帳號:guest(3.233.219.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:鍾仁齊
作者(外文):Jen-Chi Chung
論文名稱:利用剪力波分離探討福建地區岩石圈的非均向性及其地體構造上之意涵
論文名稱(外文):Seismic anisotropy in the Fujian lithosphere and its tectonic implications from teleseismic shear wave splitting measurements
指導教授:郭陳澔
指導教授(外文):Hao Kuo-Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球科學學系
學號:103622001
出版年:105
畢業學年度:104
語文別:中文
論文頁數:144
中文關鍵詞:福建岩石圈非均向性地體動力構造剪力波分離
外文關鍵詞:Fujian lithosphereteleseismic anisotropygeodynamic processshear-wave splittingDirect Solution Method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:209
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
岩石圈非均向性的研究可以助於了解該區域的地體動力過程。因此本研究利用遠震SKS及SKKS剪力波分離的方法來探討中國大陸東南方-福建地區的地體動力機制。本研究針對福建沿海地區17個以及山區19個南北向排列的寬頻地震測站進行地震資料處理,其資料時間段分別為2008年8月至2010年6月以及2011年5月至2012年9月,而在資料處理時先以Direct Solution Method(DSM)模擬遠震地震波,再與實際地震波互相比對相對應的波相(SKS,SKKS),作為波形資料品質的篩選,最後將篩選出來的波形資料分別以:(1)波形交互對比法(Waveform Cross-correlation Method, RC),及(2)橫向分量最小能量法(Transverse Minimization Method, SC)兩種方法計算出分離參數解。
研究結果顯示,福建地區36個測站中,最後有24個測站(沿海10個和山區14個)有觀察到明顯的SKKS剪力波分離現象,並且得到分離參數解(splitting parameters),由各測站所得的快波極化方向(fast polarization, ϕf),將福建地區以25.7∘N和閩江斷裂帶為界分成三個部分,25.7∘N以南的南部地區,其快波極化方向為E-W,介於25.7∘N與閩江斷裂帶之間的中部地區,其測站主要位於斷裂帶上,且快波極化方向主要平行於斷層走向,閩江斷裂帶以北的北部地區,其快波極化方向主要分為兩個方向,分別為NNW-SSE和NEE-SWW。而快慢波分離時間(splitting time, δt)總平均約為1.32秒,最大可達2.44秒,從測站位置分布觀察到,沿海測站得到的δt大於山區測站,而在北、中、南三個區域的δt來看,北部地區是最小的,其次是中部地區,最大的是南部地區,顯示出福建地區的非均向性厚度或強度由西向東增加以及從北向南遞增的趨勢。將南部地區快波極化方向的結果與全球P波速度構造交互比對,推測其方向受到板塊之間的交互作用造成地函流流場的變化所影響。
Seismic anisotropy of lithosphere can provide key information for understanding the geodynamic process in the Fujian region, southeastern China. In this study, we use teleseismic SKS/SKKS splitting measurements, as a tool for investigating seismic anisotropy. We selected 36 seismic stations in the Fujian to obtain two splitting parameters, fast direction and splitting time. In order to ensure the data quality, we used the Direct Solution Method (DSM) to compute synthetic seismograms based on global 1D model to check with observed seismic waveforms.Two methods, transverse minimization and Waveform Cross-correlation methods, were applied to obtain the splitting parameters for testing the reliability of the results.
Totally, there are 86 splitting measurements for 24 stations obtained in this study and can be approximately divided into three patterns from south to north. In the southern Fujian, the predominant polarizations in the south of N25.7∘show E-W direction. In the central Fujian, the predominant polarizations are in NNE-SSE direction, which are parallel to the strikes of the faults. In the northern Fujian, the predominant polarizations in the north of the Min River fault are in the NEE-SWW and NNW-SSE directions. The average splitting time of teleseismic shear waves observed from 24 stations is 1.32 s and the maximum is 2.44 s. In general, the average splitting time delay beneath Fujian coastline is greater than mountain area. The spatial distribution of time delays increases from northern part to southern part. As a result, the thickness of anisotropic layer increases from northeast to southwest in the Fujian area and in the southern part, compared with the global tomography, it can be explained that the variations of fast-polarizations could relate to the EW mantle flow created by NS collision between the India and Eurasian Plates.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究動機及目的 1
1.2 福建地區概況 3
1.3 剪力波分離與非均向性之研究 11
1.4 本文內容 20
第二章 研究方法及原理 21
2.1 波形交互對比法(Waveform Cross-correlation Method, RC) 22
2.3 橫向分量最小能量法(Transverse Minimization Method, SC) 23
第三章 資料來源與資料處理 26
3.1 資料來源 26
3.2 資料選取 31
3.3 資料處理 33
3.3.1 Direct Solution Method (DSM) 33
3.3.2 波形交互對比法與橫向分量最小能量法 36
第四章 研究結果 40
4.1 南部地區 42
4.2 中部地區 68
4.3 北部地區 84
第五章 討論 113
5.1 快慢波分離時間(δt) 113
5.2 快波極化方向(ϕf) 114
5.2.1 南部地區 114
5.2.2 中部地區 115
5.2.3 北部地區 115
5.3 非均向性在不同深度的差異 117
第六章結論 119
參考文獻 121
附錄 127



Ando, M. (1984). ScS polarization anisotropy around the Pacific Ocean. Journal of Physics of the Earth, 32(3), 179-195.
Bowman, J. R., & Ando, M. (1987). Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophys. J. Int., 88(1), 25-41.
Crampin, S. (1978). Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophys. J. Int., 53(3), 467-496.
Crampin, S. (1981). A review of wave motion in anisotropic and cracked elastic-media. Wave motion, 3(4), 343-391.
Crampin, S. (1984). Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. Int., 76(1), 135-145.
Crampin, S. (1999). Calculable fluid–rock interactions. J. Geol. Soc., 156(3), 501-514.
Fontaine, H., & Workman, D. R. (1978). Review of the geology and mineral resources of Kampuchea, Laos and Vietnam. In Third Regional Conference on Geology and Mineral Resources of Southeast Asia, Bangkok, Thailand (pp. 541-603).
Fromaget, J. (1934). Observations et réflexions sur la géologie stratigraphique et structurale de l'Indochine. Bull. Soc. Geol, 5(4), 101-164.
Fukao, Y. (1984). Evidence from core-reflected shear waves for anisotropy in the Earth's mantle.
Gao, Y., Wu, J., Cai, J. A., Shi, Y. T., Lin, S., Bao, T., & Li, Z. N. (2009). Shear-wave splitting in the southeast of Cathaysia block, South China. J. Seismol., 13(2), 267-275.
Hess, H. H. (1964). Seismic anisotropy of the uppermost mantle under oceans. Nature, 203, 629-631.
Houseman, G.., and P. England, Finite strain calculations of continental deformation 1. Method and general results for convergent zones, J. Geophys. Res., 91, 3651-3663, 1986.
Hsü, K. J., Shu, S., Jiliang, L., Haihong, C., Haipo, P., & Sengor, A. M. C. (1988). Mesozoic overthrust tectonics in south China. Geology, 16(5), 418-421.
Hsü, K. J., Sun, S., & Li, J. L. (1987). Huanan Alps, not south China platform. Sci. Sin. B, 31(1), 109-119.
Huang, B. S., Huang, W. G., Liang, W. T., Rau, R. J., & Hirata, N. (2006). Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations. Geophys. Res. Lett., 33(24).
Karato, S. I. (1998). Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection. In Geodynamics of Lithosphere & Earth’s Mantle (pp. 565-587). Birkhäuser Basel.
Kawai, K., Takeuchi, N., & Geller, R. J. (2006). Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media. Geophysical Journal International, 164(2), 411-424.
Klimetz, M. P. (1983). Speculations on the Mesozoic plate tectonic evolution of eastern China. Tectonics, 2(2), 139-166.
Klimetz, M. P. (1987). The Mesozoic Tectonostratigraphic Terranes and Accretionary Heritage of South‐Eastern Mainland Asia. Terrane Accretion and Orogenic Belts, 221-234.
Kuo, B. Y., Chen, C. C., & Shin, T. C. (1994). Split S waveforms observed in northern Taiwan: implications for crustal anisotropy. Geophys. Res. Lett., 21(14), 1491-1494.
Kuo‐Chen, H., Wu, F. T., Okaya, D., Huang, B. S., & Liang, W. T. (2009). SKS/SKKS splitting and Taiwan orogeny. Geophys. Res. Lett., 36(12).
Legendre, C. P., Deschamps, F., Zhao, L., Lebedev, S., & Chen, Q. F. (2014). Anisotropic Rayleigh wave phase velocity maps of eastern China. J. Geophys. Res.: Solid Earth, 119(6), 4802-4820.
Levin, V., Menke, W., & Park, J. (1999). Shear wave splitting in the Appalachians and the Urals: a case for multilayered anisotropy. J. Geophys. Res.: Solid Earth (1978–2012), 104(B8), 17975-17993.
Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth's mantle. G3, 9(5).
McNamara, D. E., Owens, T. J., Silver, P. G., & Wu, F. T. (1994). Shear wave anisotropy beneath the Tibetan Plateau. JOURNAL OF GEOPHYSICAL RESEARCH-ALL SERIES-, 99, 13-655.
Nicolas, A., & Christensen, N. I. (1987). Formation of Anisotropy in Upper Mantle Peridotites‐A Review. Composition, structure and dynamics of the lithosphere-asthenosphere system, 111-123. Park, J., & Levin, V. (2002). Seismic anisotropy: tracing plate dynamics in the mantle. Science, 296(5567), 485-489.
Plomerová, J., Šílený, J., & Babuška, V. (1996). Joint interpretation of upper-mantle anisotropy based on teleseismic P-travel time delays and inversion of shear-wave splitting parameters. Phys. Earth Planet. Inter., 95(3), 293-309.
Rau, R. J., Liang, W. T., Kao, H., & Huang, B. S. (2000). Shear wave anisotropy beneath the Taiwan orogen. Earth Planet. Sci. Lett., 177(3), 177-192.
Savage, M. K., & Silver, P. G. (1993). Mantle deformation and tectonics: constraints from seismic anisotropy in the western United States. Phys. Earth Planet. Inter., 78(3), 207-227.
Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chem. Rev., 99(2), 603-622.
Shih, X. R., Meyer, R. P., & Schneider, J. F. (1989). An automated, analytical method to determine shear-wave splitting. Tectonophysics, 165(1), 271-278.
Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24, 385-432.
Silver, P. G., & Chan, W. W. (1988). Implications for continental structure and evolution from seismic anisotropy. Nature, 335, 34-39.
Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res.: Solid Earth (1978–2012), 96(B10), 16429-16454.
Stein S. & Wysession M. (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell Publishing Ltd., Oxford
Tang, V., Zhao, L., & Hung, S. H. (2015). Seismological evidence for a non-monotonic velocity gradient in the topmost outer core. Scientific reports, 5.
Vecsey, L., Plomerová, J., & Babuška, V. (2008). Shear-wave splitting measurements—problems and solutions. Tectonophysics, 462(1), 178-196.
Verma, R. K. (1960). Elasticity of some high-density crystals. J. Geophys. Res., 65, 757-766.
Vinnik, L. P., Kind, R., Kosarev, G. L., & Makeyeva, L. I. (1989). Azimuthal anisotropy in the lithosphere from observations of long-period S-waves. Geophys. J. Int., 99(3), 549-559.
Vinnik, L. P., Kosarev, G. L., & Makeeva, L. I. (1984). Lithosphere anisotropy from the observation of SKS and SKKS waves. Doklady Akademii Nauk SSSR, 278(6), 1335-1339.
Wong, W. H. (1927). Crustal movements and igneous activities in Eastern China since Mesozoic time. 1. Bull. Geol. Soc. China, 6(1), 9-37.
Wong, W. H. (1929). The Mesozoic Orogenic Movement in Eastern China. Bull. Geol. Soc. China, 8(1), 33-44.
Wüstefeld, A., Bokelmann, G., Zaroli, C., & Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Comput. Geosci., 34(5), 515-528.
Zhang, S. and S. Karato, Lattice preferred orientation of olivine aggregates deformed in sample shear, Nature, 375, 774-777, 1995.
王光杰, 滕吉文, & 張中杰. (2000). 中國華南大陸及陸緣地帶的大地構造基本格局. 地球物理學進展, 15(3), 25-44.
王椿鏞, 常利軍, 丁志峰, 劉瓊林, 廖武林, & FLESCH, L. M. (2014). 中國大陸上地幔各向異性和殼幔變形模式. 中國科學: 地球科學, 1, 011.
李四光. (1939). 中國地質學 (The geology of China). 李四光文集第一卷, 58. 6-9.
李兼海. (1998). 福建省構造運動. 構造層劃分及其主要特徵. 福建地質, 17(3). 115-130.
李恩慈. (2005). 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性. 國立中央大學地球物理研究所碩士論文, 1-78.
李霞. (2013). 福建省大地構造單元劃分及基本特徵. 世界地質, 32(3). 549-557.
林松建, 丁學仁, 陳為偉, & 陳祥熊. (2009). 福建地區震源機制解與現代構造應力場研究. 大地測量與地球動力學, 29(5), 27-32.
金振民. (1994). 橄欖石晶格優選方位和上地幔地震波速各相異性. 地球物理學報, 37(4), 469-477.
苗慶杰, 劉希強, 李永華, 周彥文, 鄭建常, 崔鑫, & 季愛東. (2011). 山東地區上地幔各相異性研究. 地震學報, 33(6), 746-754.
唐楚欣 (2014). 以 SmKS 波到時探討地球外核頂部的速度結構. 臺灣大學地質科學研究所學位論文, 1-89.
常利軍, 王椿鏞, & 丁志峰. (2009). 中國東部上地幔各向異性研究. 中國科學: D 輯, (9), 1169-1178.
張路, 曲國勝, & 陳建强. (2009). 福建東南沿海第四纪盆地構造沉降. 第四纪研究,29(3), 633-643.
梁文宗. (1990). 利用地震S波的分離作用探討臺灣北部地殼之非均向性. 國立臺灣大學海洋研究所碩士論文, 1-95.
彭筱涓. (2015). 利用剪力波分離探討中國大陸東南沿海地區的非均向性及其地體構造上之意涵. 國立中央大學地球物理研究所碩士論文, 1-128.
黃汲清. (1945). 中國主要構造地質單元. 地質論評.
蔡輝腾,金星, & 王善雄. (2014). 福建地區地殼上地幔速度结構研究進展. 地球物理學進展, (4), 1485-1490.
賴雅娟 (2009). 利用表面波探討造山帶地區的非均向性構造:以台灣及西藏高原為例國立中央大學地球物理研究所博士論文, 1-130.
論文全文檔清單如下︰
1.電子全文連結(10399.785K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *