帳號:guest(3.233.219.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:徐乙君
作者(外文):Yi-Chun Hsu
論文名稱:台灣中央山脈東翼的活動構造
論文名稱(外文):The active structure of the eastern flank of the Central Range in Taiwan
指導教授:張中白郭陳澔
指導教授(外文):Chung-Pai ChangHao Kuo-Chen
學位類別:博士
校院名稱:國立中央大學
系所名稱:地球科學學系
學號:102682003
出版年:108
畢業學年度:107
語文別:中文
論文頁數:226
中文關鍵詞:中央山脈斷層斷層力學分析三角崖切面分析同震破裂面分析2018花蓮地震
外文關鍵詞:Central Range FaultFault kinematic analysisTriangular facet analysisCo-seismic rupture analysis2018 Hualien Earthquake
相關次數:
  • 推薦推薦:0
  • 點閱點閱:114
  • 評分評分:*****
  • 下載下載:42
  • 收藏收藏:0
台灣為歐亞板塊和菲律賓海板塊聚合的產物,在強烈的聚合作用影響下地殼持續變形和造山作用快速。根據不同時間尺度的抬升速率研究,均顯示中央山脈東翼有高抬升速率,但其抬升的機制與地下構造的關係至今仍多所爭論。從前人研究中推斷中央山脈東翼和縱谷的交界處應存在中央山脈斷層,但因中央山脈斷層尚未能透過野外直接觀察,故仍侷限於區域性的探討,且對於中央山脈斷層的空間型態分佈尚存在許多問題值得加以討論。故本研究透過中央山脈東翼的野外地質資料,花蓮地震同震地表破裂的調查分析,及地形分析,並配合地震資訊,綜合多方面的觀察資訊,來研究中央山脈斷層的活動特性。從地表地形分析結果顯示,中央山脈東翼與縱谷交界有許多正斷層活動的三角崖切面地形特徵,藉由三角崖切面的坡度變化可以得知中央山脈東緣於千年-十萬年尺度的抬升速率在空間中之變化,其中以立霧溪-木瓜溪區間和樂樂溪-新武呂溪區間的抬升速率最快,而豐坪溪北側的抬升速率最慢。另外,從地質調查可以觀察到正斷層的分布,並可以藉由斷層力學分析得知地表的主應力分布狀態,以及可觀察東西剖面上劈理位態的改變。本研究亦利用雙差分定位法重訂位後的地震資料以及其震源機制解,了解中央山脈東翼下方的地震構造為高角度向西傾斜的逆斷層。此外,2018年花蓮地震的餘震分布和同震地表破裂分析結果得知米崙斷層是由中央山脈斷層發育的反向逆斷層系統,且米崙斷層和鄰近的次生斷層(北埔斷層)可視為一區域性的雷氏剪切模型。綜合地形資料及地質調查結果並配合地震分布位置,推論中央山脈斷層在深部為高角度的逆斷層系統,此為造成中央山脈東翼快速抬升的主要原因之一,材料快速抬升造成淺層產生正斷層活動。於近地表時,中央山脈斷層會受不同地體構造作用或地質環境的影響,在淺層材料會往前發育新的逆斷層系統或沿著向東傾斜的正斷層系統運動,使得中央山脈東翼在各區段會有不同的活動特徵,進而影響地形特徵和抬升速率,並產生不同的地表構造和不同的地震活動特徵。
Taiwan Island is an active orogenic belt, as a result of the Philippine Sea plate colliding with the Eurasian plate with a speed of around 8.2 cm/yr. The rapidly convergent rate results in significant crustal deformation and ongoing mountain building process. Both long-term and short-term observations show a rapid uplift (~6-20 mm/yr) in the Central Range, but the uplift mechanism is still under debate. According to previous studies, the Central Range Fault could exist and serve as a boundary between the eastern flank of the Central Range and the Longitudinal Valley. However, few evidences from field investigations show the traces of the Central Range Fault, and the geometry of the Central Range Fault is still a mystery and remains many questions. In order to investigate the Central Range Fault comprehensively, I used the geomorphic analysis, structure analysis, co-seismic rupture analysis, and seismic data to understand the geometry of the Central Range Fault.
According to the geomorphology analysis, I observed many triangular facets along the eastern flank of the Central Range. As a result, the spatial variability of the uplift rate can be known by the slope change of the triangular facets over 103-105 year timescales. The uplift rate of the Liwu River -Mugua River and the Lele River -Xinwulu River are the faster than other investigated areas, and the uplift rate of the northern side of Fengping River is the slowest among the study areas. Also, some of active normal faults were found in the field, which reveal a vertical principal stress direction by a kinematic analysis. The relocated earthquakes by hypoDD with the focal mechanisms of ML ≧ 3.0 events in the eastern Taiwan show that the distribution of the earthquakes generally is a steeply west-dipping reverse fault plane under the eastern flank of Central Range, which could be the Central Range Fault. The ruptures of 2018 Hualien earthquake along the Milun Fault in the north of the Longitudinal Valley show macro-scale Riedel shear structures and the Milun Fault could be a backthrust developed from the Central Range Fault.
By combining the geomorphologic analysis, field observations and the distribution of earthquakes, we suggest that the Central Range Fault at deeper depths is a high angle reverse fault system, which leads to the rapid uplift of the Central Range, and forms the normal fault in shallow. However, influenced by different tectonic process and geological environments from north to south of the eastern flank of the Central Range, the Central Range Fault could develop as a new thrust, or connect the east-dipping normal fault near the surface.
摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 IX
表目錄 XIII
一、緒論 1
1-1 研究動機與目的 1
1-2 研究區域 2
1-3 區域地質概況 5
1-3-1 台灣的地體架構 5
1-3-2 中央山脈東翼的地層架構 6
1-3-3 中央山脈東翼的構造活動及鄰近斷層 7
1-4 中央山脈東翼抬升速率及構造模型,中央山脈斷層是否存在? 13
1-5 論文架構 17
二、研究方法 18
2-1野外工作及構造分析 18
2-1-1 斷層力學分析 18
2-1-2 斷層破壞區與雷氏剪切模型分析 24
2-1-3 劈理位態分布探討 26
2-2 地形分析 31
2-2-1三角崖切面的研究 32
2-2-2三角崖切面之建立 34
三、構造分析結果 39
3-1 斷層量測結果及應力分布 39
3-2劈理量測結果 66
四、三角崖切面分析結果 74
五、2018花蓮地震同震破裂分析 88
5-1 2018花蓮地震事件 88
5-2 同震地表破裂分布 89
5-3 雷氏剪切構造分析結果 90
六、討論 106
6-1 地震活動度調查 106
6-1-1 東部地震的分布及活動特性 106
6-1-2 地震活動度的空間變化 107
6-2 地表變形反應的應力方向 113
6-2-1 斷層反演應力的代表意義 113
6-2-2 主要應力方向的空間變化 115
6-3三角崖切面的結果分析 121
6-3-1 三角崖切面選取的可信度 121
6-3-2 三角崖切面的形狀意義 122
6-3-3 三角崖切面的高度和坡度代表的意義 122
6-3-4 三角崖切面分析結果與其他地形計測指標之比較 123
6-3-5 三角崖切面的時間尺度 125
6-4 2018 花蓮地震同震破裂分析探討 133
6-4-1 地表破裂的雷氏剪切構造探討 133
6-4-2 地表變形和地表破裂調查的比較 134
6-4-3 同震地表破裂的複雜性和構造解釋 135
6-4-4 米崙斷層的運動特性 136
6-4-5 米崙斷層和中央山脈斷層的相關性 137
6-5 中央山脈斷層的幾何特徵及地體構造意義 141
6-5-1 北段特性 141
6-5-2 中段特性 142
6-5-3 南段特性 142
6-5-4 碰撞-隱沒的轉換帶 143
6-6高角度的中央山脈斷層 144
6-6-1傾斜角度的改變的原因 145
6-6-2 傾角變大了,如何讓斷層保持活動? 146
6-6-3 為什麼在地表看不到中央山脈斷層? 147
6-7 中央山脈東側的區域構造演化 147
七、結論 151
參考文獻 153
附錄A
附錄B
附錄C

Ahlgren, S. G. (2001). The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstone. Journal of Structural Geology, 23(8), 1203-1214.
Allmendinger, R. W., Cardozo, N. C., and Fisher, D. (2012). Structural Geology Algorithms: Vectors & Tensors: Cambridge, England, Cambridge University Press, 289 pp.
Anderson, T. C. (1977). Compound faceted spurs and recurrent movement in the Wasatch Fault zone, north central Utah (Doctoral dissertation, Brigham Young University).
Angelier, J. T., & Mechler, P. (1977). Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bulletin de la Société géologique de France, 7(6), 1309-1318.
Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89(B7), 5835-5848.
Angelier, J. (1990). Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103(2), 363-376.
Angelier, J. (1997). Shear concentration in a collision zone: kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan. Tectonophys, 274, 117-144.
Angelier, J., Chu, H. T., Lee, J. C., & Hu, J. C. (2000). Active faulting and earthquake risk: the Chihshang Fault case, Taiwan: Jour. Geodynamics, v. 29, p.151-185.
Angelier, J., and F. Bergerat (2002). Behavior of a rupture of the 21 June 2000 earthquake in South Iceland as revealed in an asphalted car park. Journal of Structural Geology, 24(12), 1925-1936.
Azor, A., Keller, E. A., & Yeats, R. S. (2002). Geomorphic indicators of active fold growth: South Mountain–Oak Ridge anticline, Ventura basin, southern California. Geological Society of America Bulletin, 114(6), 745-753.
Bahrami, S. (2012). Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics. Geomorphology, 159, 37-49.
Bartlett, W. L., M. Friedman and J. M. Logan (1981). Experimental folding and faulting of rocks under confining pressure Part IX. Wrench faults in limestone layers. Tectonophysics, 79(3-4), 255-277, doi: 10.1016/0040-1951(81)90116-5.
Benedetti, L., Finkel, R., Papanastassiou, D., King, G., Armijo, R., Ryerson, F., Farber, D. & Flerit, F. (2002). Post‐glacial slip history of the Sparta fault (Greece) determined by 36Cl cosmogenic dating: Evidence for non‐periodic earthquakes. Geophysical Research Letters, 29(8), 87-1.
Bestmann, M., K. Kunze, and A. Matthews (2000). Evolution of a calcite marble shear zone complex on Thassos Island, Greece: microstructural and textural fabrics and their kinematic significance. Journal of Structural Geology, 22(11-12), 1789-1807.
Beyssac, O., Negro, F., Simoes, M., Chan, Y. C., & Chen, Y. G. (2008). High‐pressure metamorphism in Taiwan: from oceanic subduction to arc‐continent collision?. Terra Nova, 20(2), 118-125.
Biq, C. (1971). Comparison of mélange tectonics in Taiwan and in some other mountain belts. Petrol. Geol. Taiwan, 9, 79-106.
Boccaletti, M., Corti, G., & Martelli, L. (2011). Recent and active tectonics of the external zone of the Northern Apennines (Italy). International Journal of Earth Sciences, 100(6), 1331-1348.
Bonilla, W. B. (1977). Summary of Quaternary faulting and elevation changes in Taiwan. Memoir of Geological Society of China, 2, 43-55.
Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109-117.
Bull, W. B. (1977). Tectonic geomorphology north and south of the Garlock fault, California. In Geomorphology in Arid Regions, Proceeding 8th Annual Geomorphology Symposium, State University New York at Binghamton, 1997, 115-137.
Bull, W. B. (2008). Tectonic geomorphology of mountains: a new approach to paleoseismology. John Wiley & Sons.
Byerlee, J. (1978). Friction of rocks. In Rock friction and earthquake prediction (pp. 615-626). Birkhäuser, Basel.
Byrne T. B. & Liu, C. S. (2002). Geology and geophysics of an arc-continent collision, Taiwan. Geological Socienty of America. 358.
Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025-1028.
Carey, E., & Brunier, B. (1974). Analyse theorique et numerique dun modele mtcanique Clementaire applique a l’etude dune population de failles. C. R.-Hebd. Seam. Acad. Sci. Ser. 279, 891-894.
Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50(4), 571-581.
Champenois, J., B. Fruneau, E. Pathier, B. Deffontaines, K. C. Lin, and J. C. Hu. (2012), Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data. Earth and Planetary Science Letters,337, 144–155.
Chang, C. P., Chang, T. Y., Angelier, J., Kao, H., Lee, J. C., & Yu, S. B. (2003). Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data. Earth and Planetary Science Letters, 214(1-2), 115-127.
Chang, C. P., K. S. Chen, L. H. Chung, J. Y. Yen, T. S. Shih (2006). Active fault propagation in metropolitan Hualien of eastern Taiwan: Observed by radar interferometry and field investigation. International Workshop: Applications of SAR Data in Taiwan, Taoyuan, Taiwan.
Chang, K.J., J. B. H. Shyu, Y. C. Chan, R. F. Chen, E. C. Yen (2014a). Near fault active deformation and morphotectonic analysis based on high-resolution Airborne LiDAR data (4/4), Central Geological Survey, MOEA Investigation report, 103-5, 260 pp. (in Chinese)
Chang, K.J., J. B. H. Shyu, Y. C. Chan, R. F. Chen, E. C. Yen (2014b). Near fault active deformation and morphotectonic analysis based on high-resolution Airborne LiDAR data (General report), Central Geological Survey, MOEA Investigation report, 329 p.p. (in Chinese)
Chang, L. S. (1963). A biostratigraphic study of the so-called Hori Slate in central Taiwan based on smaller foraminifera. In Proc. Geol. Soc. China, 6, 3-17.
Chang, L. S. (1974). A biostratigraphic study of the so-called slate formation in Taiwan based on smaller foraminifera, IV. Northernmost part of the Central Range of Taiwan. In Proc. Geol. Soc. China, 17, 85-93.
Chen, C. H. (1979). Geology of the east-west cross-island highway in central Taiwan. Mem. Geol. Soc. China, 3, 219-236.
Chen, C. Y., J. C. Lee, R. F. Chen, Y. G. Chen (2014). Campaigned GPS on Present-Day Crustal Deformation in Northernmost Longitudinal Valley Preliminary Results, Hualien Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 25(3), 337-357.
Chen, C. Y., & Willett, S. D. (2016). Graphical methods of river profile analysis to unravel drainage area change uplift and erodibility contrasts in the Central Range of Taiwan. Earth Surface Processes and Landforms, 41(15), 2223-2238.
Chen, C. Y. (2017). The Spatial and Temporal Patterns of Erosion Rate in the Southern Central Range of Taiwan. Doctoral Thesis, ETH Zurich, Zürich, Switzerland.
Chen, S. K., Y. C. Chan, J. C. Hu, L. C. Kuo (2014). Current crustal deformation at the junction of collision to subduction around the Hualien area, Taiwan, Tectonophysics, 617, 58-78.
Chen, W.S., I.C. Yen, K.P. Fengler, C.M. Rubin, C.C. Yang, H.C. Yang, H.C. Chang, C.W. Lin, W.H. Lin, Y.C. Liu, Y.H. Lin (2007). Late Holocene paleoearthquake activity in the middle part of the Longitudinal Valley fault, eastern Taiwan, Earth and Planetary Science Letters, 264(3-4), 420-437.
Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y., & Lee, Y. H. (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle‐late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188-206.
Chen, Y. W., Shyu, J. B. H., & Chang, C. P. (2015). Neotectonic characteristics along the eastern flank of the Central Range in the active Taiwan orogen inferred from fluvial channel morphology. Tectonics, 34(10), 2249-2270.
Chi, W. R. (1981). Stratigraphic record of plate interactions in the Coastal Range of eastern Taiwan. Mem. Geol. Soc. China, 4, 155-194.
Ching, K. E., Hsieh, M. L., Johnson, K. M., Chen, K. H., Rau, R. J., & Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research: Solid Earth, 116(B8).
Christensen, N. I. (1996). Poisson's ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139-3156.
Chuang, R. Y., Johnson, K. M., Kuo, Y. T., Wu, Y. M., Chang, C. H., & Kuo, L. C. (2014). Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge?. Geophysical Research Letters, 41(10), 3464-3470.
Clark, M. B., Fisher, D. M., & Lu, C. Y. (1992). Strain variations in the Eocene rocks exposed along the central and southern cross-island highways, Taiwan. American Geophysical Union Transactions, 73(43), 557.
Clark, M. B., Fisher, D. M., Lu, C. Y., & Chen, C. H. (1993). Kinematic analyses of the Hsüehshan Range, Taiwan: A large‐scale pop‐up structure. Tectonics, 12(1), 205-217.
Clark, M. B., & Fisher, D. M. (1995). Strain partitioning and crack-seal growth of chlorite-muscovite aggregates during progressive noncoaxial strain: an example from the slate belt of Taiwan. Journal of Structural Geology, 17(4), 461-474.
Crespi, J. M., Chan, Y. C., & Swaim, M. S. (1996). Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24(3), 247-250.
Chung L. H., T. S. Shi, Y. Q. Liu, W. L. Hsu, C. M. Shih, W. C. Wu (2004). Active Fault Investigation Report - Milun Fault. Ministry of Economics Central Geological Survey Policy Plan. , Central Geological Survey, MOEA Investigation report, 17 p.p. (in Chinese)
Davis, G. H., A. P. Bump, P. E. Garcı́a, and S. G. Ahlgren (2000). Conjugate Riedel deformation band shear zones. Journal of Structural Geology, 22(2), 169-190.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D. & Lin, J.C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648.
DePolo, C. M., & Anderson, J. G. (2000). Estimating the slip rates of normal faults in the Great Basin, USA. Basin Research, 12(3-4), 227-240.
Derrieux, F., Siame, L. L., Bourlès, D. L., Chen, R. F., Braucher, R., Léanni, L., Lee, J. C., Chu, H. T. & Byrne, T. B. (2014). How fast is the denudation of the Taiwan mountain belt? Perspectives from in situ cosmogenic 10Be. Journal of Asian Earth Sciences, 88, 230-245.
Faghih, A., & Nourbakhsh, A. (2015). Appraisal of relative tectonic activity along the Kazerun Fault Zone, Zagros Mountains, Iran: insight from spatial analysis of geomorphic indices. Geological Journal, 50(6), 783-798.
Faure, M., Chia-Yu, L., & Hao-Tsu, C. (1991). Ductile deformation and Miocene nappe-stacking in Taiwan related to motion of the Philippine Sea Plate. Tectonophysics, 198(1), 95-105.
Fellin, M. G., Chen, C. Y., Willett, S. D., Christl, M., & Chen, Y. G. (2017). Erosion rates across space and timescales from a multi-proxy study of rivers of eastern Taiwan. Global and Planetary Change, 157, 174-193.
Fisher, D. M. (1999). Orogen-parallel extension in the eastern Central Range of Taiwan. Journal of the Geological Society of China, 42(1), 41-58.
Fisher, D. M., Lu, C. Y., & Chu, H. T. (2002). Taiwan Slate Belt: Insights into the ductile interior of an arc-continent collision. Special Papers-Geological Society of America, 93-106.
Fisher, D. M., Willett, S., En-Chao, Y., & Clark, M. B. (2007). Cleavage fronts and fans as reflections of orogen stress and kinematics in Taiwan. Geology, 35(1), 65-68.
Fourmarier, P. (1925). De l'importance de la charge dans le développement du clivage schisteux. Académie Royale de Belgique, Bulletin de la Classe des Sciences,. 5, pp. 454.
Fox, M., Goren, L., May, D. A., & Willett, S. D. (2014). Inversion of fluvial channels for paleorock uplift rates in Taiwan. Journal of Geophysical Research: Earth Surface, 119(9), 1853-1875.
Giaconia, F., Booth-Rea, G., Martínez-Martínez, J. M., Azañón, J. M., & Pérez-Peña, J. V. (2012). Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constrictional domain of conjugate strike-slip faults: The Palomares and Polopos fault zones (eastern Betics, SE Spain). Tectonophysics, 580, 27-42.
Hamblin, W. K. (1976). Patterns of displacement along the Wasatch fault. Geology, 4(10), 619-622.
Hildebrand, P. R., Noble, S. R., Searle, M. P., Waters, D. J., & Parrish, R. R. (2001). Old origin for an active mountain range: Geology and geochronology of the eastern Hindu Kush, Pakistan. Geological Society of America Bulletin, 113(5), 625-639.
Ho, G. R., & Lo, W. (2015). Structural Analysis in Shoufengsi Area of Tananao Complex, Eastern Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 26(5), 557-567.
Holbrook, W. S., W. D. Mooney, and N. I. Christensen (1992), The seismic velocity structure of the deep continental crust, in Continental Lower Crust, edited by D. M. Fountain, R. Arculus, and R. W. Kay, pp. 1–43.
Holl, J. E., & Anastasio, D. J. (1995). Cleavage development within a foreland fold and thrust belt, southern Pyrenees, Spain. Journal of Structural Geology, 17(3), 357-369.
Hsu, T. L. (1954). On the geomorphic features and the recent uplifting movement of the Coastal Range, eastern Taiwan. Bull. of the Geoloical Survey of Taiwan, 7, 9-18.
Hsu, T. L. (1955). The earthquakes of Taiwan. Quart. J. Bank Taiwan, 7(2), 148-164. (in Chinese)
Hsu, T.L. (1962). Recent faulting in the Longitudinal Valley of eastern Taiwan. Memoir of the Geological Society of China, 1, 95-102.
Hsu, T. L. and M. S. Chai (1974) Coastal features of northern Taiwanand their neotectonic significance. Proc. Geol. Soc. China, 17, 123-130.
Hsu, T. L. (1976). Neotectonics of the Longitudinal Valley, eastern Taiwan. Bull. Geol. Surv. Taiwan, 25, 53-62.
Hsu, Y. J., Simons, M., Yu, S. B., Kuo, L. C., & Chen, H. Y. (2003). A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt. Earth and Planetary Science Letters, 211(3-4), 287-294.
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18.
Hsu, Y. C., J. Y. Yen, C. H. Lu, C.C. Wang, B. L. Wu, Y. H. Chang, W. Y. Chang, C. P. Chang, H. Kuo-Chen (2018). Investigating Surface Ruptures and Co-Seismic Deformation of 0206 Hualien Earthquake Using Field Survey and Remote Sensing. Sino-Geotechnics, 156, 15-24. (in Chinese)
Huang, C. Y., Yuan, P. B., & Tsao, S. J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288.
Hyndman, R. D. (1979). Poisson's ratio in the oceanic crust–a review. Developments in Geotectonics, 15, pp. 321-333.
Izquierdo-Llavall, E., Aldega, L., Cantarelli, V., Corrado, S., Gil-Peña, I., Invernizzi, C., & Casas, A. M. (2013). On the origin of cleavage in the Central Pyrenees: structural and paleo-thermal study. Tectonophysics, 608, 303-318.
Jizba, D. L. (1991), Mechanical and acoustical properties of sandstones and shales, PhD dissertation, Stanford Univ., Stanford, Calif., 260 pp.
Kao, Y. H. (2016). Faults Activities and Crustal Deformation of Hualien City Analysed by geodetic measurements and Geophysical Prospecting. Master Thesis, National Dong Hwa University, Hualien, Taiwan, 104 p.p. (in Chinese)
Katz, Y., R. Weinberger and A. Aydin (2004). Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah. Journal of structural geology, 26(3), 491-501.
Keller, E. A., & Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift and Landscape. Active Tectonics: Earthquakes, Uplift and Landscape. Newjersey.
Kim, Y. S., Andrews, J. R., & Sanderson, D. J. (2001). Reactivated strike–slip faults: examples from north Cornwall, UK. Tectonophysics, 340(3-4), 173-194.
Kim, Y. S., Andrews, J. R., & Sanderson, D. J. (2001). Secondary faults and segment linkage in strike-slip fault systems at Rame Head, southern Cornwall. Geoscience in South-West England, 10(2), 123-133.
Kim, Y. S., Peacock, D. C., & Sanderson, D. J. (2004). Fault damage zones. Journal of structural geology, 26(3), 503-517.
King, G. C. P. (1986). Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure. Pure and applied geophysics, 124(3), 567-585.
Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54-75.
Kuo-Chen, H., Y. M. Wu, C. H. Chang, J. C. Hu, and W. S. Chen (2004). Relocation of the Eastern Taiwan Earthquakes and Its Tectonic Implications. Terrestrial, Atmospheric and Oceanic Sciences, 15, 647-666.
Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., & Jeng, F. S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333(1-2), 219-240.
Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., & Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research: Solid Earth, 108(B11).
Lee, J. C., Chu, H. T., Angelier, J., Hu, J. C., Chen H. Y. and Yu, S. B. (2006). Quantitative analysis of surface coseismic faulting and postseismic creep accompanying the 2003, Mw=6.5, Chengkung earthquake in eastern Taiwan. Journal of Geophysical Research, 111, B02405.
Li, H., J. Pan, A. Lin, Z. Sun, D. Liu, J. Zhang, C. L. Li, K. Liu, M. L. Chevalier, K. Yun and Z. Gong (2016). Coseismic Surface Ruptures Associated with the 2014 M w 6.9 Yutian Earthquake on the Altyn Tagh Fault, Tibetan Plateau. Bulletin of the Seismological Society of America, 106(2), 595-608.
Lin, A., T. Ouchi, A. Chen and T. Maruyama (2001). Co-seismic displacements, folding and shortening structures along the Chelungpu surface rupture zone occurred during the 1999 Chi-Chi (Taiwan) earthquake. Tectonophysics, 330(3-4), 225-244.
Lin, A., M. Kikuchi, and B. Fu (2003). Rupture segmentation and process of the 2001 Mw 7.8 central Kunlun, China, earthquake. Bulletin of the Seismological Society of America, 93(6), 2477-2492.
Lin, A., Z. Ren, D. Jia and X. Wu (2009). Co-seismic thrusting rupture and slip distribution produced by the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics, 471(3-4), 203-215.
Lin, A. and M. Nishikawa (2011). Riedel shear structures in the co-seismic surface rupture zone produced by the 2001 Mw 7.8 Kunlun earthquake, northern Tibetan plateau. Journal of Structural Geology, 33(9), 1302-1311.
Lin, A., G. Rao, D. Jia, B. Yan and Z. Ren (2011). Co-seismic strike-slip surface rupture and displacement produced by the 2010 Mw 6.9 Yushu earthquake, China, and implications for Tibetan tectonics. Journal of Geodynamics, 52(3-4), 249-259.
Lin, A. and T. Chiba (2017). Coseismic conjugate faulting structures produced by the 2016 Mw 7.1 Kumamoto earthquake, Japan. Journal of Structural Geology, 99, 20-30.
Lin, A. T., Yao, B., Hsu, S. K., Liu, C. S., & Huang, C. Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1-2), 28-42.
Lin, C. C. (1962). The Quaternary of the Hualien area - the Quaternary of Taiwan. National Council on Science Development Research Report, 42 p.p. (in Chinese).
Lin, C. H. (2000). Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324(3), 189-201.
Lin, C. H. (2002). Active continental subduction and crustal exhumation: The Taiwan orogeny. Terra Nova, 14(4), 281-287.
Lin, C. H. (2004). Repeated foreshock sequences in the thrust faulting environment of eastern Taiwan. Geophysical Research Letters, 31(13).
Lin, C. H., & Roecker, S. W. (1998). Active crustal subduction and exhumation in Taiwan. In: Hacker, B.R., Liou, J.G. (Eds.), When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishers, Dordrecht, p.p. 1-25.
Lin, C. W., W. S.Chen, Y. C. Liu, P. T. Chen (2009). Active faults of eastern and southern Taiwan: explanatory text for the strip maps of active faults scale 1:25,000. Central geological survey special publication, 23, 178 p.p. (in Chinese).
Lin, M. S. and C. L. Hsiao (1998). The strike-slip fault system in the Milun Tableland. Res. of Eastern Taiwan, 3, 13-30. (in Chinese)
Liou, H. S. (2006). Shallow seismic reflection survey of the Milun Fault. Master Thesis, National Chung Cheng University, Chiayi, Taiwan, 82 p.p. (in Chinese)
Liou, J. G., Ho, C. O., & Yen, T. P. (1975). Petrology of some glaucophane schists and related rocks from Taiwan. Journal of Petrology, 16(1), 80-109.
Liu, T. K., Y. G. Chen, W. S. Chen, and S. H. Jiang (2000) Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission-track constraints. Tectomophysics, 320, 69-82.
Liu, T. K., Hsieh, S., Chen, Y. G., & Chen, W. S. (2001). Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters, 186(1), 45-56.
Lo, C. H., & Yui, T. F. (1996). 40Ar/39Ar Dating of High-Pressure Rocks in the Tananao Basement Complex, Taiwan. Journal Geological Society of China Taiwan, 39, 13-30.
Lu, C. Y. & Hsu, K. J. (1992). Tectonic evolution of the Taiwan mountain belt. The petroleum Geology of Taiwan, 27, 21-46.
Lu, C. H. (2009). Faults Activities and Crustal Deformation near Hualien City, eastern Taiwan Analysed by Persistent Scatterer InSAR. Master Thesis, University of Taipei, Taipei, Taiwan, 82 p.p. (in Chinese)
Malavieille, J., & Trullenque, G. (2009). Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling. Tectonophysics, 466(3-4), 377-394.
Mandl, G. (1988). Mechanics of tectonic faulting. Elsevier, Amsterdam, 408p.p.
Matsumoto, Y., Ishikawa, M., Terabayashi, M., & Arima, M. (2010). Simultaneous measurements of compressional wave and shear wave velocities, Poisson's ratio, and Vp/Vs under deep crustal pressure and temperature conditions: Example of silicified pelitic schist from Ryoke Belt, Southwest Japan. Island Arc, 19(1), 30-39.
Marrett, R. A., and Allmendinger, R. W., 1990, Kinematic analysis of fault-slip data. Journal of Structural Geology, 12, 973-986.
Mayer, L. A. R. R. Y. (1986). Tectonic geomorphology of escarpments and mountain fronts. Active tectonics, 125-135.
McGrath, A. G., & Davison, I. (1995). Damage zone geometry around fault tips. Journal of Structural Geology, 17(7), 1011-1024.
McIntosh, K., Nakamura, Y., Wang, T. K., Shih, R. C., Chen, A., & Liu, C. S. (2005). Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics, 401(1-2), 23-54.
Menges, C. M. (1987). Temporal and spatial segmentation of Pliocene-Quaternary fault rupture along the western Sangre de Cristo Mountain front, northern New Mexico. Proceedings of Conference, 39, pp. 203-222.
Menges, C. M. (1988). The tectonic geomorphology of mountain front landforms in the northern Rio Grande Rift near Taos. New Mexico [Ph. D. dissert.]: Albuquerque, University of New Mexico.
Menges, C. M. (1990). Soils and geomorphic evolution of bedrock facets on a tectonically active mountain front, western Sangre de Cristo Mountains, New Mexico. Geomorphology, 3(3-4), 301-332.
Molli, G., & Malavieille, J. (2011). Orogenic processes and the Corsica/Apennines geodynamic evolution: insights from Taiwan. International Journal of Earth Sciences, 100(5), 1207-1224.
Molnar, P. (1987). Inversion of profiles of uplift rates for the geometry of dipslip faults at depth, with examples from the Alps and Himalaya. Ann. Geophys., 5, 663-670.
Özkaymak, Ç. (2015). Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27(2-3), 110-129.
Petit, J. P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5-6), 597-608.
Petit, C., Meyer, B., Gunnell, Y., Jolivet, M., San'Kov, V., Strak, V., & Gonga‐Saholiariliva, N. (2009). Height of faceted spurs, a proxy for determining long‐term throw rates on normal faults: Evidence from the North Baikal Rift System, Siberia. Tectonics, 28(6).
Picotti, V., Ponza, A., & Pazzaglia, F. J. (2009). Topographic expression of active faults in the foothills of the Northern Apennines. Tectonophysics, 474(1-2), 285-294.
Pulver, M. H., Crespi, J. M., & Byrne, T. B. (2002). Lateral extrusion in a transpressional collision zone: An example from the pre-Tertiary metamorphic basement of Taiwan. Special Papers-Geological Society of America, 107-120.
Rao, G., A. Lin, B. Yan, D. Jia, X. Wu, Z. Ren (2011). Co-seismic Riedel shear structures produced by the 2010 Mw 6.9 Yushu earthquake, central Tibetan Plateau, China. Tectonophysics, 507(1-4), 86-94.
Rau, R. J. & Wu, F.T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Pianetary Scirncr Letters, 133(3-4), 517-532.
Ribolini, A., & Spagnolo, M. (2008). Drainage network geometry versus tectonics in the Argentera Massif (French–Italian Alps). Geomorphology, 93(3-4), 253-266.
Riedel, W. (1929). Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie. Geologie und Paleontologie B, 354-368.
Scholz, C. H., R. Ando and B. E. Shaw (2010). The mechanics of first order splay faulting: The strike-slip case. Journal of Structural Geology, 32(1), 118-126.
Segall, P., D. D. Pollard (1980). Mechanics of discontinuous faults. Journal of Geophysical Research: Solid Earth, 85(B8), 4337-4350.
Shih, T. T., J. C. Chang, C. E. Hwang, C. D. Shih, G. S. Yang (1983). A geomorphological study of active fault in northern and eastern Taiwan. Geographical Research, 9, 20-72. (in Chinese)
Shyu, J. B. H., Sieh, K., & Chen, Y. G. (2005a). Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth and Planetary Science Letters, 233(1-2), 167-177.
Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005b). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).
Shyu, J.B. H., K. Sieh, J. P. Avouac, W. S., Chen, and Y. G. Chen (2006a). Millenial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergencr across the active suture of eastern Taiwan, Journal Geophysical Research, 111, B0840.
Shyu, J. B. H., Sieh, K., Chen, Y. G., & Chung, L. H. (2006b). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118(11-12), 1447-1462.
Shyu, J. B. H., Wu, Y. M., Chang, C. H., & Huang, H. H. (2011). Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan. Journal of Asian Earth Sciences, 42(3), 415-422.
Silva, P. G., Goy, J. L., Zazo, C., & Bardajı, T. (2003). Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1-3), 203-225.
Stanley, R. S., Hill, L. B., Chang, H. C., & Hu, H. N. (1981). A transect through the metamorphic core of the central mountains, southern Taiwan. Mem. Geol. Soc. China, 4(4), 443-473.
Stolar, D. B., Willett, S. D., & Montgomery, D. R. (2007). Characterization of topographic steady state in Taiwan. Earth and Planetary Science Letters, 261(3-4), 421-431.
Suppe, J., (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoirs Geological Society of China 6, 21-33.
Tang, W. B.(1952). Earthquake Report 1951, Taiwan Weather Bureau, Taipei, 83 p.p. (in Chinese)
Tchalenko, J. S. (1968). The evolution of kink-bands and the development of compression textures in sheared clays. Tectonophysics, 6(2), 159-174.
Tchalenko, J. S. (1970). Similarities between shear zones of different magnitudes. Geological Society of America Bulletin, 81(6), 1625-1640.
Tchalenko, J. S. and N. N. Ambraseys (1970). Structural analysis of the Dasht-e Bayaz (Iran) earthquake fractures. Geological Society of America Bulletin, 81(1), 41-60.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
Teng, L. S. (1992). Geotectonic evolution of Tertiary continental margin basins of Taiwan. Petrology and Geology of Taiwan , 27, 1-19.
Tillman, K. S., & Byrne, T. B. (1995). Kinematic analysis of the Taiwan slate belt. Tectonics, 14(2), 322-341.
Topal, S., Keller, E., Bufe, A., & Koçyiğit, A. (2016). Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey. Geomorphology, 259, 55-69.
Tsai, C. H., Iizuka, Y., & Ernst, W. G. (2013). Diverse mineral compositions, textures, and metamorphic P–T conditions of the glaucophane-bearing rocks in the Tamayen mélange, Yuli belt, eastern Taiwan. Journal of Asian Earth Sciences, 63, 218-233.
Tucker, G. E., McCoy, S. W., Whittaker, A. C., Roberts, G. P., Lancaster, S. T., & Phillips, R. (2011). Geomorphic significance of postglacial bedrock scarps on normal‐fault footwalls. Journal of Geophysical Research: Earth Surface, 116(F1).
Van der Pluijm, B. A. and S. Marshak (2003). Earth Structure: An Introduction to Structural Geology and Tectonics (Second Edition). WW Norton & Company, 656 p.p.
Vermilye, J. M., & Scholz, C. H. (1998). The process zone: A microstructural view of fault growth. Journal of Geophysical Research: Solid Earth, 103(B6), 12223-12237.
Vermilye, J. M., & Scholz, C. H. (1999). Fault propagation and segmentation: insight from the microstructural examination of a small fault. Journal of Structural Geology, 21(11), 1623-1636.
Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A., Kelson, K. I., Ritter, J.B., Wesling, J.R. (1988). Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology, 1(3), 239-265.
Willett, S. D. (1999). Rheological dependence of extension in wedge models of convergent orogens. Tectonophysics, 305(4), 419-435.
Willett, S. D., & Brandon, M. T. (2002). On steady states in mountain belts. Geology, 30(2), 175-178.
Willett, S. D., Fisher, D., Fuller, C., En-Chao, Y., & Chia-Yu, L. (2003). Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948.
Wiwegwin, W., Sugiyama, Y., Hisada, K. I., & Charusiri, P. (2011). Re-evaluation of the activity of the Thoen Fault in the Lampang Basin, northern Thailand, based on geomorphology and geochronology. Earth, planets and space, 63(9), 975.
Wu, F. T., Liang, W. T., Lee, J. C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research: Solid Earth, 114(B7).
Wu, Y. M., Chen, Y. G., Chang, C. H., Chung, L. H., Teng, T. L., Wu, F. T., & Wu, C. F. (2006). Seismogenic structure in a tectonic suture zone: with new constraints from 2006 Mw6. 1 Taitung earthquake. Geophysical research letters, 33(22).
Wu, Y. M., Zhao, L., Chang, C. H., & Hsu, Y. J. (2008). Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651-661.
Wu, Y. M., J. B. H. Shyu, C. H. Chang, L. Zhao, M. Nakamura and S. K. Hsu (2009). Improved seismic tomography offshore northeastern Taiwan: implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International, 178(2), 1042-1054.
Yamaguchi, M., & Ota, Y. (2004). Tectonic interpretations of Holocene marine terraces, east coast of Coastal Range, Taiwan. Quaternary International, 115, 71-81.
Yang, G. S. (1986). A geomorphological study of active faults in Taiwan-especially on the relation between active faults and geomorphic surfaces. Ph. D. Thesis, Chinese Culture University, Taipei, Taiwan, 178 pp. (in Chinese)
Yeh, E. C. (2004) Structural Evolution Of Slate Belts: Examples From Taiwan And Eastern Pennsylvania. Ph. D. Thesis, The Pennsylvania State University, College of Earth and Mineral Sciences, 207p.p.
Yen, J. Y., C. H. Lu, C. P. Chang, A. J. Hooper, Y. H. Chang, W. T. Liang, T. Y. Chang, M. S. Lin, and K. S. Chen (2011). Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using persistent scatterer and small-baseline SAR interferometry. Terr. Atmos. Ocean. Sci., 22, 291-304.
Yen, J. Y., Lu, C. H., Dorsey, R. J., Kuo‐Chen, H., Chang, C. P., Wang, C. C., ... & Bovenga, F. (2018). Insights into seismogenic deformation during the 2018 Hualien, Taiwan, earthquake sequence from InSAR, GPS, and modeling. Seismological Research Letters, 90(1), 78-87.
Yen, T.P. (1954) The gneisses of Taiwan. Bull. Geol. Surv. Taiwan, 5, 1-100.
Yen, T. P., Sheng, C. C., Keng, W. P., & Yang, Y. T. (1956). Some problems on the Mesozoic formation of Taiwan. Bull. geol. Surv. Taiwan, 8, 1-14.
Yen, T.P. (1960) A stratigraphic study of the Tananao Schist in northern Taiwan. Bull. Geol. Surv. Taiwan, 12, 53-66.
Yen, T.P. (1963) The metamorphic belts within the Tananao Schist terrain of Taiwan. Proc. Geol. Soc. China, 6, 72-74.
Yu, M. S. (1994). Wrench-fault characteristics of the Taitung Longitudinal Valley Fault zone. Ti-Chih, 14, 121-147. (in Chinese)
Yu, S. B, D. D. Jackson, G. K. Yu, C. C. Liu (1990). Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan. Tectonophysics, 183(1-4), 97-109.
Yu, S. B., H. Y. Chen and L. C. Kuo (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
Yu, S. B., L. C. Kuo (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217.
Yui, T. F., & Chu, H. T. (2000). ‘Overturned’marble layers: evidence for upward extrusion of the Backbone Range of Taiwan. Earth and Planetary Science Letters, 179(2), 351-361.
Zhang, B., J. Zhang and D. Zhong (2010). Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. Journal of Structural Geology, 32(4), 445-463.
Zuchiewicz, W. A., & McCalpin, J. P. (2000). Geometry of faceted spurs on an active normal fault: case study of the Central Wasatch Fault, Utah, USA. In Annales Societatis Geologorum Poloniae, 70(3-4), 231-249.

中興工程顧問公司,亞新工程顧問股份有限公司(2011)易淹水地區上游集水區地質調查及資料庫建置(第3 期100 年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫(1/3),經濟部中央地質調查所,共483 頁。
古兆禎 (1965) 臺灣地形發育與地殼運動之關係。中國地質學會會刊,第8 號,第102-105頁。
胡賢能、詹新甫(1984)台灣南迴鐵路沿線地區板岩系地層之構造研究。經濟部中央地質調查所特刊,第3號,25-43頁。
何春蓀. (1975). 臺灣地質概論-臺灣地質圖說明書, 經濟部中央地質調查所, 117 頁.
林朝棨(1962)花蓮地方的第四系-臺灣之第四紀研究(三)。國家長期發展科學委員會研究報告,共42頁。
林啟文, 張徽正, 盧詩丁, 石同生, & 黃文正. (2000). 台灣活動斷層概論, 第二版, 經濟部中央地質調查所, 共 122 頁。
林啟文, 陳文山, & 饒瑞鈞. (2007). 臺灣活動斷層調查的近期發展. 經濟部中央地質調查所特刊, 18, 85-110。
林銘郎、李崇正、黃文正、黃文昭 (2014) 重要活動斷層構造特性調查研究-活動斷層近地表變形特性研究(100~103年),經濟部中央地質調查所計畫成果報告,共297頁。
紀權窅. (2007). 南段花東縱谷之新期構造研究─ 利吉斷層與鹿野斷層的活動特性,臺灣大學地質科學研究所學位論文, 共84頁。
徐鐵良(1954)台灣東部海岸山脈地形與近期上升運動。台灣省地質調查所彙刊,第8號,第9-58頁。
徐鐵良(1955)臺灣之地震。臺灣銀行季刊,第七期,第 39-63 頁。
徐鐵良 (1962) 東台灣縱谷之現代斷層活動,中國地質學會專刊,第一號,第95-102。
高嘉鈴 (2010) 應用河流縱剖面分析研究台灣中央山脈東翼構造活動,國立東華大學地球科學所碩士論文,共133頁。
陳文山, 陳于高, & 楊小青. (2006) 地震地質調查及活動斷層資料庫建置-槽溝開挖與古地震研究計畫總報告。
陳文山, 林益正, 顏一勤, 楊志成, 紀權窅, 黃能偉, 林啟文, 林偉雄, 侯進雄, 劉彥求, 林燕慧, 石同生, 盧詩丁 (2008) 從古地震研究與 GPS 資料探討縱谷斷層的分段意義。 經濟部中央地質調查所特刊,(20), 165-191.
陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱(2018) 臺灣東部碰撞帶孕震構造,經濟部中央地質調查所特刊,第三十三號,第 123-155頁。
陳冠翔(2011) 台灣花蓮北部板塊交接點上部岩石圈週期碰撞與鬆弛模式。國立台灣大學地質科學研究所碩士論文,共134頁。
張中白、徐乙君、蕭乃祺、陳燕玲、邱太乙 (2017) 臺灣地區106年中大型地震震源資訊之快速彙整與提供-震源區域地質與孕震構造之分析。交通部中央氣象局委託研究計畫期末成果報告,共50頁。
湯捷喜(1951) 花蓮地震說明圖。新生報,1951 年 11 月 10 日,第 3 版。
游明聖(1997) 台東縱谷活動斷層研究。國立臺灣大學地質學研究所博士論文,共 141頁。
楊萬慧 (2007) 應用地形分析方法研究台灣中央山脈東翼地表抬升。國立中央大學地球物理研究所碩士論文,共106頁。
鍾佩瑜 (2019) 利用密集地震網探討花東縱谷北段地下速度構造。國立中央大學地球科學系碩士論文,共80頁。
賴思穎 (2019) 應用高解析反射震測探討花東縱谷地下構造。國立中央大學地球科學系碩士論文,共65頁。
謝孟龍 (2005) 台灣山區五條河流現今岩盤下切速率的監測。行政院國家科學委員會專題研究計畫成果報告,共45頁。
論文全文檔清單如下︰
1.電子全文連結(41574.005K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *