|
[1] An, H. C., Kleinberg, R., & Shmoys, D. B. (2015). Improving christodes' algorithm for the st path TSP. Journal of the ACM (JACM), 62(5), 34. [2] Bae, J., & Rathinam, S. (2012). Approximation algorithms for multiple terminal, Hamiltonian path problems. Optimization Letters, 6(1), 69-85. [3] Bock, A., Grant, E., Konemann, J., & Sanita, L. (2013). The school bus problem on trees. Algorithmica, 67(1), 49-64. [4] Christodes, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman problem (No. RR-388). Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group. [5] Friggstad, Z., & Swamy, C. (2014, May). Approximation algorithms for regret-bounded vehicle routing and applications to distance-constrained vehicle routing. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing (pp. 744-753). ACM. [6] Gharan, S. O., Saberi, A., & Singh, M. (2011, October). A randomized rounding approach to the traveling salesman problem. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on (pp. 550-559). IEEE. [7] Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approximation algorithms for scheduling problems theoretical and practical results. Journal of the ACM (JACM), 34(1), 144-162. [8] Hoogeveen, J. A. (1991). Analysis of Christodes' heuristic: Some paths are more dicult than cycles. Operations Research Letters, 10(5), 291-295. [9] Momke, T., & Svensson, O. (2011, October). Approximating graphic TSP by matchings. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on (pp. 560-569). IEEE. 34 [10] Nagamochi, H., & Okada, K. (2007). Approximating the minmax rooted-tree cover in a tree. Information Processing Letters, 104(5), 173-178. [11] Sahni, S. K. (1976). Algorithms for scheduling independent tasks. Journal of the ACM (JACM), 23(1), 116-127. [12] Seb}o, A. (2013, March). Eight-fth approximation for the path TSP. In International Conference on Integer Programming and Combinatorial Optimization (pp. 362-374). Springer, Berlin, Heidelberg. [13] Toth, P., & Vigo, D. (2001). The vehicle routing problem. SIAM, Philadelphia. ISBN: 0-89871-498-2. 0-89871-579-2. [14] Traub, V., & Vygen, J. (2018, January). Approaching [EQUATION] for the st-path TSP. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1854-1864). Society for Industrial and Applied Mathematics. [15] U.S. CSA, The Business of Retail. https://www.chainstoreage.com/operations/walmartleverages- employees-last-mile-delivery-initiative/ [16] Xu, L., Xu, Z., & Xu, D. (2013). Exact and approximation algorithms for the min{max k-traveling salesmen problem on a tree. European journal of operational research, 227(2), 284-292. |