grids. Journal of Geophysical Research: Oceans (1978–2012), 117(C11), n/a-n/a. https://doi.org/10.1029/2012jc007952
Schiermeier, Q. (2013). Did Cimate Change Cause Typhoon Haiyan? Nature. https://doi.org/10.1038/nature.2013.14139
Sheng, Y. P., Alymov, V. & Paramygin, V. A. (2010). Simulation of Storm Surge, Wave, Currents, and Inundation in the Outer Banks and Chesapeake Bay during Hurricane Isabel in 2003: The Importance of Waves. Journal of Geophysical Research: Oceans (1978–2012), 115(C4). https://doi.org/10.1029/2009jc005402
Sheng, Y. P. & Liu, T. (2011). Three‐Dimensional Simulation of Wave‐Induced Circulation: Comparison of Three Radiation Stress Formulations. Journal of Geophysical Research: Oceans (1978–2012), 116(C5). https://doi.org/10.1029/2010jc006765
Sheng, Y. P., Paramygin, V. A., Terng, C.-T. & Chu, C.-H. (2016). Simulating Storm Surge and Inundation Along the Taiwan Coast During Typhoons Fanapi in 2010 and Soulik in 2013. Terrestrial, Atmospheric and Oceanic Sciences, 27(6), 965–979. https://doi.org/10.3319/tao.2016.06.13.01(oc)
Sheng, Y. P., Zhang, Y. & Paramygin, V. A. (2010). Simulation of Storm Surge, Wave, and Coastal Inundation in the Northeastern Gulf of Mexico Region during Hurricane Ivan in 2004. Ocean Modelling, 35(4), 314–331. https://doi.org/10.1016/j.ocemod.2010.09.004
Soria, J. L. A., Switzer, A. D., Villanoy, C. L., Fritz, H. M., Bilgera, P. H. T., Cabrera, O. C., Siringan, F. P., Maria, Y. Y.-Sta., Ramos, R. D. & Fernandez, I. Q. (2016). Repeat Storm Surge Disasters of Typhoon Haiyan and Its 1897 Predecessor in the Philippines. Bulletin of the American Meteorological Society, 97(1), 31–48. https://doi.org/10.1175/bams-d-14-00245.1
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., … Yi, Y. (2014). Accuracy Assessment of Global Barotropic Ocean Tide Models. Reviews of Geophysics, 52(3), 243–282. https://doi.org/10.1002/2014rg000450
Suh, S.-W. & Lee, H.-Y. (2018). Forerunner Storm Surge under Macro-Tidal Environmental Conditions in Shallow Coastal Zones of the Yellow Sea. Continental Shelf Research, 169, 1–16. https://doi.org/10.1016/j.csr.2018.09.007
Sun, J., Oey, L., Xu, F.-H. & Lin, Y.-C. (2017). Sea Level Rise, Surface Warming, and the Weakened Buffering Ability of South China Sea to Strong Typhoons in Recent Decades. Scientific Reports, 7(1), 7418. https://doi.org/10.1038/s41598-017-07572-3
Sun, Y., Chen, C., Beardsley, R. C., Xu, Q., Qi, J. & Lin, H. (2013). Impact of Current‐Wave Interaction on Storm Surge Simulation: A Case Study for Hurricane Bob. Journal of Geophysical Research: Oceans, 118(5), 2685–2701. https://doi.org/10.1002/jgrc.20207
SWAN. (2019). SWAN Scientific and Technical Documentation for SWAN Cycle III Version 41.31. Environmental Fluid Mechanics Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology.
Takagi, H. & Wu, W. (2016). Maximum Wind Radius Estimated by the 50 kt Radius: Improvement of Storm Surge Forecasting over the Western North Pacific. Natural Hazards and Earth System Sciences, 16(3), 705–717. https://doi.org/10.5194/nhess-16-705-2016
Tang, Y. M., Sanderson, B., Holland, G. & Grimshaw, R. (1996). A Numerical Study of Storm Surges and Tides, with Application to the North Queensland Coast. Journal of Physical Oceanography, 26(12), 2700–2711. https://doi.org/10.1175/1520-0485(1996)026<2700:ansoss>2.0.co;2
Titov, V. V. & Synolakis, C. E. (1998). Numerical Modeling of Tidal Wave Runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(4), 157–171. https://doi.org/10.1061/(asce)0733-950x(1998)124:4(157)
Tolman, H. L. (1992). Effects of Numerics on the Physics in a Third-Generation Wind-Wave Model. Journal of Physical Oceanography, 22(10), 1095–1111. https://doi.org/10.1175/1520-0485(1992)022<1095:eonotp>2.0.co;2
Torres, M. J., Hashemi, M. R., Hayward, S., Spaulding, M., Ginis, I. & Grilli, S. T. (2019). Role of Hurricane Wind Models in Accurate Simulation of Storm Surge and Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(1), 04018039. https://doi.org/10.1061/(asce)ww.1943-5460.0000496
Tsai, C.-H. & Doong, D.-J. (2011). Re-Analysis of Buoy-Observed Data during Typhoons. Central Weather Bureau.
Tsai, Y.-L. (2014). The Development of Storm SurgeFast Calculation System and the Reconstruction of 1845 Yunlin Kouhu Event [Master Thesis]. National Central University, R.O.C. (Taiwan).
Tsai, Y.-L., Wu, T.-R., Lin, C.-Y., Lin, S. C., Yen, E. & Lin, C.-W. (2020). Discrepancies on Storm Surge Predictions by Parametric Wind Model and Numerical Weather Prediction Model in a Semi-Enclosed Bay: Case Study of Typhoon Haiyan. Water, 12(12), 3326. https://doi.org/10.3390/w12123326
Walton, T. L. & Dean, R. G. (2009). Influence of Florida Bathymetry on Wind Stress Component of Storm Surge. Coastal Engineering Journal, 51(4), 297–308. https://doi.org/10.1142/s0578563409002041
WAMDI. (1988). The WAM Model—A Third Generation Ocean Wave Prediction Model. Journal of Physical Oceanography, 18(12), 1775–1810. https://doi.org/10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2
Wang, X. & Liu, P. L.-F. (2006). An Analysis of 2004 Sumatra Earthquake Fault Plane Mechanisms and Indian Ocean Tsunami. Journal of Hydraulic Research, 44(2), 147–154. https://doi.org/10.1080/00221686.2006.9521671
Wang, X. & Liu, P. L.-F. (2007). Numerical Simulations of the 2004 Indian Ocean Tsunamis — Coastal Effects. Journal of Earthquake and Tsunami, 01(03), 273–297. https://doi.org/10.1142/s179343110700016x
Wang, X. & Power, W. (2011). COMCOT: a Tsunami Generation, Propagation and Run-Up Model.
Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K. & Arango, H. G. (2008). Development of a Three-Dimensional, Regional, Coupled Wave, Current, and Sediment-Transport Model. Computers & Geosciences, 34(10), 1284–1306. https://doi.org/10.1016/j.cageo.2008.02.012
Weaver, R. J. & Slinn, D. N. (2010). Influence of Bathymetric Fluctuations on Coastal Storm Surge. Coastal Engineering, 57(1), 62–70. https://doi.org/10.1016/j.coastaleng.2009.09.012
Wei, Y., Mao, X.-Z. & Cheung, K. F. (2006). Well-Balanced Finite-Volume Model for Long-Wave Runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132(2), 114–124. https://doi.org/10.1061/(asce)0733-950x(2006)132:2(114)
Wei, Z. & Jia, Y. (2014). Simulation of Nearshore Wave Processes by a Depth-Integrated Non-Hydrostatic Finite Element Model. Coastal Engineering, 83, 93–107. https://doi.org/10.1016/j.coastaleng.2013.10.002
Wolf, J. (2009). Coastal Flooding: Impacts of Coupled Wave–Surge–Tide Models. Natural Hazards, 49(2), 241–260. https://doi.org/10.1007/s11069-008-9316-5
Wu, C.-C. & Kuo, Y.-H. (1999). Typhoons Affecting Taiwan: Current Understanding and Future Challenges. Bulletin of the American Meteorological Society, 80(1), 67–80. https://doi.org/10.1175/1520-0477(1999)080<0067:tatcua>2.0.co;2
Wu, G., Shi, F., Kirby, J. T., Liang, B. & Shi, J. (2018). Modeling Wave Effects on Storm Surge and Coastal Inundation. Coastal Engineering, 140, 371–382. https://doi.org/10.1016/j.coastaleng.2018.08.011
Wu, J. (1980). Wind-Stress Coefficients over Sea Surface near Neutral Conditions—A Revisit. Journal of Physical Oceanography, 10(5), 727–740. https://doi.org/10.1175/1520-0485(1980)010<0727:wscoss>2.0.co;2
Wu, J. (1982). Wind‐Stress Coefficients over Sea Surface from Breeze to Hurricane. Journal of Geophysical Research: Oceans, 87(C12), 9704–9706. https://doi.org/10.1029/jc087ic12p09704
Wu, T.-R., Chen, P.-F., Tsai, W.-T. & Chen, G.-Y. (2008). Numerical Study on Tsunamis Excited by 2006 Pingtung Earthquake Doublet. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 705. https://doi.org/10.3319/tao.2008.19.6.705(pt)
Wurtele, M. G., Paegle, J. & Sielecki, A. (1971). The Use of Open Boundary Conditions with The Storm-Surge Equations. Monthly Weather Review, 99(6), 537–544. https://doi.org/10.1175/1520-0493(1971)099<0537:tuoobc>2.3.co;2
Xia, H., Xia, Z. & Zhu, L. (2004). Vertical Variation in Radiation Stress and Wave-Induced Current. Coastal Engineering, 51(4), 309–321. https://doi.org/10.1016/j.coastaleng.2004.03.003
Xie, L., Liu, H. & Peng, M. (2008). The Effect of Wave–Current Interactions on the Storm Surge and Inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Modelling, 20(3), 252–269. https://doi.org/10.1016/j.ocemod.2007.10.001
Xie, L., Wu, K., Pietrafesa, L. & Zhang, C. (2001). A Numerical Study of Wave‐Current Interaction through Surface and Bottom Stresses: Wind‐Driven Circulation in the South Atlantic Bight under Uniform Winds. Journal of Geophysical Research: Oceans, 106(C8), 16841–16855. https://doi.org/10.1029/2000jc000292
Yamazaki, Y. (2010). Depth-Integrated, Non-Hydrostatic Model With Grid Nesting for Tsunami Generation, Propagation, and Runup.
Yamazaki, Y., Kowalik, Z. & Cheung, K. F. (2009). Depth‐Integrated, Non‐Hydrostatic Model for Wave Breaking and Run‐Up. International Journal for Numerical Methods in Fluids, 61(5), 473–497. https://doi.org/10.1002/fld.1952
Yang, J., Li, L., Zhao, K., Wang, P., Wang, D., Sou, I. M., Yang, Z., Hu, J., Tang, X., Mok, K. M. & Liu, P. L. (2019). A Comparative Study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—Their Impacts on Coastal Inundation in Macau. Journal of Geophysical Research: Oceans, 124(12), 9590–9619. https://doi.org/10.1029/2019jc015249
Yang, J., Lin, C., Liu, H., Li, L., Wu, T., Wang, P., Li, B. & Liu, P. L.-F. (2021). Effects of Island Topography on Storm Surge in Taiwan Strait during Typhoon Maria. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020057. https://doi.org/10.1061/(asce)ww.1943-5460.0000619
Ye, F., Zhang, Y. J., Yu, H., Sun, W., Moghimi, S., Myers, E., Nunez, K., Zhang, R., Wang, H. V., Roland, A., Martins, K., Bertin, X., Du, J. & Liu, Z. (2020). Simulating Storm Surge and Compound Flooding Events with a Creek-to-ocean Model: Importance of Baroclinic Effects. Ocean Modelling, 145, 101526. https://doi.org/10.1016/j.ocemod.2019.101526
Yeh, H., Imamura, F., Synolakis, C., Tsuji, Y., Liu, P. & Shi, S. (1993). The Flores Island Tsunamis. Eos, Transactions American Geophysical Union, 74(33), 369–373. https://doi.org/10.1029/93eo00381
Yeh, H., Liu, P., Briggs, M. & Synolakis, C. (1994). Propagation and Amplification of Tsunamis at Coastal Boundaries. Nature, 372(6504), 353–355. https://doi.org/10.1038/372353a0
Yu, H.-C., Zhang, Y. J., Yu, J. C. S., Terng, C., Sun, W., Ye, F., Wang, H. V., Wang, Z. & Huang, H. (2017). Simulating Multi-Scale Oceanic Processes around Taiwan on Unstructured Grids. Ocean Modelling, 119, 72–93. https://doi.org/10.1016/j.ocemod.2017.09.007
Zhang, M. Y. & LI, Y. S. (1997). The Dynamic Coupling of a Third-Generation Wave Model and a 3D Hydrodynamic Model through Boundary Layers. Continental Shelf Research, 17(10), 1141–1170. https://doi.org/10.1016/s0278-4343(97)00010-1
Zhang, W., Shi, F., Hong, H., Shang, S. & Kirby, J. T. (2010). Tide‐Surge Interaction Intensified by the Taiwan Strait. Journal of Geophysical Research: Oceans (1978–2012), 115(C6). https://doi.org/10.1029/2009jc005762
Zhang, W.-Z., Hong, H.-S., Shang, S.-P., Chen, D.-W. & Chai, F. (2007). A Two-Way Nested Coupled Tide-Surge Model for the Taiwan Strait. Continental Shelf Research, 27(10–11), 1548–1567. https://doi.org/10.1016/j.csr.2007.01.018
Zhang, Y. J., Ye, F., Stanev, E. V. & Grashorn, S. (2016). Seamless Cross-Scale Modeling with SCHISM. Ocean Modelling, 102, 64–81. https://doi.org/10.1016/j.ocemod.2016.05.002
Zheng, P., Li, M., Wang, C., Wolf, J., Chen, X., Dominicis, M. D., Yao, P. & Hu, Z. (2020). Tide-Surge Interaction in the Pearl River Estuary: A Case Study of Typhoon Hato. Frontiers in Marine Science, 7, 236. https://doi.org/10.3389/fmars.2020.00236
Zhong, L., Li, M. & Zhang, D.-L. (2010). How do Uncertainties in Hurricane Model Forecasts Affect Storm Surge Predictions in a Semi-Enclosed Bay? Estuarine, Coastal and Shelf Science, 90(2), 61–72. https://doi.org/10.1016/j.ecss.2010.07.001
Zijlema, M., Vledder, G. Ph. van & Holthuijsen, L. H. (2012). Bottom Friction and Wind Drag for Wave Models. Coastal Engineering, 65, 19–26. https://doi.org/10.1016/j.coastaleng.2012.03.002
Zu, T., Gan, J. & Erofeeva, S. Y. (2008). Numerical Study of the Tide and Tidal Dynamics in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 55(2), 137–154. https://doi.org/10.1016/j.dsr.2007.10.007
論文全文檔清單如下︰
1.電子全文連結(68526.668K)
(本資料20221030後電子全文公開)
紙本授權註記:2022/11/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *