|
1. USEPA, 2017. Particulate Matter (PM) Pollution, retrieved from https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM 2. KENT RO SYSTEMS, 2017. How to Ensure Your Kid’s Good Health with KENT Air Purifier? retrieved from https://www.kent.co.in/blog/how-to-ensure-your-kids-good-health-with-kent-air-purifier/ 3. WHO, 2016. Ambient (outdoor) air quality and health, retrieved from http://www.who.int/mediacentre/factsheets/fs313/en/ 4. Environmental Protection Administration Executive Yuan R.O.C. (Taiwan), 2012. Taiwan Air Quality Monitoring Network, The Air Quality Standard, retrieved from https://taqm.epa.gov.tw/taqm/tw/b0206.aspx 5. Environmental Protection Administration Executive Yuan R.O.C. (Taiwan), 2018. The definition of air pollution indicators, retrieved from https://taqm.epa.gov.tw/taqm/tw/b0201.aspx 6. Taiwan Power Company, 2018. Household Electricity Consumption Guide, from https://www.taipower.com.tw/tc/page.aspx?mid=212&cid=118&cchk=2b7682d9-46f8-4103-b636-02a5afeda67c 7. 台灣電力公司, 2018。 歷年發電量及結構。取自:https://www.taipower.com.tw/TC/chart_m/a01_電力供需資訊_電源開發規劃_歷年發電量及結構.html 8. James Conca, 2012. How Deadly Is Your Kilowatt? We Rank the Killer Energy Sources. Retrieved from https://www.forbes.com/sites/jamesconca/2012/06/10/energys-deathprint-a-price-always-paid/#aabee84709b7 9. 鄭睿合、陳冠翰、林文祥,2017。因應電力短缺之服務業應變機制,經濟前瞻。 10. 張立農、江孟玲、林昭遠,2015。台灣交通空氣品質監測站PM10變異影響因素之研究,中興大學水土保持學報,第47卷 第01期。 11. 洪若雅,2017。臺灣大氣背景 PM2. 5 質量濃度之推估。 12. Lin, Y., Zou, J., Yang, W., & Li, C. Q. (2018). A Review of Recent Advances in Research on PM2. 5 in China. International journal of environmental research and public health, 15(3), 438. 13. Niharika, V. M., & Rao, P. S. (2014). A survey on Air Quality Forecasting Techniques. International Journal of Computer Science and Information Technologies, 5(1), 103-107. 14. Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., & Wang, J. (2015). Artificial neural networks forecasting of PM2. 5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107, 118-128. 15. Lu, W. Z., & Wang, W. J. (2005). Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere, 59(5), 693-701. 16. Weizhen, H., Zhengqiang, L., Yuhuan, Z., Hua, X., Ying, Z., Kaitao, L., ... & Yan, M. (2014). Using support vector regression to predict PM10 and PM2. 5. In IOP Conference Series: Earth and Environmental Science (Vol. 17, No. 1, p. 012268). IOP Publishing. 17. Dong, M., Yang, D., Kuang, Y., He, D., Erdal, S., & Kenski, D. (2009). PM2. 5 concentration prediction using hidden semi-Markov model-based times series data mining. Expert Systems with Applications, 36(5), 9046-9055. 18. Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., & Liu, S. (2013). Prediction of 24-hour-average PM2. 5 concentrations using a hidden Markov model with different emission distributions in Northern California. Science of the total environment, 443, 93-103. 19. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. 20. Juang, B. H., & Rabiner, L. (1985). Mixture autoregressive hidden Markov models for speech signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(6), 1404-1413. 21. Tang, X. (2005). Autoregressive hidden markov model with application in an El Nino study (Doctoral dissertation). 22. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286. 23. Donalek, C. (2011). Supervised and Unsupervised learning. In Astronomy Colloquia. USA. 24. Environmental Protection Administration Executive Yuan R.O.C. (Taiwan), Taiwan Air Quality Monitoring Network 2012, History Data Download, retrieved from https://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx 25. Mission China air quality monitoring program, 2018, retrieved from http://www.stateair.net/web/historical/1/3.html
|