帳號:guest(35.172.111.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:呂奇祝
作者(外文):Ci-Jhu Lyu
論文名稱:利用複反射衰減方法提高海上震測成像並探討南琉球隱沒系統
論文名稱(外文):Improving the seismic imaging in the southern Ryukyu subduction system by using multiple attenuation methods
指導教授:郭陳澔
指導教授(外文):Hao Kuo-Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球科學學系
學號:101622024
出版年:105
畢業學年度:104
語文別:中文
論文頁數:139
中文關鍵詞:複反射衰減莫荷面邊界琉球隱沒系統
外文關鍵詞:Multiple attenuationMoho boundaryRyukyu subduction system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:190
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
南琉球隱沒系統位於菲律賓海板塊(PSP)與歐亞板塊(EUP)交界,在過去的歷史上有大地震發生甚至引發海嘯,因此,瞭解此地區的地體構造是很重要的。在前人研究中,菲律賓海板塊隱沒的地球物理資料並不十分的多,對於菲律賓海板塊隱沒到歐亞板塊的詳細的地體形貌仍未完全掌握,所以本研究利用高解析度的震測影像資料希望能提供更多的資訊。然而,海洋震測影像時常會受到複反射的影響而使深部地殼影像受到干擾。因此,為了得到板塊邊界及莫荷面反射的成像,本研究採用不同去除複反射方法提高深部地殼訊號。資料來源是2009年TAIGER計畫中在南琉球施測的多波道震測剖面(MGL0906_18N;MGL0906_15N;MGL0906_30A),施測規劃為測線每50公尺一個炸點,受波器每12.5公尺一個,共深點(CDP)是6.25公尺,紀錄時間15秒。震源是低頻訊號(20Hz~60Hz),能穿透淺層沉積物,反射深部的地殼訊號。因為複反射會影響深部構造的訊號,因此本研究利用震測軟體處理,使用各種方法去除或減弱複反射效應,提高莫霍面的訊號達到我們的研究目的,提供琉球海域高解析度的地球物理數據。本研究使用四種方式去除複反射。第一,利用消除海表面造成的複反射(SRME);第二,利用Radon轉換減弱複反射;第三,預測解迴旋(Predictive Deconvolution);第四,傾角濾波去除複反射。經過這些步驟,增積岩體和弧前盆地下方的地殼反射訊號清楚成像。此成效可被應用於其它琉球隱沒系統的震測剖面中,在未來可以更瞭解此地區隱沒的邊界狀況。
The southern Ryukyu subduction system is located at the boundary between the Philippine Sea Plate (PSP) and the Eurasian Plate (EUP). The Philippine Sea Plate subducts northwestward beneath the Eurasian Plate near the eastern offshore of the Taiwan orogen. The Ryukyu subduction system is potentially hazardous in terms of tsunami and ground shaking for Taiwan region. Therefore, it is important to understand the crustal structure of this subduction system. In previous studies, the geometry of the subducting PSP is not clear, so we want to process high-resolution crustal-scale seismic images. However, crustal reflections are usually covered by the multiples from sea floor. In order to imagine the plate boundary or even moho reflection, the advanced multiple attenuation methods need to be applied for studying the crustal deformation in the subduction zone. In this study, we applied the multiple attenuation methods to the multi-channel seismic profiles (MGL0906_18N;MGL0906_15N;MGL0906_30A) in the southern Ryukyu subduction system from TAIGER (Taiwan Integrated Geodynamic Research) project in 2009. The field experiment parameters are 50 m shot interval, 12.5 m spacing for the hydrophone, 15 s of recording time, and 6.25 m of CDP spacing. In those profiles, the top of subducting crust of the Philippine Sea Plate is hidden by the multiples. Due to multiples affect on the deep structure signals, we use several de-multiple methods to remove the multiple effects, and increase signals from deep crustal reflectors. In this study, four steps of multiple attenuation methods are used (1) 2D Surface Related Multiple Elimination (SRME), (2) Radon Transform multiple attenuation, (3) Predictive Deconvolution, (4) Dip filter. After these steps, the top of subducting plate below the accretionary prism and the east Nanao basin is clearly imaged. Those methods can be applied to other marine seismic profiles in the future.
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix

第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究區域概述 3
1.3 南琉球隱沒系統之地體構造 5
1.4 板塊構造活動 9
1.5 南琉球海域之地震特性 17
1.6 南琉球弧前基盤之型態 24
1.7 本文內容 27
第二章 消除複反射方法及原理 28
2.1 複反射的成因及類型 28
2.2 預測解迴旋(Predictive Deconvolution) 35
2.3 頻率-波數域濾波器(F-K filter;Frequency-wavenumber filter) 38
2.4 傾角濾波(Dip filter) 39
2.5 Slant-Stack Transform 41
2.6 Radon Transform 44
2.7 特徵向量濾波(Eigenvector filter;Karhunen-Loeve Transform) 48
2.8 波動方程式(WEMA;Wave Equation Multiple Attenuation) 49
2.9 SRME (Surface-Related Multiple Elimination) 51
第三章 震測資料收集及處理 54
3.1 海上震測資料收集 54
3.2 重合數計算 58
3.3 資料處理 59
3.3.1 資料讀取與展示 60
3.3.2 幾何定位(Geometry) 60
3.3.3 近支距炸點展示(Near-offset trace display) 60
3.3.4 初疊加(Brute-stack) 63
3.3.5 帶通濾波(Band-pass filter) 63
3.3.6 球面擴散修正(Spherical divergence correction) 63
3.3.7 速度分析(Velocity analysis) 69
3.3.8 垂直隔距時差修正(NMO, Normal moveout correction) 69
3.3.9 重合(Stack) 72
3.3.10 移位(Migration) 72
3.3.11 自動增益控制(AGC, Auto gain control) 72
3.4 消除複反射 73
3.4.1 預測解迴旋(Predictive Deconvolution) 73
3.4.2 頻率-波數域濾波器(F-K filter) 76
3.4.3 特徵向量濾波(Eigenvector filter) 79
3.4.4 傾角濾波(Dip filter) 81
3.4.5 Slant-Stack Transform 83
3.4.6 Radon Transform 87
3.4.7 波動方程式(Wave Equation Multiple Attenuation) 90
3.4.8 SRME(2D Surface-Related multiple elimination) 91
第四章 研究結果與討論 94
4.1 複反射衰減結果 94
4.1.1 比較各種方法去除複反射效果 94
4.1.2 探討各種方法處理成效 95
4.2 展示複反射消除流程 105
4.3 震測剖面解釋 113
第五章 結論 122
參考文獻 124

Berryhill, J. R. (1979). Wave-equation datuming. Geophysics, 44(8), 1329-1344.
Bowin, C., Lu, R. S., Lee, C. S., & Schouten, H. (1978). Plate convergence and accretion in Taiwan-Luzon region. AAPG Bulletin, 62(9), 1645-1672.
Deschamps, A., Monié, P., Lallemand, S., Hsu, S. K., & Yeh, K. Y. (2000). Evidence for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate. Earth and Planetary Science Letters, 179(3), 503-516.
Dix, C. H. (1955). Seismic velocities from surface measurements. Geophysics, 20(1), 68-86.
Dominguez, S., Lallemand, S., Malavieille, J., & Schnürle, P. (1998). Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments. Marine Geophysical Researches, 20(5), 383-402.
Font, Y., & Lallemand, S. (2009). Subducting oceanic high causes compressional faulting in southernmost Ryukyu forearc as revealed by hypocentral determinations of earthquakes and reflection/refraction seismic data. Tectonophysics, 466(3), 255-267.
Font, Y., Liu, C. S., Schnurle, P., & Lallemand, S. (2001). Constraints on backstop geometry of the southwest Ryukyu subduction based on reflection seismic data. Tectonophysics, 333(1), 135-158.
Foster, D. J., & Mosher, C. C. (1992). Suppression of multiple reflections using the Radon transform. Geophysics, 57(3), 386-395.
Hampson, D. (1986, January). Inverse velocity stacking for multiple elimination. In 1986 SEG Annual Meeting. Society of Exploration Geophysicists.
Hsu, S. K., Yeh, Y. C., Sibuet, J. C., Doo, W. B., & Tsai, C. H. (2013). A mega-splay fault system and tsunami hazard in the southern Ryukyu subduction zone. Earth and Planetary Science Letters, 362, 99-107.
Huang, X. W., Sun, C. Y., Niu, B. H., Wang, H. D., & Zeng, M. S. (2005). Surface‐Related Multiple Prediction and Suppression Based on Data‐Consistence: A Theoretical Study and Test. Chinese Journal of Geophysics, 48(1), 188-196.
Kao, H., Huang, G. C., & Liu, C. S. (2000). Transition from oblique subduction to collision in the northern Luzon arc‐Taiwan region: Constraints from bathymetry and seismic observations. Journal of Geophysical Research: Solid Earth (1978–2012), 105(B2), 3059-3079.
Kao, H., Shen, S. S. J., & Ma, K. F. (1998). Transition from oblique subduction to collision'Earthquakes in the southernmost Ryukyu arc-Taiwan region. Journal of Geophysical Research, 103(B4), 7211-7229.
Lallemand, S., Liu, C. S., Dominguez, S., Schnürle, P., & Malavieille, J. (1999). Trench‐parallel stretching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: A case of strain partition caused by oblique convergence. Tectonics, 18(2), 231-247.
Lallemand, S., Theunissen, T., Schnürle, P., Lee, C. S., Liu, C. S., & Font, Y. (2013). Indentation of the Philippine Sea plate by the Eurasia plate in Taiwan: Details from recent marine seismological experiments. Tectonophysics, 594, 60-79.
Matson, K. H., Paschal, D., & Weglein, A. B. (1999). A comparison of three multiple-attenuation methods applied to a hard water-bottom data set. The Leading Edge, 18(1), 120-126.
Nakamura, M. (2006). Source fault model of the 1771 Yaeyama tsunami, southern Ryukyu Islands, Japan, inferred from numerical simulation. pure and applied geophysics, 163(1), 41-54.
Oppert, S. K., & Brown, R. J. (2002). Improved Radon transforms for filtering of coherent noise. CREWES Research Report, 14.
Robinson, E. A., & Treitel, S. (1980). Geophysical signal analysis (Vol. 263). New Jersey: Prentice-Hall.
Seno, T., Stein, S., and Gripp, A. E. (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL‐1 and geological data. Journal of Geophysical Research, 98(B10), 17941-17948.
Taner, M. T. (1980). Long period sea-floor multiples and their suppression. Geophysical Prospecting, 28(1), 30-48.
Thorson, J. R., & Claerbout, J. F. (1985). Velocity-stack and slant-stack stochastic inversion. Geophysics, 50(12), 2727-2741.
Verschuur, D. J. (1991). Surface-related multiple elimination, an inversion approach.
Verschuur, D. J., Berkhout, A. J., & Wapenaar, C. P. A. (1992). Adaptive surface-related multiple elimination. Geophysics, 57(9), 1166-1177.
Wageman, J. M., Hilde, T. W., & Emery, K. O. (1970). Structural framework of East China Sea and Yellow Sea. AAPG Bulletin, 54(9), 1611-1643.
Wang, T. K., Lin, S. F., Liu, C. S., & Wang, C. S. (2004). Crustal structure of the southernmost Ryukyu subduction zone: OBS, MCS and gravity modelling. Geophysical Journal International, 157(1), 147-163.
Wu, F. T., Liang, W. T., Lee, J. C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research: Solid Earth (1978–2012), 114(B7).
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B8).
Yilmaz, Ö. (1989). Velocity-stack processing. Geophys. Prosp., 37, 357-382.
何春蓀(1997) 台灣地質概論台灣地質圖說明書。經濟部出版,第144-146頁。
何春蓀(1982) 台灣地體構造的演變台灣地體構造圖說明書。經濟部出版,第84-86頁。
李昭興、盧世民(1976) 琉球內背西南段在宜蘭附近地熱資源探勘上的意義。礦業技術,第14卷,第4期,第114-120頁。
林綉媚(2011) 台灣-琉球隱沒與碰撞交界地區的構造特徵。國立台灣大學海洋研究所碩士論文。
李淑文(1991) 消除長週期海底複反射之研究。國立台灣大學海洋研究所碩士論文。
葉金勳(1999) 消除長週期海底複反射技術之應用與探討。國立台灣大學海洋研究所碩士論文。
古佳艷(2004) 台灣至呂宋島間馬尼拉海溝的震測研究:從正常隱沒到初期碰撞抬昇的上部地殼構造。國立中央大學地球物理研究所碩士論文。
論文全文檔清單如下︰
1.電子全文連結(26492.846K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *